ECE 100 - ITP Lecture 9

Dr. Alexander J. Flueck Electrical and Computer Engineering Illinois Institute of Technology

flueck@iit.edu
http://www.ece.iit.edu/~flueck/ece100

1 - Prof. Flueck, ECE - November 5, 2012

Questions?

- ☐ Post-lab 8 Milestone due this week (last of the lab reports)
- ☐ Round 2a Competition this week in lab (1.5 hours to prepare)
- ☐ Round 2b Competition next week in lab
- □ Round 2b Extra Credit for all teams
 - 0.2 pt * Teamwork Score for each puck pushed into scoring position during Round Robin, even if the other team pushes it out of scoring position
- ☐ Final Design Portfolio due Mon, Dec 3 at 1:30 PM in SH 118

Round 2 - Performance Tuning

- Observations
 - > Fragile robots, exquisite claws, unreliable touch bumpers
 - Code: lots of complicated code (hard to debug!); lots of untested code; lots of code written in lab; lots of time wasted
- Post-lab 8: Performance Tuning
 - > Construction/Implementation Discuss modifications to hardware & software
 - Analysis & Testing
 - Did the robot push two pucks into scoring position? Was it reliable? Why/why not?
 - Were you able to push three pucks into scoring position reliably? Why or why not?
 - > Future Work / New Optimum Solution
 - Need new optimum solution and perhaps an alternative solution (implemented in IC) and corresponding flowcharts for pushing all three pucks into scoring position.
- ☐ Lab 9: Round 2a Competition
 - Code should be able to push all three pucks into scoring position.

3 - Prof. Flueck, ECE - November 5, 2012

Lab Observations

- Need to prepare outside of lab.
 - Choose strategy
 - Distribute tasks
 - Code: compile, check syntax, debug
 - Plan physical robot modifications (keep it simple)
- Need to work as a team in lab.
 - > All group members should have some responsibility
 - > All group members should understand the code
 - > Open communication is critical
- Need to observe and analyze in lab.
 - > Document your design modifications
 - Generate performance statistics based on trials
 - Debugging: Test all assumptions, even the obvious ones; find out what went wrong by testing subsections of code
 - ➤ Debugging: Insert "ao(); sleep(5.0);" at the beginning of each of the states
 - Build simple diagnostics code to test analog/digital ports, motor power, etc.

State Machine

- ☐ One main event loop: while (timer() < 90)
 - > Create a series of "if-then-else" statements

- Check the current state and a transition condition
 - . If true, modify motors (if necessary), change state
 - . If false, go to the next state check
- Related issues
 - > Use "seconds()" function to implement global timers
 - > Avoid long "sleep" times drift, sensor blackout
 - > Avoid nested "while" loops

5 - Prof. Flueck, ECE - November 5, 2012

Final Design Portfolio - Due at 1:30 PM on Mon, Dec 3

- ☐ The body will follow the Design Portfolio structure, including
 - > Problem Statement: concise, precise, complete sentences.
 - > Research/Investigation: Present a theory for getting the job done.
 - Alternative Solutions: List the strategies that you actually developed in IC.
 - Optimal Solution: What? Why? How (development plan)?
 - Construction/Implementation: Explain your "mint shuffle" code. Describe any robot modifications.
 - Analysis & Testing: Provide the results of your lab experimentation, including competition outcomes.
 - Final Evaluation/Conclusion: Problems? Adequate Solution? Future Work; Justify additional funding/support.

Final Design Portfolio - Point Breakdown

- □ Point breakdown (total of 120 points worth 20% of your final grade)
- ☐ The following sections are 10 points each:
 - > PS, R/I, AS, OS, C/I, AT, FE, Appendix (IC Code)
- ☐ The executive summary is worth 30 points.
- ☐ The remaining items will be worth 10 points in total (approx. 2 points each).
 - Cover, Table of Contents, List of Figures, List of Tables, Acknowledgements, References

7 - Prof. Flueck, ECE - November 5, 2012

Physical Layout of Portfolio

- ☐ Bind your portfolio (clear plastic folder or 3-ring binder).
 - > Do NOT put each sheet of paper in its own plastic sleeve!
- ☐ Cover Page: Who, What, Where (ECE 100-X), When (due date)
- ☐ Table of Contents (reference the 13 sections below)
- ☐ List of Figures (list of diagrams that appear in body of report)
- ☐ List of Tables (list of tables that appear in body of report)
- ☐ Acknowledgements (group members, TA, etc.)
- ☐ Executive Summary (one page max)
- □ Body (PS, R/I, AS, OS, C/I, AT, FE)
- □ Appendix (IC code)
- References

Formatting and Max # of Pages

- ☐ The following items should be one page each:
 - Cover, Table of Contents, List of Figures, List of Tables, Acknowledgements, Executive Summary, References
- ☐ The body of the report should contain the relevant body section headings and should flow continuously.
 - > Do not insert page breaks before each body section.
- ☐ Line spacing should be no more than 1.5; single is fine, but make sure it is easy to read.
- ☐ The font size should be no smaller than 10 and no larger than 12.
 - > Twelve point font may not allow you to describe your design adequately.
- ☐ The Appendix (IC Code ONLY) should begin on a new page.
 - Only your final solution code should appear in the Appendix.
- ☐ The document (excluding the IC Code Appendix and References) is limited to 20 pages. Each page must be numbered.
- □ The body of your portfolio is limited to 14 pages, once you subtract the first six pages from the 20 page limit.

9 - Prof. Flueck, ECE - November 5, 2012

List of Figures & List of Tables

- Your report must have at least two figures.
 - > Examples: pictures of your robot, flowcharts, diagrams
- Your report must have at least two tables
 - Examples; results of competitions, matrix of alternative solutions with solutions appearing as rows/records and various attributes heading each column
- Add additional figures and tables that enhance reader comprehension. They can add punch to your report.
- ☐ The List of Figures should use a tabular format:
 - Figure #: Descriptive Title of Figure p. #
 - Figure #: Descriptive Title of Figure p. #
- ☐ The same format should be used for your List of Tables.
 - Please choose figure/table titles that are descriptive so that your reader can jump to the specific information of interest.

Scope and Executive Summary

Final Design Portfolio covers the entire course.
Focus on customer need (as defined by you) by relating to Round 2 (Mint Shuffle), but be sure to include earlier work in Rounds 0 and 1.
(with Shame), but be sure to include earlier work in Rounds o and 1.

- > Research/Investigation is a great place to cover earlier Rounds.
- ☐ Motivate management to provide additional funds for your project.
- You must provide real evidence of your progress to justify additional funds.
- ☐ Stick to the actual results obtained in the laboratory.
- Based on your achievements with your prototype, describe how your robot will meet the needs of your company's target market.

11 - Prof. Flueck, ECE - November 5, 2012

Problem Statement

- Must be complete sentences. Keep it short and to the point.
- Keep in mind that the Problem Statement should set the stage for everything else in your Final Report.
 - Example: Develop an autonomous robot prototype to (fill in the customer need)
- ☐ Your Problem Statement section should include four items:
 - > Short statement of the overall problem (1-2 sentences max)
 - List of criteria that you used to judge your overall performance as well as your robot's performance in the various sub-problems
 - ➤ List of constraints that were imposed on all teams (not just Round 2 specs)
 - > List of assumptions that you made during the project
 - > Bullet point lists need not be complete sentences
 - > Focus on a few of the most important items for the lists no grocery lists
- ☐ Common assumption:
 - Infinite energy battery pack, but "state-of-charge" decreases over time, especially when the motors are used heavily

Research/Investigation

- > In path following, the light sensors react to reflected ambient light focused by the sensor shields.
- Include your Round 0 and Round 1 competitions as key investigations into the capabilities of the touch sensors, light sensors, DC motors, controller board, Interactive C development environment, etc.
- ☐ Reference the textbook, class web site, and any other sources that you have used in your research.
- ☐ Cite your sources with numbers in square brackets (e.g., [1]) which refer to the citations in the References section at the end of your report.

13 - Prof. Flueck, ECE - November 5, 2012

Alternative Solutions

- ☐ In order to call it the "Alternative Solutions" section, there must be more than one proposed solution.
- ☐ There is no upper limit to the number of alternatives that you present, but be sure to describe them adequately.
- ☐ Give brief descriptions of your brainstorming outcomes.
- ☐ Explain the strategies with simple flowcharts inserted in the text, not in the Appendix.
- ☐ Briefly enumerate advantages/disadvantages.
- ☐ Your optimum solution should be included briefly in "alternatives".
 - Then, under "Optimum Solution" you should describe your best idea in more detail.

Optimum Solution

- ☐ This depends on the criteria you chose in the Problem Statement.
- ☐ Keep in mind the list of "desirable characteristics" that we developed in a brainstorming session in lecture.
- Why is the algorithm optimal?
- What are its desirable characteristics?
- ☐ Describe your plan for implementing your optimum solution.
- Give a detailed description of your algorithm, but don't include your IC code. Consider the following methods for presenting the details (note: do not repeat overview from previous section):
 - > Pseudo-code describing the core features
 - Additional flowchart illustrating core features

15 - Prof. Flueck, ECE - November 5, 2012

Construction/Implementation

- ☐ This section should explain your code and your robot.
- ☐ Focus on the implementation of your optimum solution.
 - > The key features should be directly related to your criteria.
 - Each key feature should help your design solution achieve your goal.
 - ➤ How did you build the robot or write the code to implement the feature?
- ☐ Reference the complete IC code in the Appendix.
- ☐ Show key segments of IC code (no pseudo-code).
- Point out the important features of code.
 - Abstraction
 - Global variables
 - > Configurable parameters
- ☐ Include one or two pictures of your final robot.

Analysis and Testing

		Describe	your	testing	procedure.
--	--	----------	------	---------	------------

- ☐ Provide figures explaining test procedures.
- ☐ Provide tables demonstrating performance.
- ☐ Present the results of Round 2.
- Discuss any iterative improvements
 - ➤ What was wrong?
 - ➤ How did you try to fix it?
 - ➤ How well did your "improvement" work?
- ☐ Propose future improvements to solve any remaining problems.

17 - Prof. Flueck, ECE - November 5, 2012

Final Evaluation/Conclusion

Restate	

- ☐ Briefly describe your key design features.
- ☐ Reiterate successes and benefits.
- Briefly explain future improvements.
- ☐ Evaluate your design with a critical eye.
- ☐ Motivate management to provide additional funds.

Appendix - IC Source Code

Final solut	tion (only
-------------	--------	------

- ☐ Comment headers should appear at the top of every source file.
 - Overall purpose
 - > Tunable parameters
 - Author(s)
 - Date
- ☐ IC source should contain comments explaining significant code segments.

19 - Prof. Flueck, ECE - November 5, 2012

References/Bibliography

- ☐ The "References" page at the end of the Final Design Portfolio should contain all of your citations.
 - Include the textbook, the class web site (if you've included any web site materials such as competition specifications), and any other print or online resources
 - Think of the References page as a page of footnote citations, often called endnote citations. It is similar to a bibliography, but the entries are numbered sequentially, rather than alphabetized.
- ☐ The References page should contain reference numbers in square brackets.
 - The bracketed numbers should be used throughout your report to cite the original source of any reference material of which you were not the original author.
 - Please use bracketed numbers rather than superscript numbers.
- ☐ Follow the CAC web site link to online resources for citation notes:
 - ➤ Click on "CAC Writing Guides" under "Links" on the ECE 100 web site.
 - Click on "Documentation Styles" then go to "Purdue Online Writing Lab". Use the format of the MLA "Works Cited" or the APA "Reference List".