A Kinder and Gentler Way of Overhead Fault Testing

A Story of Engineering Innovation

IEEE/PES Chicago Chapter Meeting 3/14/2007

Engineering Innovation

Reclosing vs. PulseClosing

Conventional Reclosing

- Test by closing causes another fault
- Significant system stress
- Through-fault on transformers
- Voltage sags
- Difficult to coordinate

PulseClosing

- Test by PulseClosing
- <2% of let-through energy
- No stress on system
- No transformer throughfault
- No voltage sags
- Solves coordination problems

DEMONSTRATION

Conventional Reclosing B phase permanent fault

PulseClosing B phase permanent fault

PulseClosing B phase temporary fault

PulseClosing A to B phase permanent fault

Fault Let-Through

New systems – New Technologies – Advanced Capabilities

- PulseClosing
 - Improves asset life
 - Improves power quality & customer service
 - Improves ability to greater segment lines where needed

PulseFinder – a new way to "coordinate"

- Non-communicating automatic sectionalizing & restoration
- Coordination as much as possible
- Shared curves for remaining devices

- T=0
- Fault in segment 5
- All PulseClosers with A3 curve trip

- T=1 sec
- IR-2 pulses

- T=1 sec
- IR-2 pulses and closes

- T=1.5 sec
- IR-3 pulses

- T=1.5 sec
- IR-3 pulses and closes

- T=2 sec
- IR-4 pulses

- T=2 sec
- IR-4 pulses and continues PulseClosing test sequence

- Communication not required
- Use in lieu of overcurrent protection
- Use to add segmentation to overhead loop restoration systems
 - Requires reserved capacity

- **Т**=6ms
- Fault Occurs
- Exceeds pickup level of A4

- T=8ms
- Simultaneous Coordination signal sent

- T=100ms max
- Coordination signal received
- All upstream IntelliRupters sharing TCC shift curve enabling total coordination.

Advanced Adaptive Protection

- Automatically reconfigure protection settings after circuit reconfiguration
 - To re-establish coordination
 - -For any network of circuits
- Benefit
 - Enables complex circuit configurations
 - Enhances circuit planners ability to meet their customer's needs.
 - Enables better use of existing assets
 - No need to re-do protection when the system changes!

5.

5.

New systems – New Technologies – Advanced Capabilities

- High-speed controls
 - Machine-coordination development
 - Advanced restoration algorithms faster, better
 - Intelligent fuse saving algorithms save only when feasible
- High-Speed Radio + Distributed Intelligence =
 - Automatic setup of series devices
 - Coordination of any number of series devices
 - Adaptive protection ensures system stays coordinated

Design for the Future, not for the Past

 New tools give utility engineers and planners the ability to design 21st century systems to serve 21st century loads

