
An Efficient Dual Algorithm for Vectorless Power Grid
Verification under Linear Current Constraints

Xuanxing Xiong and Jia Wang
Electrical and Computer Engineering Department

Illinois Institute of Technology, Chicago, IL 60616, USA

ABSTRACT
Vectorless power grid verification makes it possible to eval-
uate worst-case voltage drops without enumerating possible
current waveforms. Under linear current constraints, the
vectorless power grid verification problem can be formulated
and solved as a linear programming (LP) problem. How-
ever, previous approaches suffer from long runtime due to
the large problem size. In this paper, we design the DualVD
algorithm that efficiently computes the worst-case voltage
drops in an RC power grid. Our algorithm combines a novel
dual approach to solve the LP problem, and a precondi-
tioned conjugate gradient power grid analyzer. Our dual
approach exploits the structure of the problem to simplify its
dual problem into a convex problem, which is then solved by
the cutting-plane method. Experimental results show that
our algorithm is extremely efficient – it takes less than an
hour to complete the verification of a power grid with more
than 50K nodes and it takes less than 1 second to verify one
node in a power grid with more than 500K nodes.

Categories and Subject Descriptors:
B.7.2 [Integrated Circuits]: Design Aids
General Terms: Algorithms, Verification
Keywords: Power grid, voltage drop, linear programming

1. INTRODUCTION
The power grid of integrated circuits (IC) must provide

sufficient voltage at each gate in order to guarantee the cor-
rect operation of the circuit. It is indispensable to verify that
the power supply noise at each node is acceptable when de-
signing ICs, and this process is typically called power grid
verification. The power supply noise is mainly due to IR
drop and Ldi/dt drop, which are exaggerated with the de-
velopment of deep sub-micron technologies because of the
increasing wire resistance and clock frequency. In addi-
tion, the decreasing circuit supply voltage and the transistor
threshold voltage make the circuit more vulnerable to power
supply noises. Therefore, it is desired that the power grid
verification techniques can provide accurate estimation of
the noise at each node in a timely manner.
Conventionally, the power grid is verified by simulating

the circuit to evaluate the noise at each node. Simula-
tion based techniques need specific circuit implementations
to provide detailed input current waveform, and can only
be employed after the circuit design is done. However, in
practice, early power grid verification is preferred for grid
modification. Moreover, simulation based techniques suffer
from the fundamental limitation of being either pessimistic
or computationally prohibitive to cover all possible input

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2010, June 13­18, 2010, Anaheim, California, USA.
Copyright 2010 ACM ACM 978­1­4503­0002­5 ...$10.00.

current waveforms.
To address such requirements, vectorless power grid veri-

fication has been proposed [1, 2, 3, 4] to evaluate the worst-
case power supply noise without explicitly enumerating all
input current waveforms. In [1, 2, 3], feasible input cur-
rent waveforms are characterized into linear current con-
straints to cover all possible input current waveform, such
that the maximum voltage drops in an RC power grid can
be obtained after formulating and solving linear program-
ming (LP) problems. In [4], the assumptions are further
refined by introducing integer variables to model the uncer-
tain working modes of circuit blocks, and integer linear pro-
gramming (ILP) problems are formulated and solved. Un-
fortunately, solving all of these problems is time-consuming
or even prohibitive for large grids. [3] takes advantage of the
grid locality to generate a reduced-size LP problem for each
node, and accepts a user specified over estimation margin to
control the precision of solutions. This approach sacrifices
the accuracy in order to achieve speed-up by reducing the
number of variables in the LP problems, so it is not applica-
ble when high precision is desired. Moreover, the speed-up
is limited since to generate the reduced-size LP problems
takes extra runtime.

In this paper, we design the DualVD algorithm to solve
the vectorless power grid verification problem under lin-
ear current constraints for RC power grids. We propose
a novel dual approach to solve the associated LP problem
efficiently by exploiting its special structure. We simplify
the dual problem of the LP problem by eliminating most
decision variables and constraints. We show the simplified
dual problem is a convex problem with a small number of
decision variables and simple form of constraints. We then
solve the convex problem by the cutting-plane method and
provide means to speed-up the evaluation of the objective
function and its subgradient. This dual approach is then
combined with a preconditioned conjugate gradient power
grid analyzer based on [5]. Experimental results show that
the proposed dual approach is much faster than solving the
LP problems directly, and our DualVD algorithm is much
more efficient when compared with the method in [3].

The rest of the paper is organized as following. The prob-
lem formulation is introduced in Section 2. The algorithmic
idea is developed in Section 3. The technical details of the
proposed algorithm is presented in Section 4. After experi-
mental results are shown in Section 5, we conclude the paper
in Section 6.

2. PROBLEM FORMULATION
The vectorless power grid verification problem under lin-

ear current constraints was proposed in [1] and studied in
[2, 3]. This problem considers an RC power grid consisting
of resistors, capacitors, VDD pads, and currents drawn by
gates. Let v(t) be the vector of the voltage drops of the
nodes that are not VDD pads, i(t) be the vector of all the
current sources attached to the aforementioned non-VDD
nodes, G be the conductance matrix, and C be the matrix
introduced by capacitors. According to [1], the following

system of equations must hold.

Gv(t) + Cv̇(t) = i(t). (1)

Note that if we assume that there are n non-VDD nodes,
then both v(t) and i(t) are n × 1 vectors, G is an n × n
symmetric M-matrix, and C is an n× n diagonal matrix.
Clearly, the amount of voltage drops depends on the wave-

form of current excitations. As it is pessimistic to assume
a peak current for each current source and computationally
prohibitive to enumerate all possible current waveforms, cur-
rent constraints are introduced to capture the infinite many
current excitations in an optimization framework. There are
two kinds of current constraints: local constraints and global
constraints. The local constraints define an upper-bound for
every current source,

0 ≤ i(t) ≤ IL, ∀t,
where IL ≥ 0 is an n × 1 upper-bound vector. The global
constraints define upper bounds for groups of current sources,

U i(t) ≤ IG, ∀t.
Here we assume that there are m current source groups and
m is much smaller than n, U is an m × n 0/1 matrix in-
dicating the assignments of current sources to groups, and
IG ≥ 0 is an m× 1 upper-bound vector.
As summarized in [3], vectorless power grid verification

can be performed under two power grid analysis models,
i.e. the DC analysis model and the transient analysis model
with a time-step h, and the key problem can be formulated
as the following maxVD-LCC (maximum voltage drop under
linear current constraints) problem.

Problem 1 (maxVD-LCC). Assume there are n non-
VDD nodes and m global current constraints. Let A = G
if the DC analysis model is of concern or A = G + C

h
if

the transient analysis model is of concern. Let IL ≥ 0 and
IG ≥ 0 be the upper-bound vectors for local and global current
constraints respectively. Let U be a 0/1 matrix. Suppose that
v and i are the vectors of decision variables and let vl be the
l’th component of v for 1 ≤ l ≤ n. Solve the following
optimization problem for every 1 ≤ l ≤ n,

Maximize vl s.t. Av = i, 0 ≤ i ≤ IL, U i ≤ IG. (2)

3. ALGORITHM OVERVIEW
For every 1 ≤ l ≤ n, the optimization problem in Eq.(2)

is a linear programming (LP) problem since both the ob-
jective function and the constraints are linear functions of
the decision variables. As there are n optimization problems
and n is usually large for any practical power grid, such LP
problems have to be solved very efficiently.
Intuitively, instead of sending the whole Eq.(2) to an LP

solver, one would decompose the optimization problem first
utilizing the fact that A is an M-matrix and thus is invert-
ible. Let el be an n × 1 vector of all 0’s except the l’th

component being 1. Let cl
∆
= A−1el, which can be com-

puted by solving Ax = el using any power grid analysis
algorithm. Because Av = i and A is symmetric, we have
vl = cTl i. Then the optimization problem becomes

Maximize cTl i s.t. 0 ≤ i ≤ IL, U i ≤ IG, (3)

which is also an LP problem but with roughly half of the
decision variables and constraints in comparison to Eq.(2).
The above intuitive idea was partially explored in [3].

As the optimization problem in Eq.(3) still involves a large
number of decision variables and constraints for any prac-
tical power grid, it was proposed by [3] to compute an ap-

proximated cl with only a few non-zero components. Then
most decision variables and local constraints corresponding
to the zero element in the approximated cl can be dropped
from Eq.(3) and thus it can be efficiently solved by any LP
solver. However, this approach has two drawbacks. First,
the number of non-zero elements depends on the accuracy of
the approximation. If a higher level of accuracy is required,
the approximated cl will contain more non-zero components
and the optimization problem in Eq.(3) is harder to solve.
Second, as indicated by our preliminary experiments, the
computation of the approximated cl does consume a signifi-
cant amount of running time in comparison to obtaining the
exact cl using efficient power grid analysis algorithms.

Therefore, it is of great interest to solve the optimization
problem in Eq.(3) efficiently with the exact cl, such that the
advances in power grid analysis can be leveraged. Clearly,
to achieve such a goal, one must be able to exploit the struc-
tures in the problem. Our major contribution in this paper is
an efficient dual approach to solve Eq.(3) exploiting its spe-
cial structures. We exploit the special structure of the local
constraints to simplify the dual problem Eq.(3) by eliminat-
ing most decision variables and constraints. We show the
simplified dual problem is a convex problem with m decision
variables and m constraints requiring the decision variables
being non-negative. We propose to solve the convex problem
by the cutting-plane method and to speed-up the evaluation
of the objective function and its subgradient by exploiting
the special structure of the global constraints. We design
the DualVD algorithm to solve the maxVD-LCC problem
efficiently combining a preconditioned conjugate gradient
power grid analyzer based on [5] to obtain cl, and our dual
approach to solve Eq.(3). The details are presented in the
next section.

4. PROPOSED APPROACH
4.1 Simplified Dual Problem

Recall that m is much smaller than n. Most constraints
in Eq.(3) are simply the bounds on the decision variables.
To exploit such special structure in the primal problem, a
typical approach is to investigate the corresponding dual
problem. Let β be the vector of Lagrangian multipliers cor-
responding to the constraints i ≤ IL and γ be the vector
of Lagrangian multipliers corresponding to the constraints
U i ≤ IG. The dual problem of Eq.(3) can be formulated as
follows.

Minimize ITLβ+ITGγ s.t. β+UTγ ≥ cl,β ≥ 0,γ ≥ 0. (4)

As Eq.(3) has a feasible solution i = 0, the optimal value of
Eq.(3) and Eq.(4) are the same due to the strong duality of
LPs. Therefore, one can solve Eq.(4) in order to obtain the
maximum voltage drop.

Let γ ≥ 0 be an arbitrary m × 1 vector. For 1 ≤ j ≤ n,
denote the j’th column of U by uj and the j’th component
of cl by cl,j . Let the vector β∗ = (β∗

1 , β
∗
2 , . . . , β

∗
n)

T where

β∗
j

∆
= max(0, cl,j − uT

j γ), ∀1 ≤ j ≤ n.

Then obviously (β∗,γ) is a feasible solution of Eq.(4). Fur-
ther more, for any feasible solution (β,γ) of Eq.(4), it must
be true that β ≥ β∗. Since IL ≥ 0, it implies

ITLβ + ITGγ ≥ ITLβ
∗ + ITGγ,

which means that for Eq.(4), the objective value correspond-
ing to a feasible solution (β,γ) is always no smaller than that
of (β∗,γ). Denote the j’th component of IL by IL,j . We

propose to simplify Eq.(4) by eliminating β using β∗ and a
new optimization problem is thus formulated as follows,

Minimize D(γ) s.t. γ ≥ 0, (5)

where the objective function D(γ) is defined as

D(γ)
∆
= ITGγ +

n∑
j=1

IL,j max(0, cl,j − uT
j γ).

According to the above discussions, the optimization prob-
lems in Eq.(3), (4), and (5) have the following property.

Theorem 1. The optimization problems in Eq.(3), (4),
and (5) have optimal solutions and their optimal values are
the same.

Though the three optimization problems have the same opti-
mal value, the benefit of the formulation in Eq.(5), in com-
parison to the other two, is that the number of decision
variables and constraints is much smaller because of the fact
that m ≪ n, and that the constraints are extremely simple.
The concern is about the objective function D(γ), which
seems to be much more complicated than those of the other
two because of the max operations involved. However, as
we shall prove in the next subsection that D(γ) is convex
with respect to γ, Eq.(5) can be solved by efficient convex
programming techniques.

4.2 Convexity of Simplified Dual Problem
Consider a particular m× 1 vector γ ≥ 0. For 1 ≤ j ≤ n,

define

Ej(γ)
∆
=

{
1, if cl,j ≥ uT

j γ,
0, otherwise.

Then clearly

max(0, cl,j − uT
j γ) = Ej(γ)(cl,j − uT

j γ). (6)

Moreover, let γ′ be an arbitrary m× 1 non-negative vector.
As Ej(γ) is either 0 or 1, it must be true that,

max(0, cl,j − uT
j γ

′) ≥ Ej(γ)(cl,j − uT
j γ

′). (7)

Recall that IL,j ≥ 0. According to Eq.(6) and (7), we have

D(γ
′
) − D(γ)

=
n∑

j=1

IL,j

(
max(0, cl,j−u

T
j γ

′
) − max(0, cl,j−u

T
j γ)

)
+ I

T
G(γ

′−γ)

≥
n∑

j=1

IL,j

(
Ej(γ)(cl,j−u

T
j γ

′
) − Ej(γ)(cl,j−u

T
j γ)

)
+ I

T
G(γ

′−γ)

= (IG −
n∑

j=1

IL,jEj(γ)uj)
T
(γ

′−γ)

Therefore, the following lemma must hold.

Lemma 1. D(γ) is a convex function of γ. Further more,
let g(γ) be an m× 1 vector defined as

g(γ)
∆
= IG −

n∑
j=1

IL,jEj(γ)uj .

Then g(γ) is a subgradient of D(γ).

4.3 Solving Simplified Dual Problem
Lemma 1 implies that the optimization problem in Eq.(5)

is a convex programming problem. Since the subgradient
of the objective function can be computed accordingly, we
propose to solve Eq.(5) by Kelley’s cutting-plane method
[6].

To apply the cutting-place method, we shall first limit the
search of the optimal solution of Eq.(5) to a bounded set.
According to Theorem 1, Eq.(5) has an optimal solution.
Assume that γ∗ = (γ∗

1 , γ
∗
2 , . . . , γ

∗
m)T is such an optimal so-

lution. Define cmax
∆
= max(0, cl,1, cl,2, . . . , cl,n). If there

exists some k such that 1 ≤ k ≤ m and γ∗
k > cmax, then

consider the vector γ− that is obtained from γ∗ by replac-
ing γ∗

k with cmax. Obviously, γ∗ ≥ γ− ≥ 0. Moreover, since
each component of uj is either 0 or 1, we have

max(0, cl,j − uT
j γ

∗) = max(0, cl,j − uT
j γ

−), ∀1 ≤ j ≤ n.

Recall that IG ≥ 0. We thus have D(γ∗) ≥ D(γ−), and
then it must be true that D(γ∗) = D(γ−) since γ∗ is an
optimal solution. Therefore, one can solve Eq.(5) by only
examining the feasible solutions in a bounded set as stated
in the following lemma.

Lemma 2. Let γmax be an m × 1 vector with all compo-
nents being cmax. Then there is an optimal solution γ∗ of
Eq.(5) satisfying that 0 ≤ γ∗ ≤ γmax.

We then present the cutting-plane method to solve Eq.(5).
For a finite set S of m × 1 non-negative vectors, define the
optimization problem CP(S) as follows,

Minimize Y s.t. (8)

Y ≥ D(γ′) + (γ − γ′)Tg(γ′),∀γ′ ∈ S,
0 ≤ γ ≤ γmax,

where the decision variables are Y and γ. It is straight-
forward that CP(S) is an LP problem and has an optimal
solution. Let YS and γS be such optimal solution.

The cutting-plane method solves Eq.(5) by computing a
series of sets S0 ⊂ S1 ⊂ S2 ⊂ · · · iteratively. Initially, S0 =
{γ0}, where γ0 can be any feasible m × 1 vector satisfying
0 ≤ γ0 ≤ γmax. We use γ0 = 0 in our implementation.
For p ≥ 0, the set Sp+1 is computed as Sp ∪ {γSp

} after

solving the the LP problem CP(Sp). The iterations can
be terminated when minγ∈Sp+1 D(γ) is close enough to the
optimal value of Eq.(5), where the gap between these two
can be computed according to the following lemma implied
by the cutting-plane method.

Lemma 3. Let γ∗ be an optimal solution of Eq.(5). Then

YSp ≤ D(γ∗) ≤ min
γ∈Sp+1

D(γ), ∀p ≥ 0.

The convergence of iterations is guaranteed by the following
lemma.

Lemma 4. There exists a p∗ such that γ∗ = γSp∗
.

Due to the lack of space, we omit the details of the proof for
Lemma 4, which is a special property of the cutting-plane
method when applying to Eq.(5). We only mention that
such property holds because of the fact that D(γ) is the
summation of a linear function of γ and a finite number of
the maximum of 0 and a linear function of γ.

In our implementation, a user-specified error-tolerance δcp
is used to terminate the iterations when

min
γ∈Sp+1

D(γ)− YSp ≤ δcp. (9)

The vector γcp, defined as γcp
∆
= argminγ∈Sp+1 D(γ), is re-

ported as the optimal solution of Eq.(5). Based on Lemma 3,
the gap between D(γcp) and D(γ∗) is stated in the following
lemma.

Lemma 5. D(γcp)− δcp ≤ D(γ∗) ≤ D(γcp).

Note that although multiple LP problems should be solved
in the cutting-plane method for Eq.(5), since these problems
are small in size, it takes much less running time than solving
a single – but large LP problem as either Eq.(3) or Eq.(4)

4.4 Fast Evaluation of Objective Function and
Its Subgradient

For the cutting-plane method introduced in the previous
subsection, although the LP problems CP(Sp) can be solved
efficiently due to their small sizes, they have to be formu-
lated first, and the computational complexity to formulate
them is usually overlooked. To be more specific, for p ≥ 1,
to formulate CP(Sp) requires to compute D(γSp−1

) and

g(γSp−1
). Apparently, a straight-forward approach takes

O(nm) time to compute D and g according to their def-
initions. Therefore, as the size of the problem CP(Sp) is
much less than n, it can be more expensive to formulate
CP(Sp) than to solve it, which was also confirmed by our
preliminary experiments. In this subsection, we will present
a novel pre-processing step exploiting the special structure
of the global constraints, i.e. the matrix U , such that D and
g can be evaluated with a time complexity that is usually
much smaller than O(nm).
A general observation of the matrix U is that it has many

duplicated columns, i.e., the uj ’s only take a limited num-
ber of distinct values. This observation is due to the fact
that when circuit designers specify the global constraints,
they tend to specify the constraints according to the circuit
hierarchy. Therefore, nodes in the same module would be
included in the same set of global constraints, corresponding
to the identical columns in U .
Let U be the set of the distinct columns of U , i.e., U ∆

=∪n
j=1{uj}. Denote the elements of U as u1, u2, . . ., and u|U|.

The duplicated columns of U can be identified by introduc-

ing |U| index sets defined as Jk
∆
= {j : uj = uk}, ∀1 ≤ k ≤

|U|. Note that the sets Jk are a partition of {1, 2, . . . , n},

Jk∩Jk′ = ∅, ∀1 ≤ k ̸= k′ ≤ |U|, and

|U|∪
k=1

Jk = {1, 2, . . . , n}.

With a given cl, the elements in each set Jk can be sorted
according to the corresponding components of cl. Therefore,
without loss of generality, we can assume that

cl,j ≤ cl,j′ ,∀(j, j′ ∈ Jk) ∧ (j ≤ j′), 1 ≤ k ≤ |U|. (10)

For a particular γ and 1 ≤ k ≤ |U|, Eq.(10) implies that
cl,j − uT

j γ = cl,j − uT
k γ is non-decreasing for j ∈ Jk. So, if

the index jk is defined as

jk
∆
= min{j : cl,j − uT

k γ ≥ 0, j ∈ Jk}, (11)

then

cl,j − uT
j γ ≥ 0, ∀(j ∈ Jk) ∧ (j ≥ jk),

cl,j − uT
j γ < 0, ∀(j ∈ Jk) ∧ (j < jk),

which can be used to simplify the computation of D(γ) as

D(γ) = I
T
Gγ +

|U|∑
k=1

∑
j∈Jk

IL,j max(0, cl,j − u
T
j γ)

= I
T
Gγ +

|U|∑
k=1

∑
(j∈Jk)∧(j≥jk)

IL,j(cl,j − u
T
k γ)

= I
T
Gγ +

|U|∑
k=1

∑
(j∈Jk)∧(j≥jk)

IL,jcl,j −
|U|∑
k=1

u
T
k γ

∑
(j∈Jk)∧(j≥jk)

IL,j (12)

Define SumILC(k, j) and SumIL(k, j) as

SumILC(k, j)
∆
=

∑
(j′∈Jk)∧(j′≥j)

IL,j′cl,j′ ,∀j ∈ Jk, 1 ≤ k ≤ |U|,

SumIL(k, j)
∆
=

∑
(j′∈Jk)∧(j′≥j)

IL,j′ ,∀j ∈ Jk, 1 ≤ k ≤ |U|.

Eq.(12) becomes

D(γ) = ITGγ+

|U|∑
k=1

(
SumILC(k,jk)−SumIL(k,jk)u

T
k γ

)
. (13)

Similarly, we have

g(γ) = IG −
|U|∑
k=1

SumIL(k, jk)uk. (14)

Based on the above discussion, D(γ) and g(γ) are com-
puted in three steps as follows. First, when U is given in
Problem 1, U and Jk, ∀1 ≤ k ≤ |U|, are computed accord-
ing to their definitions. Second, when cl is obtained, Jk,
∀1 ≤ k ≤ |U|, are sorted to make the assumption in Eq.(10)
valid, and then SumILC(k, j) and SumIL(k, j), ∀j ∈ Jk and
1 ≤ k ≤ |U|, are computed. Third, with a given γ, the in-
dices jk, ∀1 ≤ k ≤ |U|, are obtained according to their def-
inition by |U| binary searches since Jk is ordered according
to Eq.(10), and then D(γ) and g(γ) are calculated accord-
ing to Eq.(13) and (14). Therefore, for each iteration in the
cutting-plane method, only the third step is necessary and
the first two steps can be pre-computed. The time complex-

ity of the third step is O(m|U|+
∑|U|

k=1 log |Jk|). Recall that∑|U|
k=1 |Jk| = n as Jk is a partition of {1, 2, . . . , n}. Since,

|U|∑
k=1

log |Jk| = log

|U|∏
k=1

|Jk| ≤ log
(∑|U|

k=1 |Jk|
|U|

)|U|
= |U| log n

|U| ,

the time complexity of the third step simplifies to O
(
|U|(m+

log n
|U|)

)
. Obviously, |U| ≤ n. Because |U| log n

|U| increases

monotonically for |U| ≤ n, the time complexity of the third
step is much smaller than the time complexity O(nm) of the
straight-forward computation when |U| ≪ n, or no worse
than O(nm) if |U| approaches n. In summary, the time and
space complexity associated with the three steps are stated
in the following lemma.

Lemma 6. The time complexity of the first step is
O(nm log |U|), of the second step is O(n logn), and of the
third step is O

(
|U|(m + log n

|U|)
)
. Extra O(n) storages are

required to store the pre-computed values.

4.5 Computing cl
The dual approach proposed in the previous subsections

assumes that cl is known. In this subsection, we will present
a method to compute cl, ∀1 ≤ l ≤ n.

Recall that cl = A−1el, and thus can be computed by
solving Ax = el. Therefore, to obtain all cl, ∀1 ≤ l ≤ n, we
need to solve a system of linear equations for n times with
the same left-hand-side (LHS) matrix A but different right-
hand-side (RHS) vectors. As A has the good properties of
being a symmetric M-matrix, we propose to apply the pre-
conditioned conjugate gradient (PCG) method [7, 8], which
is an iterative method to solve a system of linear equations
with symmetric LHS matrix, due to its fast convergence with
a proper preconditioner and the straight-forward implemen-
tation. For the PCG method, the preconditioner M is a ma-
trix with the same size as A such that M ≈ A and Mx = r

can be easily solved for x given some RHS vector r.
To obtain the preconditioner M , we apply the stochastic

preconditioning technique proposed in [5]. This precondi-
tioning technique was motivated by a random-walk power
grid analyzer [9], and had been shown to have high quality,
especially for large problem sizes, in comparison to conven-
tional deterministic preconditioning techniques. Though it
requires more running time to compute M according to [5]
in comparison to conventional techniques, it is not a con-
cern in our setting since the preconditioning time will be
amortized when the maximum voltage drops are computed
for all n nodes. In the stochastic preconditioning technique,
we perform random walks on the power grid to generate a
sparse lower triangular matrix L and a diagonal matrix Λ.

The preconditioner M
∆
= LTΛL satisfies that M ≈ A, and

the linear equations Mx = r can be solved by a backward
substitution followed by a forward substitution.
Practically, the PCG method can be terminated when the

norm of the residual is small enough. As the residual will
not be 0, the computed cl is different from the exact value
and thus the optimal value of Eq.(5) based on the com-
puted cl is different from the exact maximum voltage drop.
Therefore, it is necessary to analyze the error of the opti-
mal value of Eq.(5) due to the non-zero residual such that
we can convert from a user-specified error-tolerance of the
optimal value of Eq.(5) to a proper termination condition of
the PCG method. Details follow.
Let cl be the exact solution of Ax = el and cl be the

solution computed by the PCG method. According to The-
orem 1, we can consider the optimization problem in Eq.(3)
instead of Eq.(5) as their optimal values are the same. For

the optimization problem in Eq.(3), let i be an optimal so-
lution and vl be the optimal value for the exact cl, and let
i∗ be an optimal solution and v∗l be the optimal value for

the computed cl. Let the residual vector r
∆
= el −Acl. It is

obvious that

A−1r = cl − cl, vl = cTl i ≥ cTl i
∗, v∗l = cTl i

∗ ≥ cTl i.

Therefore,

vl ≥ cTl i
∗ = cTl i

∗ + rTA−1i∗ = v∗l + rTA−1i∗, (15)

and

vl = cTl i+ rTA−1i ≤ cTl i
∗ + rTA−1i = v∗l + rTA−1i. (16)

On the other hand, since A is an M-matrix, every element
of A−1 is non-negative. So all the components of A−1i and
A−1i∗ are non-negative since i ≥ 0 and i∗ ≥ 0. Moreover, let
∆ be the maximum component of the solution of the linear
equations Ax = IL. All the components of A−1i and A−1i∗

should be no larger than ∆. Let ri be the i’th component
of r. According to Eq.(15) and (16), we have

v∗l +∆

n∑
i=1

min(ri, 0) ≤ vl ≤ v∗l +∆

n∑
i=1

max(ri, 0)

Therefore, if a user-specified error-tolerance δpcg is used to
terminate the PCG method when

||r||1 ∆
=

n∑
i=1

|ri| ≤
δpcg
∆

, (17)

then the following lemma holds.

Lemma 7. Define v+l
∆
= ∆

∑n
i=1 max(ri, 0) as a correc-

tion of v∗l based on the residual. We have

v∗l + v+l − δpcg ≤ vl ≤ v∗l + v+l .

Algorithm DualVD
Inputs
A, IL, IG, U : as specified in Problem 1.
δpcg, δcp: user-specified error-tolerances.

Outputs
Maximum voltage drop at each node.

1 Compute the preconditioner M according to [5]
2 Solve Ax = IL to obtain ∆
3 Compute U and Jk, ∀1 ≤ k ≤ |U|
4 For l = 1 to n
5 Apply PCG method to compute cl using

the termination condition in Eq.(17)
6 Sort Jk, ∀1 ≤ k ≤ |U|, according to Eq.(10)
7 Compute SumILC(k, j) and SumIL(k, j),

∀j ∈ Jk and 1 ≤ k ≤ |U|
8 Apply cutting-plane method to solve Eq.(5)

using the termination condition in Eq.(9)
9 Report the maximum voltage drop at node l

to be D(γcp) + v+l

Figure 1: The DualVD algorithm.

4.6 The DualVD Algorithm
Combining the PCG method and the proposed dual ap-

proach, we design the DualVD algorithm to solve themaxVD-
LCC problem as shown in Fig. 1. In this algorithm, the pre-
processing steps on line 1 to 3 are used to generate necessary
data for the PCG method and the cutting-plane method.
Then the maximum voltage drop at each node is computed
in the body of the loop on line 4. Note that on line 9, we
do not report the optimal value of Eq.(5) as the maximum
voltage drop at a node because it could be smaller than the
exact maximum voltage drop due to the error introduced by
the PCG method. We report a conservative voltage drop
within the user-specified error-tolerances based on the op-
timal value and a correction from the residual of the PCG
method.

The correctness of the DualVD algorithm is stated in the
following theorem, which is implied by Lemma 5, Lemma 7,
and the fact that D(γ∗) = v∗l in these two lemma.

Theorem 2. For every 1 ≤ l ≤ n,

D(γcp) + v+l − δcp − δpcg ≤ vl ≤ D(γcp) + v+l .

5. EXPERIMENTAL RESULTS
The DualVD algorithm is implemented in C++ and com-

piled with GCC version 4.2. The LP problems CP(S) in the
cutting-plane method are solved by MOSEK [10], a general
optimizing engine. For comparison, we replace the proposed
dual approach in the DualVD algorithm by MOSEK to solve
Eq.(3) directly, and call this algorithm DirectVD hereafter.
As MOSEK allows to choose between the simplex method
and the interior point method to solve LP problems, we
experiment with both options but only report the results
using the simplex method as it is slightly faster. All the
experiments are performed on a 64-bit Linux machine with
2.4GHz Intel Q6600 processor and 4GB memory. Note that
although the processor has multiple cores, only one core is
used for experiments.

We generate 7 power grid benchmarks randomly using a
setting of 4 metal layers, 1.2V VDD, and various C4 bumps/
chip sizes/power consumptions. Both error tolerances δcp
and δpcg are set to 10−4, i.e. 0.1mV. Two global constraints
settings are experimented: one with 4 global constraints and
the other with 10. Under such experimental settings, we
observe that the PCG method and the cutting-plane method
converge in less than 15 and 40 iterations respectively.

Table 1: Runtime Comparison of DualVD and DirectVD
Power Grid 4 Global Constraints 10 Global Constraints
Benchmarks DirectVD DualVD Speedup DirectVD DualVD Speedup

Nodes LP Total LP Total LP Total LP Total LP Total LP Total
5875 2.51 m 2.99 m 9.76 s 38.63 s 15.4 4.6 2.66 m 3.15 m 22.53 s 51.45 s 7.1 3.7
22939 1.03 h 1.17 h 1.77 m 10.15 m 34.9 6.9 1.07 h 1.20 h 2.37 m 10.72 m 26.9 6.7
35668 2.99 h 3.37 h 3.95 m 26.36 m 45.4 7.7 3.14 h 3.51 h 5.12 m 27.39 m 36.8 7.7
51195 6.19 h 6.96 h 8.32 m 55.59 m 44.7 7.5 6.49 h 7.27 h 9.11 m 56.19 m 42.8 7.8
90643 17.66 h 20.24 h 25.36 m 3.01 h 41.8 6.7 16.64 h 19.22 h 26.86 m 3.02 h 37.2 6.4
141283 1.21 d 1.48 d 1.06 h 7.41 h 27.4 4.8 1.43 d 1.70 d 1.06 h 7.38 h 32.6 5.5
562363 12.52 d 17.06 d 19.11 h 5.36 d 15.7 3.2 14.71 d 19.34 d 17.39 h 5.33 d 20.3 3.6

Figure 2: Comparison of runtime per node

The runtime comparison of the DualVD and the DirectVD
algorithm is presented in Table 1. The voltage drops com-
puted by the two algorithms are the same and thus are ex-
cluded from the table. The runtime can be generally parti-
tioned into two parts: the runtime to compute cl and the
runtime to solve the LP problem Eq.(3) (or more precisely
Eq.(5) for the DualVD algorithm). Both algorithms have
the same runtime for the former as they share the same
code to compute cl. Since the latter is the major contri-
bution of the paper, we report the runtime for the latter
under the columns “LP”, e.g. for the DualVD algorithm,
the runtime in column 4 and 10. Moreover, we report the
total runtime under the columns “Total”. The time units
are abbreviated such that “s”, “m”, “h” and “d” denote
“seconds”, “minutes”,“hours”, and “days” respectively. It
can be seen that the proposed dual approach drastically re-
duces the runtime to solve the LP problem such that the
DualVD algorithm can achieve significant speedup over the
DirectVD algorithm. Note that for the test cases which take
more than 10 hours, the reported runtime is an estimation
from the runtime of 1000 nodes chosen randomly.
Our experimental results show the random-walk based

preconditioner computation is fairly efficient, taking run-
time ranging from a few seconds to a few minutes as the
power grids become larger. However, it can be implied from
Table 1 that to compute cl by the PCG method may require
more than 80% of runtime for large benchmarks using the
DualVD algorithm. We view such observation as a chance to
further speedup the DualVD algorithm by leveraging more
advanced power grid analysis techniques. In addition, ac-
cording to Eq.(17) and Theorem 2, the PCG runtime can
be reduced by using a larger δpcg, which makes a trade-off
between solution quality and runtime.
We compare our algorithm with the previous work [3] in

Fig. 2 for the setting of 4 global constraints. Note that
this is not a fair comparison since the source code and the
benchmarks in [3] are not publicly available. We are able
to obtain the type of processor (AMD Opteron 2218) in

the linux machine used in [3] from the authors. We scale
their runtime with 5mV accuracy based on SPEC CPU2006
results (http://www.spec.org/) to obtain their per node
runtime. It is clear that our DualVD algorithm can achieve
much higher accuracy (since δcp + δpcg = 0.2mV ≪ 5mV)
with much less runtime. Moreover, our DualVD algorithm
exhibits a better scaling trend for large benchmarks as the
runtime per node increases slowly as the number of nodes
increases.

In summary, our DualVD algorithm accelerates the solu-
tion of the LP problems, reduces the runtime per node sig-
nificantly, and makes vectorless verification of large power
grids practical.

6. CONCLUSION
In this paper, we presented an efficient dual approach to

solve the LP problem associated with the vectorless power
grid verification problem. Our overall vectorless power grid
verification algorithm DualVD combined the proposed dual
approach with a random-walk based PCG power grid ana-
lyzer. Experimental results confirmed the efficiency of the
proposed algorithm.

We expect to achieve additional speedup by leveraging
more advanced power grid analysis techniques, and by par-
allel processing due to the fact that each node can be verified
independently. It is also interesting to study whether the
proposed algorithm can be extended to handle inductance
in power grids [11].

7. REFERENCES
[1] D. Kouroussis and F. N. Najm. A static pattern-independent

technique for power grid voltage integrity verification. In DAC,
pages 99–104, 2003.

[2] I. A. Ferzli, F. N. Najm, and L. Kruse. A geometric approach
for early power grid verification using current constraints. In
ICCAD, pages 40–47, 2007.

[3] N. H. Abdul Ghani and F. N. Najm. Fast vectorless power grid
verification using an approximate inverse technique. In DAC,
pages 184–189, 2009.

[4] H. Qian, S. R. Nassif, and S. S. Sapatnekar. Early-stage power
grid analysis for uncertain working modes. In ISPD,
pages 132–137, 2004.

[5] H. Qian and S. S. Sapatnekar. Stochastic preconditioning for
diagonally dominant matrices. SIAM Journal on Scientific
Computing, 30(3):1178–1204, Mar. 2008.

[6] J. E. Kelley. The cutting-plane method for solving convex
programs. J. Soc. Indust. and Appl. Math., 8(4):703–712,
Dec. 1960.

[7] G. H. Golub and C. F. Van Loan . Matrix Computations, 3rd
ed.. The Johns Hopkins University Press, 1996.

[8] T.-H. Chen and C. C.-P. Chen. Efficient large-scale power grid
analysis based on preconditioned Krylov-subspace iterative
methods. In DAC, pages 559–562, 2001.

[9] H. Qian, S. R. Nassif, and S. S. Sapatnekar. Power grid
analysis using random walks. IEEE TCAD, 24(8):1204–1224,
Aug. 2005.

[10] The MOSEK Optimization Software. http://www.mosek.com.
[11] N. H. Abdul Ghani and F. N. Najm. Handling inductance in

early power grid verification. In ICCAD, pages 127–134, 2006.

