ECE 100 - ITP Lecture 7

Dr. Alexander J. Flueck Electrical and Computer Engineering Illinois Institute of Technology

flueck@iit.edu
http://www.ece.iit.edu/~flueck/ece100

1 - Prof. Flueck, ECE - October 1, 2012

Questions?

- ☐ HandyBoard/Interactive C/motors/sensors/LEGO/path
- ☐ How do I check and then fix IC syntax?
- ☐ Executive Summary Due Oct 15 at the beginning of lecture.
- □ Presentation and Teamwork Scores
 - > Were sent out via email. Contact me with any concerns.
- Mid-term Progress Grades
 - > Will be assigned next week.

Executive Summary Assignment

- ☐ Due in **lecture** on October 15.
 - One page writing assignment to be reviewed by the Writing Lab Instructors in the Writing Lab (2nd floor Siegel Hall)
 - The "Executive Summary" is an argument, i.e., you will present a thesis, your analysis, and some evidence.
 - See links on ECE 100 web page
 - Technical Communication Resources; Argument Fundamentals; Exec Summary FAQ
- ☐ Topic: autonomous robot design proposal
 - You are the lead engineer for autonomous robots at a hi-tech automation and robotics firm specializing in hazardous search and rescue missions
 - Senior management has requested a design proposal for a robot that will meet a variety of customer needs with a better price/performance ratio than your competitor's current product
 - > Use your LEGO robot prototype to demonstrate the strength of your design
 - DARPA Grand Challenge: http://archive.darpa.mil/grandchallenge/gallery.asp

3 - Prof. Flueck, ECE - October 1, 2012

Laboratory Reports - TA Feedback

- ☐ Design Portfolio format (pre-lab: PS,R/I,AS,OS,App; post-lab: complete)
 - > Problem Statement: Navigate a maze in the shortest time possible.
 - * Be concise and quantitative. List assumptions, constraints and criteria.
 - > Research/Investigation: Present a theory for optimal performance.
 - Describe what you've learned from other sources & past efforts.
 - Alternative Solutions: Present various strategies (must be different!).
 - ❖ Include flowcharts to illustrate the strategies. Discuss differences & pros/cons.
 - > Optimum Solution: Why was it chosen? How do you plan to get it done?
 - > Construction/Implementation: Describe robot hardware/software as built
 - Explain/illustrate configuration details and any deviation from original plan.
 - Analysis/Testing: Quantify performance. Modify if necessary.
 - Perform repeated trials. Record your observations.
 - Final Evaluation/Conclusion: Comment on problems, adequacy of solution and future work.
 - > Appendices: Attach IC codes

Teamwork Feedback

	Prepare before you come to lab.
	Participate in the design, improvement, re-work, etc.
	Listen to your teammates.
	Open communication is important.
	Don't try to control the entire project or your teammates, even if you're sure you know you're right. Uncertainty is everywhere; certainty is dangerous.
	Meet together as a team before lab, or at least exchange email plans.
	Divide and conquer.
	Be brutally honest with your performance.
	Be confident in your future ability.
5 - Prof. Flueck, ECE – October 1, 2012	

Team Presentations - TA Feedback

☐ Focus on actual prototype. Don't waste time on fantasy application.
Need large font and contrasting colors/brightness.
Use bullets, not paragraphs. Should not be Post-Lab report on slides.
Use diagrams - focus on illustrating the technical details.
Avoid overly complicated flowcharts
Avoid code - too hard to comprehend in real-time
Include picture of robot design modifications
Must present results! And future plans!
Establish eye contact with your audience.
☐ Practice your presentation in front of someone. Don't just read slides.
☐ Focus on persuasion. Not just a historical account.
> Be specific.
Provide evidence.
Justify funding.

Lab 4 Observations

- ☐ Physical shakedown of robot chassis may be necessary.
 - > Eliminate sources of friction, especially drive train.
 - > Don't let motors stall! Motor windings can easily overheat.
 - > Be careful with speed vs. torque tradeoff.
 - > Don't force it! Pins and wires are fragile!
 - > Beware of battery wires. Short circuit can cause severe damage!
 - > Light sensor placement and shielding are important.
 - Document your designs in C/I (Design 1 features, Design 2 features, etc.) and your performance in A&T (Design 1 results, Design 2 results, etc.).
- Software
 - Need to handle possibly mismatched sensors.
 - "Simulate" robot performance with light_test.ic and your path-following code.
- ☐ Feel free to modify your robot and your code. Successful teams will take risks and learn from their experimentation.
 - > How well did your robot follow the path? Why?

7 - Prof. Flueck, ECE - October 1, 2012

Flowcharts - TA Feedback

- ☐ Use the "standard shapes"
 - Ovals for start and stop (every flowchart must have start/stop)
 - Boxes for actions
 - > Diamonds for decision points
- ☐ Package your routines such that each fits on a single page
 - > Do not use arrows that point to the next/previous page
 - > Use an action box, then create a separate flowchart for the action
- Double-check your flowcharts
 - Only diamonds are allowed to have two outputs
 - > Flawed "metasens" flowchart in the textbook

Converting "Solution into Code" - State Machine

Braitenberg - extended

Bad Code 1 - "recursive function loop"

```
void main() {
    while (1) {
        motor(LEFT_MOTOR, normalize(analog(RIGHT_EYE)));
        motor(RIGHT_MOTOR, normalize(analog(LEFT_EYE)));
        killer();
    }
}

void killer() {
    .
    .
    .
    main();
}
```

Bad Code 2 - right light sensor never recognizes dark surface

Bad Code 3 - robot always backs up! (conditional expression mistake)

Bad Code 4 - should use "while" loop

```
void main() {
  while (1) {
    if(analog(REYE)<95 && analog(LEYE)<95) {
        fd(RMOTOR);
        off(LMOTOR);
        sleep(1.25);
    }
    if(analog(REYE)<95 && analog(LEYE)<95) {
        fd(RMOTOR);
        off(LMOTOR);
        sleep(0.25);
    }
    if(analog(REYE)<95 && analog(LEYE)<95) {
        fd(RMOTOR);
        off(LMOTOR);
        off(LMOTOR);
        off(LMOTOR);
        sleep(0.25);
    }/* actually repeated three more times! */
    }
}</pre>
```

15 - Prof. Flueck, ECE - October 1, 2012

Post-Lab 5 Milestone Report - Due week of Oct 8

- ☐ Post-Lab Milestone report -- details, details!
 - > Detailed summary of how things have gone so far. What? When?
 - Describe testing procedures and robot performance. Provide table with performance categories and corresponding evaluations for each trial.
 - Present your accomplishments alongside the detailed timeline in your proposal (complicated problem broken into smaller tasks).
 - . Be sure to cover both hardware and software.
 - > Is the project on schedule? If yes, what were the most critical tasks?
 - > If not, why not? What remedies are available? New flowcharts?
 - You may need to modify your strategy and timeline as you go. Deviations must be explained in the Milestone reports.
 - > Attachments: new optimum solution code, lab notes
- ☐ Key issue: Show how you have succeeded, even if you faced unforeseen challenges that forced you to adapt.
- ☐ Include laboratory teammates' names on post-lab report. Get the dates right. Staple your report! Bring your code! Submit SafeAssign!

Competition Round 1 - Look familiar?

- ☐ Follow the path in the shortest time possible.
 - > The tape path will be continuous, i.e., no branches, no gaps.
 - > The tape path will be between 2 and 3 inches wide.
 - > The tape path will not intersect itself.
 - All tape path turns will be less than or equal to 135 degrees to the left or right of the robot's forward direction.
 - If your robot leaves the tape path before the end, then its position will be recorded.
 - If no robot completes the course, then ranking will be based on distance completed.
 - If two or more robots finish with the same time, a winner will be determined randomly.
 - > The top four teams across all laboratory sections will compete in the class runoff during the following week's lecture period.
 - All students are required to observe the class runoff in lecture and predict the performance of the robots based on each team's proposed strategy.
 - > Complete specifications online: http://www.ece.iit.edu/~flueck/ece100