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Chapter Title:   

 

Analysis and Synthesis of Frequency-Diverse Ultrasonic Flaw Detection System 

using Order Statistics and Neural Network Processors 

 

Abstract: 

 

Ultrasonic imaging has been an essential tool for nondestructive evaluation of materials and flaw 

detection.  However, flaw detection in the presence of microstructure scattering noise is a challenging 

problem.  This chapter presents frequency-diverse ultrasonic detection algorithms which are essential to 

decorrelate the microstructure scattering noise and to enhance the visibility of echoes associated with 

defects in materials.  In particular, the performance of ranked order statistics processors (such as 

minimum, median and maximum detectors) is examined using both theory and ultrasonic experimental 

measurements.  Furthermore, this chapter gives emphasis to the concept of split-spectrum processing 

combined with neural networks as post processors to achieve improved flaw detection.  Neural networks, 

because of trainability, offer an exceptionally robust performance and are capable of outperforming 

conventional detection techniques such as minimum, median, average, geometric mean, and polarity 

threshold detectors.  An FPGA-based case study is presented for demonstrating the real-time operation of 

the ultrasonic flaw detection algorithms.  Architecture details and implementation results with various 

Hardware/Software partitioning schemes are discussed.+ 

 

 

 

Keywords:  Ultrasound, nondestructive evaluation, split-spectrum processing, neural networks, order 
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1.1 Introduction 

 

In ultrasonic nondestructive evaluation (NDE) applications such as flaw detection, presence of high 

scattering noise poses a significant and challenging problem. This chapter presents techniques based on 

frequency-diverse ultrasonic imaging which induces significant statistical variation in scattering noise or 

speckles. In particular, the Split-Spectrum Processing (SSP) technique which performs subband 

decomposition and post-processing detection methods including Order Statistics (OS) and Neural 

Networks (NN) are discussed in detail.  Adaptive learning capability of neural networks facilitates robust 

detection performance.  Experimental results are presented for comparison of flaw-to-clutter visibility 

improvement with the proposed techniques. Finally, an FPGA based hardware platform is presented for 

System-on-Chip (SoC) realization of a real-time ultrasonic imaging system. This platform supports 

multiple embedded architectures including software-only, hardware/software co-design and hardware-

only designs illustrating the possible trade-offs between hardware resources and system throughput. This 

chapter is concluded with a discussion of recent and future trends in real-time ultrasonic imaging. 

 

1.2 Ultrasonic flaw detection techniques 

 

In ultrasonic imaging, coherent noise resulting from the microstructure of materials consisting of a large 

number of complex and randomly distributed scatterers often mask the target echo to an extent that 

misdetection become the norm rather than an exception. Scattering noise known as clutter is a common 
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problem which affects a wide range of detection and imaging applications including radar, optics and 

sonar. When scatterers are stationary, as is the case in ultrasonic imaging, the clutter suppression cannot 

be achieved by signal averaging.  Furthermore, clutter and target echoes span the same frequency range 

and signal filtering is also ineffective. Nevertheless, it is feasible to decorrelate clutter and improve target 

visibility by shifting the frequency band of the transmitter/receiver (using multi channels) and to obtain a 

set of frequency-diverse signals. The clutter decorrelation by frequency diversity (also known as 

frequency agility when frequency shifts from pulse to pulse using a single channel) for radar target 

detection dates back to sixties (Beasley and Ward, 1968; Lind, 1970; Barton, 1977). Hence, the averaging 

of the decorrelated received clutter signals results in signal-to-clutter ratio enhancement.  In eighties and 

nineties, frequency-diverse detection for both ultrasonic imaging and radar target detection applications 

has been explored (Bilgutay et al., 1979; Newhouse et al., 1982; Saniie et al., 1990; Saniie et al., 1991; 

Saniie and Nagle, 1992).  These investigations resulted in development of the theory and applications of 

signal subband decomposition followed by the Bayesian (Saniie et al., 1992) and Order Statistics (Saniie 

et al., 1990; Nagle and Saniie, 1995) post detection processors.   

 

A typical ultrasonic pulse-echo measurement setup for flaw detection using a 5 MHz transducer is shown 

in Fig. 1.1, and experimental ultrasonic signal consisting of grain scattering and flaw echo obtained from 

a hole inside a steel block is shown in Fig. 1.2 (top trace).  Fig. 1.2 (bottom trace) shows the improved 

flaw echo visibility using frequency-diverse order statistic (i.e., minimum) processor which will be 

discussed throughout this chapter.   

 

1.2.1 Split-spectrum processing 

 

In ultrasonic imaging of materials, an effective method of obtaining frequency-diverse information is 

through split-spectrum processing of the broadband echoes (Bilgutay et al., 1979; Newhouse et al., 1982). 

The SSP procedure has five steps as shown in Fig. 1.3. The first part is data acquisition. The second step, 



Review Copy 

 

4 

 

Fast Fourier Transform (FFT) gives the frequency spectrum of the received echo signal.  Third step, 

several filters split the spectrum into different frequency bands as shown in Fig. 1.4.  Next step, inverse 

FFT gives the time domain signal of each individual frequency band. The signals from each individual 

frequency band are first normalized and then passed into a post processing block for detection.  This 

detection processor can employ different techniques such as averaging, minimization, order statistic 

filters, or Bayesian classifiers (Saniie et al. 1988, Saniie et al., 1991; Saniie and Nagle, 1992; Saniie et al., 

1992a; Saniie et al., 1992b). 

 

SSP performance is greatly influenced by the number of bandpass filtering channels (or observations) 

across signal spectrum, the correlation between the observations, and statistical information in each 

channel.  Increasing the number of channels increases the likelihood of separating flaw and grain echo 

information. However, there exists only a limited number of information bearing frequency bands. This 

means that increasing the number of channels would result in many observations that only contribute to 

grain (clutter) echo information.  Another trade-off is between the bandwidth of the channels and the 

degree of overlap amount between channels.  If the channel bandwidth is too small, flaw echo information 

is concealed due to resolution loss.  Excessive overlap between channels on the other hand, results in 

disproportionate correlation among the channels.   Correlation is not as critical for ultrasonic flaw 

detection performance as choosing the proper frequency range containing significant flaw echo 

information. 

 

In order to enhance the visibility of flaw echo masked by clutter, SSP method utilizes a post-processor for 

combining all the incoming information from subbands. This post-processor reconstructs the time-domain 

signal with the objective of obtaining maximum flaw-to-clutter ratio (FCR).  Several types of processors 

can be used to extract the flaw echo information.  Minimization, in particular, is very effective in 

suppressing the clutter echoes when flaw echo information exists in all the observation channels (Saniie et 

al. 1991).  If too many null-observation channels (frequency bands where no flaw echo information 
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appear due to the frequency-dependent attenuation) be present, then the minimization processor may not 

achieve the desired FCR improvement.  Fig. 1.5 shows channels that do not contain flaw echo 

information.  Under these circumstances, other post-processing methods such as median or maximization 

may offer more robust detection performance.  Similar to minimization, median and maximization 

methods are called order statistics filters which will be discussed in more detail in Section 1.5.   Order 

statistics have been developed in the statistics field and successfully employed in ultrasonic target 

detection (David, 1981; Saniie et al., 1991; Saniie and Nagle, 1992).  

 

In the following section, the frequency analysis of the ultrasonic signals is presented and the frequency 

diversity between clutter (i.e., grain scattering echoes) and the flaw echoes is highlighted.  This difference 

in frequency response can be exploited for robust flaw detection algorithms. 

 

1.2.2 Frequency analysis of ultrasonic signals 

 

In the Rayleigh scattering region, grain (i.e., microstructure) scattering results in an upward shift in the 

expected frequency of the broadband ultrasonic signal.  This is not the case for flaw echoes since flaws 

are generally larger in size than the grains and behave like geometrical reflectors.  In fact, flaw echoes 

often display a downward shift in their expected frequency caused by the overall effect of attenuation. 

This downward frequency shift of the flaw is a productive attribute since the grain noise and flaw echoes 

are concurrently received and preprocessing methods can improve the flaw-to-clutter ratio.  If the 

information-bearing frequency bands that are dependent on the specific characteristics of materials are 

known a priori, optimal bandpass filtering can be employed (Saniie and Nagel, 1992). 

 

The exploration of the frequency content of ultrasonic backscattered signals can give spectral energy 

profiles corresponding to the grains and the larger geometric reflectors (i.e., defects). The energy loss and 

attenuation of ultrasonic signals are caused by the microstructure of the propagating media through which 
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scattering and absorption occurs.  The intensity of scattering is a non-explicit function of the average 

grain diameter, ultrasonic wavelength, inherent anisotropic character of the individual grains, and the 

random orientation of the crystallites.  In the Rayleigh region (i.e., the wavelength is larger than the size 

of the grains), the scattering coefficient varies with the average volume of the grain and the fourth power 

of the wave frequency, while the absorption coefficient increases linearly with frequency (Papadakis, 

1965; Saniie et al., 1988). Therefore, the attenuation coefficient can be modeled as: 

 ( )         ̅
                    [1.1] 

where    is the absorption constant,    is the scattering constant,  ̅ is the expected value of the grain 

diameter, and f is the transmitted frequency. 

 

The composite effects of scattering and attenuation due to grains can be characterized in terms of transfer 

functions derived from the spectrums of measured signals obtained in the ultrasonic pulse/echo 

measurement mode as shown in Fig 1.1. The front surface echo,  rf (t),  represents the combined effect of 

the far-field transfer function of the transducer impulse response U( f ), the ultrasonic pulser, receiver 

amplifier, and the water propagation path.  In the RF frequencies (1-15MHz range), the characteristics of 

the pulser /receiver and water propagation path are frequency independent. Therefore, the transfer 

function of the received front surface echo signal is proportional to the transfer function of the transducer 

impulse response (Saniie and Nagel, 1992): 

  ( )   ( )         [1.2] 

 

The spectrum of the received backscattered signal form the back wall of the specimen (see Fig. 1.1), 

  ( ), can be modeled as  

  ( )   ( ) ( )       [1.3] 

where  ( ) is the transfer function corresponding to the attenuation characteristics of the signal 

propagation path within the specimen.  In Fig. 1.6(a), a heuristic evaluation of  ( ) is given by the ratio 
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of the spectrums of the above measured signals 
|  ( )|

|  ( )|
 using a steel block with an average grain size of 50 

microns and a 5 MHz ultrasonic transducer. This figure clearly exhibits that there is a definite shift or 

emphasis of the lower frequencies.  This indicates that echoes associated with flaws significantly greater 

in size than the echo wavelength, have dominant energy in lower frequencies.  

 

The microstructure scattering transfer function, S(f), can be obtained by the ratios of the expected 

spectrum of the grain echoes, rg (t) and the spectrum of back surface echo rb(t),  |  ( )| |  ( )|, which 

is displayed in Fig. 1.6(b).  These results indicate that grain scattering causes the lower frequencies to 

become poorly backscattered (i.e., attenuated) resulting in an upward shift in the expected frequency of 

the grain spectrum. Thus, in order to take advantage of this property in flaw detection, frequencies where 

the grain scattering is minimal should be emphasized in order to maximize the flaw-to-clutter ratio (Saniie 

and Nagel, 1992). 

 

In summary, both flaw and grain echoes display predictable frequency dynamics associated with the 

physical properties of the materials.  Experimental results (see Fig. 1.6) also indicate the frequencies 

where high flaw-to-clutter ratios exist and this information can be utilized in the preprocessing stage of 

the block diagram of Fig. 1.3.  These characteristics are advantageous and lead to obtaining an optimal 

frequency range containing high flaw-to-clutter ratios for the SSP of the preprocessing stage.  In the next 

section, order statistics method is discussed in detail which can utilize the frequency diversity of 

ultrasonic signals for improved flaw detection. 

               

1.2.3 Order Statistics (OS) processors 

 

As shown in the preceding section, the disparity in the energy of lower frequencies of the grains and flaws 

allows bandpass filtering techniques to extract the flaw information in the preprocessing stage of Fig. 1.3. 
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However, additional improvements in flaw-to-clutter ratio and resolution can be obtained through SSP 

techniques that focus on the statistical information in the frequency region of high flaw-to-clutter ratios. 

 

In SSP, after subband decomposition, the next step is to use the partially uncorrelated observations and 

make use of statistical differences in the channels (i.e., corresponding to random phase information in the 

received grain echoes) to improve the flaw-to-clutter ratio and resolution of the flaw echoes.  The order 

statistics filter is shown to be a quantile estimator (Saniie et al., 1990) of the input density function that 

describes a specific point on the probability distribution function.  The performance of the detector can be 

improved by choosing the position of the estimate where there are large statistical differences between the 

two hypotheses (flaw present, H1 , or not present, H0).  

 

The order statistics  (David, 1981)  filter ranks a set of n input values corresponding to simultaneously 

sampled values of the n channels of the SSP output, ( x1,x2,x3,…xn), 

 ( )   ( )   ( )    ( )              [1.4] 

where a given order or rank, r,  is chosen and x(r) is passed to the output.  This processor is the median 

filter when r = (n + 1)/2 (for odd n), the maximum filter when r = n and the minimum filter when r = 1. 

 

An important step for optimizing the OS filter involves finding the relationship between the input and 

output statistical behavior of the data.  Assuming the input observations, x, are independent and 

identically distributed with distribution FX(x), the order statistic is known to be a consistent and 

asymptotically unbiased estimator of the quantile (Saniie et al., 1990):  

           
   

 [ ( )]    
  (  )    [1.5] 

where    (   ) (   ) is a constant (i.e., normalized rank) bounded between zero and one, and 

 [ ( )] is the expected value for the output of OS filter.  In the aforementioned limit, both r and n 

approach infinity but    remains a finite ratio of r and n.  For infinite n, the OS filter is an unbiased 
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quantile estimator.  With finite observations, n, the estimate will have some dispersion about the quantile 

value,   , that allows the values of neighboring quantiles to influence the output.  It should be noted that 

the performance of the OS filter will generally improve with increasing observations n since the variance 

will decrease (i.e., the effect of random nature of the grains echoes will be reduced). The lower-ranked 

order statistics have been shown in the past to give improvement in the resolution of echoes and the flaw-

to-clutter ratio (Bilgutay and Saniie, 1984) provided all channels contain significant flaw information. 

 

It can be seen that the parameters r and n can be used so that the OS filter emphasizes particular regions 

in the distributions of the input signals. The OS filtering operation censors the signal values outside this 

quantile region from the decision rule. This property is useful when the classes of signals exhibit a 

distinctive statistical difference over a limited range of quantiles, such as what may occur with speculary 

reflective targets.  

 

The optimal rank is dependent on the input distributions that are illustrated by the following two 

examples (Saniie et al., 1991).  In the first example, we assume the number of observations is 25, and the 

target-plus-clutter observations (i.e., flaw echoes) are Chi distributed with skewness equal to 0.566 in 

Weibull clutter (i.e., grain echoes) with a skewness equal to 1.05.  Their respective inverse distribution 

functions are shown in Fig. 1.7.  The performance of the OS filter can be seen in Fig. 1.8 where the 

probability of detection for all possible rank values (r = l , 2, 3, … , 25) is plotted for 0dB and 2dB signal-

to-clutter ratios (SCR). The lower ranks perform significantly better since there is greater separation in 

smaller quantile regions where u < 0.6, as shown in Fig. 1.7.  Here, u represents the normalized rank with 

respect to the total number of observation channels and it is always less than or equal to 1.  Note that the 

optimal rank occurs at r = 2 for the lower SCR and r = 4 for the higher SCR.  For the higher SCR, the 

optimal choice is less critical, since for any r value from 1 to 10, the OS filter shows good performance. 

In the second example, both target-plus-clutter and clutter are Rayleigh distributed with skewness equal to 

0.63 where the inverse distributions are as shown in Fig. 1.9.  In Fig. 1.10, the optimal r is 19 for the 
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lower SCR (3db) and 20 for the higher SCR (6dB).  For the high SCR, the robustness of the upper ranks 

is self-evident from the visual examination of the inverse distributions of Fig. 1.9, and will increase as the 

input SCR increases. 

 

In the next section, we present an alternative post-processing technique based on neural networks which 

offers superior and more robust flaw detection performance. 

 

1.3 Neural network detection processor 

 

Neural networks are nonlinear mapping processes that allow training and adaptability for signal 

classification applications (for example, Cichocki and Unbehauen  1993; Gurney 1997;  Haykin, 2008). 

The learning process enables neural networks to recognize the target patterns without mathematical 

models of the target signals which often are unknown. There are several key advantages of neural 

networks: 

 Neural networks are trained by desired result. This means that no mathematical model is necessary. 

 Neural networks approximate unknown systems which include non-linear models. This non-linearity 

is an important property which enhances the network’s classification or approximation capabilities 

without estimating any statistical parameter.  

 Neural networks have parallel structure which provides fast performance for real-time detection 

applications. 

In this study, a three-layer feedforward neural network (Hornik 1989) is used as the post-processor of the 

ultrasonic flaw detector.  Neural networks provide superior flaw-to-clutter ratio performance when 

compared to other post-detection processors.  Furthermore, hardware realization of neural networks for 

real-time ultrasonic target detection systems is feasible (Yoon et al., 2006). 
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1.3.1 Neural networks architecture 

A neural network contains many nodes which are connected to each other. Each node consists of a basic 

computation function and an activation function. Computation unit processes the input signals and sends 

them to the activation function. The activation function unit produces the output of the node which can be 

the final output of a neural network or the input of another neural node. The neural networks can be 

classified to be i) feedforward neural networks, or ii) recurrent neural networks. The former has 

feedforward structure where neural nodes receive the input data and pass the data to next adjacent neural 

nodes without any feedback.  In this study, a three layer feedforward neural network is designed as a post 

processor of the ultrasonic target detection system. 

 

An objective function is used to train the neural networks. The squared error function which is computed 

between the output of neural networks and the desired output is used as the objective function.  The 

objective function measures how differently neural networks behave from the desired outputs. The goal of 

the neural network learning is to find the weight coefficients where the objective function reaches the 

minimum value.  In this research, the backpropagation algorithm is used for training the neural network. 

 

 1.3.2 Neural network model for SSP post processing 

 

A three-layer feed-forward neural network with SSP is shown in Fig. 1.11. The nodes in the first layer 

send SSP data to the second layer.  The neural nodes in the second layer which are called hidden layer 

nodes receive the weighted inputs from the first layer and then perform a nonlinear mapping calculation 

using the activation function. The output neural nodes in the third layer sum up the weighted inputs from 

second layer. The model of neural nodes is shown in Fig. 1.12. The weight coefficients wji indicates the ith 

input and jth node. 

 

The general neural node model can be expressed by 
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i

jijij bxwy )(             [1.6] 

where ix  is a set of inputs of each neuron, jy  is a set of outputs of each neuron, and bj is a set of bias of 

each neuron. Each input is multiplied by a weight coefficient jiw . The subscript ji refers to the input i in 

neuron j. The term φ is an activation function.  

 

There are several properties for the activation function. First, the activation function of hidden layer in 

three layer neural network needs to be nonlinear.  Second property is the saturation which ensures the 

weights and activations are bounded. The third property is continuity and smoothness. The 

backpropagation algorithm needs the derivative of the activation function during its learning process. In 

this research, the activation function used in the hidden layer is the sigmoid function which can be 

expressed by 

1)1()(  xex          [1.7] 

 

1.3.3 Backpropagation learning process 

 

The learning process allows neural networks to adapt to the environments of particular applications. The 

learning step takes place through iterative process of adjusting weight values.  We adapt the 

backpropagation algorithm (Masters, 1993) to train the neural networks for ultrasonic target detection 

system.  In the learning process, it is important to select the initial weights randomly since the training 

result can be limited to a local minimum based on the initial values.  After the training, the weight 

coefficients are fixed and then used for the other input sets. Additional training for neural networks is 

only necessary when the environments of the application are changed. 
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The activation function of hidden nodes has an important role in the nonlinear mapping process. The 

output of the sigmoid function reaches one or zero when the input approaches a positive or negative 

infinity value.  This means that the output will be a one or zero value when the input is very large.  This 

may cause the nonlinear mapping process of neural networks to fail. To avoid undesirable condition, the 

input data is normalized between -1 and 1. 

 

To train the neural networks for the ultrasonic flaw detection, we used an experimental ultrasonic data 

which has a flaw in a priori-known location. The desired output data is made of all zero values and a one 

value at the known flaw location.  The initial values of weights and bias are randomly selected. The 

number of input nodes is the same as the number of SSP channels and only one output node is used. It is 

important to note that the number of hidden nodes affects the performance of the neural networks.  In this 

research, we chose 5 hidden nodes for neural networks after several trials.  An objective function such as 

the sum of the squared error function is necessary to reach the minimization criterion to complete the 

learning process.  If the minimization criterion of the objective function is not met, we increase the 

number of epoch which corresponds to a single presentation of all patterns in the training set. If the 

criterion is still not met with the large number of epochs, increasing the number of hidden nodes can fix 

the problem. However, increasing the number of epoch or hidden nodes takes longer learning time. 

 

1.3.4 Software implementation of the neural networks 

 

The neural network based SSP post-processor is implemented in MATLAB software for performance 

evaluation.  The experimental data are used for both training and detection test.  Fig. 1.13 shows the data 

for training and the desired output data. The backpropagation learning algorithm computes the mean-

squared error of the difference between the desired output and real output value and adjusts the weight 

and bias coefficients until the mean-squared error function reaches a predetermined minimum value. After 

training, the neural network is expected to respond to flaw echoes if the input has flaw signals. The neural 
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networks provide the big pulse as a flaw echo and the small value for the clutter echoes since one was 

assigned to a flaw and zero was assigned to clutter echoes during the learning process. In the design of the 

neural networks, 8 channel SSP and 5 hidden nodes have been used.  The result of trained neural 

networks flaw detector is shown in Fig. 1.14.  For major changes that occur in the experimentation setup 

(such as different transducer types, different frequency of interrogation or change in material types), it 

may be necessary to re-train neural network weight coefficients. 

 

1.4  Flaw detection performance evaluation  

 

In this section, neural networks are compared against other conventional post-processing flaw detection 

methods such as order statistics (minimum, median, averaging), geometric mean (Xin, 1991) and polarity 

detectors (Bilgutay et al., 1989). The mathematical expressions of these techniques are given as the 

following:  

 

Average detector:   
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          [1.8] 

Median detector: 

   [1.9] 

Minimum detector: 
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Geometric mean detector:   
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Polarity detector: 
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where z(n) is the measured broadband signal,  zj(n) is the SSP output of channel j, and k is the total 

number of the SSP channels. 

 

The neural networks and other detection methods are implemented and compared with experimental 

ultrasonic data.  For performance analysis and testing, the experimental A-Scan data from a steel block 

(type 1018, grain size 50μm) are acquired and analyzed.  A Panametric (type 5052) pulser/receiver is used 

to drive the ultrasonic transducers and to receive the ultrasonic backscattered echoes. The received echo 

signals are then converted to digital data for split-spectrum processing.  The A-scan measurements were 

conducted using a broadband unfocused ultrasonic transducer of 0.5inch diameter with 5MHz center 

frequency. Data were acquired with 100MHz sampling rate and each sample is 8 bits. 1024 data points for 

each A-scan represents approximately a depth of 2.5 cm.  The steel block has several holes (1.5 mm 

diameter) at known, separate locations. All the A-scan measurements probe the hole positions within the 

steel block. For performance analysis, flaw-to-clutter ratio (FCR) is evaluated by finding the maximum 

flaw echo amplitude after the post-processing step. This value is compared with the largest amplitude of 

clutter echoes. Therefore, FCR can be defined as  

 

FCR = 20 * log10(F/C)     [1.13] 

where F is the maximum flaw echo amplitude and C is the maximum clutter echo amplitude.  

 

Fig. 1.15 shows experimental data in the time domain (Fig. 1.15(a)) and frequency domain (Fig. 1.15(b)) 

as well as the frequency spectrum of the 8-channel SSP bandpass filters (Fig. 1.15(c) and Fig. 1.15(d)). 
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Fig. 1.15(c) covers the frequency range where the flaw echo exists in all subbands (no null observations).  

Fig.1.15(d) shows the frequency spectrum of the 8 subband filters which cover the full frequency 

spectrum of the original measured signal.  In this case, some subband filter outputs (higher frequency 

bands) may have very low FCR and are considered to be null observations.  Therefore, a robust flaw 

detection method which offers minimal sensitivity to the frequency coverage of filters is desirable (Yoon 

et al., 2007).  The comparison results of various detectors applied to SSP channels covering the low 

frequency region (ranging from 1.5MHz to 6 MHz) are shown in Fig. 1.16.  In this frequency region, 

there are no null observations.  With the neural network (NN) detector, the flaw echo is sharply detected 

without visible clutter. The other detectors also detect the flaw. Table 1.1 also confirms that the neural 

network outperform the other techniques. The average FCR of neural network detector is 46.8dB; 

however, the average FCR of minimum detector is 7.9dB when only low frequency region is covered. 

The FCRs of the other detectors are significantly lower than minimum detector. 

 

Fig. 1.17 shows the comparison results of various detectors applied to SSP channels covering the full 

frequency spectrum (ranging from 1.5 MHz to 9 MHz) of the ultrasonic data. It is important to point out 

that null observations exist in this frequency range.  Neural networks can still detect the flaw signal; 

whereas the other detectors barely detect or fail to differentiate the presence of the flaw echo.  In Figures 

1.16 and 1.17, NN output values are close to 0 for clutter echoes and close to 1 for target echoes.  For 

other detectors, output values are normalized to -1 and 1, or 0 and 1 for presentation purposes.  Table 1.1 

shows the FCR results of the original input data and six different post-processors with two different 

subband filters coverage. These results confirm that the NN detector not only outperforms the 

conventional flaw detection methods but also shows less vulnerability to null observations (third row in 

Table 1.1). 

 

In the next section, we present an FPGA based hardware platform for real-time ultrasonic flaw detection 

applications. Architecture details and implementation results are discussed. 
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1.5 System-on-chip implementation – a case study 

 

A test system was designed and built to process real-time ultrasonic data utilizing the SSP algorithm. An 

overview of the test system is shown in Fig. 1.18 (Weber et al., 2011). The system is composed of three 

major components.  The first is a host computer, providing control of the system to the user and 

presentation of all data and results.  Running on the host computer is the application software developed 

to enable communication with the hardware components implemented in an XtremeDSP unit produced by 

Nallatech (Nallatech 2005).  This XtremeDSP unit combines a Xilinx Virtex 4 FPGA with dedicated 

ADC and DAC chips into a convenient package. The final component is the transducer and pulse 

generator. The pulse generator takes in a low voltage TTL level signal and generates the high voltage 

pulse to excite the transducer.  In addition, it provides the acquisition of the reflected echo signal.  

 

1.5.1 Hardware realization 

 

Tasks necessary for real-time ultrasonic detection system are broken into three modules, communications, 

signal processing, and signal capture. All three modules are packaged in a Xilinx Virtex 4 FPGA (Xilinx, 

2008). This FPGA is provided on the Nallatech ExtremeDSP development kit as the main user FPGA. 

This board also provides other components used in the system. They include dedicated ADC and DAC 

chips, fixed and programmable oscillators, a dedicated Virtex-II FPGA for clock management, and a 

dedicated Spartan-II FPGA for PCI/USB communications control. 

 

The signal capture module controls the firing of the transducer and capturing of all echo data coming in 

from the dedicated ADC chips.  It also provides a level of pre-processing, by adding a configurable 

amplifier to the incoming data.  It is important to note that the clock domain in this module is separate 

from the data processing element. The result of this is that the sampling rate of the device is independent 
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of the clock rate of the processing unit. This enables optimization of the clock rate and sample rate 

independently for maximum performance. 

 

The communication module provides an interface to the host PC and oversees all communications. It 

provides two primary services. The creation of a register file and the ability to access those registers 

through a memory mapped interface and a DMA interface that can be easily connected to internal Block 

RAMs (BRAMs).  It accomplishes this through the aid of a separate dedicated FPGA component.  This 

FPGA provides all the PCI or USB interfacing requirements, simplifying the design to be more 

manageable.  The system also provides 16 separate channels for DMA access.  These 16 channels can be 

connected to any internal BRAM within the FPGA. This is very beneficial in debugging and verification 

of the system. 

 

The signal processing module implements the SSP algorithm. It performs all the transformations and 

computations to produce the final output data.  It gathers its input data from the signal capture module, 

and obtains parameter values from the communication module. As data flow into the module, it is first 

transformed to the frequency domain through an FFT module. The FFT module used is a Radix-2 based 

IP core provided by Xilinx (Xilinx, 2010).  This module is highly optimized by Xilinx to take full 

advantage of the dedicated DSP blocks within the Virtex 4 device.  As a design configuration parameter, 

FFT operation is implemented with an 8-bit input precision. The data is allowed to dynamically grow to a 

19-bit output, which is then truncated to 16-bits to be passed on to the rest of the design.  The output of 

the FFT module is then decomposed by bandpass filters.  The filters are dynamic in their set points. Both 

the center frequency and bandwidth of the filters is controlled by user writable registers in the 

communication module.  This allows the user to change the bandpass filter parameters without 

reconfiguration of the FPGA device.  These filter parameters are chosen to optimize the subbands.  They 

are selected to cover the entire bandwidth of the echo response. 
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The subband channels are then transformed through the use of inverse FFT (IFFT) modules.  Since all 

subbands are independent, parallel IFFT modules are used to increase performance.  The IFFT modules, 

like the FFT module, are highly optimized Xilinx IP cores.  They take the 16-bit input and allow it to 

grow to 27-bits. The resulting data are then processed without further truncation.  By eliminating 

truncation, a very high dynamic range is achieved.  This helps the hardware design to perform very 

closely to the ideal software representation.   

 

1.5.2 Application software 

 

In order to maintain the modularity and reusability, a software package has been designed in a layered 

manner (see Fig. 1.19).  At the most basic level is the PCI/USB communication drivers, controlled by the 

PC operating system.  On top of that is the communication application programming interface (API) 

developed by Nallatech.  This provides support for basic communications of two types between the host 

PC and the hardware components.  It provides memory map register access and 16 DMA channel access 

to the internal memory blocks.  Furthermore, in order to enable a simple interface to the hardware, a new 

MATLAB toolbox has been developed.  This toolbox acts as a wrapper around Nallatech developed API 

providing a more convenient design for the most common communications between the host PC and the 

hardware.  

 

In the following sections, a full hardware implementation is compared with various Hardware/Software 

(HW/SW) partitioning schemes. 

 

1.5.3 Hardware/software co-design 

 

A hardware/software co-design approach (Micheli and Gupta, 1997) enables a more robust design which 

can comfortably meet the system requirements. The hardware/software design has been developed with 
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the Xilinx Embedded Development Kit (EDK) and targeted at an FPGA device with an embedded 

softcore Microblaze processor. 

 

Initially all processing is done in software through Microblaze processor.  In order to improve 

performance of the design, the full execution of the FFT transform is realized in the hardware domain 

through the addition of an FFT accelerator co-processor.  The FFT accelerator co-processor is 

implemented as a custom VHDL based design.  This accelerator is interfaced to the Microblaze processor 

through the On-Chip Peripheral Bus (OPB) as shown in Fig. 1.20.  By keeping the accelerator, processor, 

and bus structure all within the same FPGA device, it allows for very high performance.  A software 

driver is created and the software design is updated to pass data to the accelerator and receive back the 

FFT results. This accelerator demonstrates the integration of hardware design techniques with software 

design. 

 

1.5.4 Software and Hardware Performance Evaluation for SSP 

 

The SSP detection performance of the software architectures (C code running on an embedded 

Microblaze processor) perform identically to the theoretical Matlab implementation.  This performance 

result is expected.  The software implementations use a floating point representation of the data, the same 

as the internal representation within Matlab. Therefore, there is no change in performance for the software 

implementations. 

 

On the other hand, both the hardware architectures and the hardware/software co-design with the FFT 

accelerator use fixed point hardware based FFT processing units.  Due to the fixed point representation, 

and limited wordlength, there is some inherent data imprecision when calculating the FFT transforms. 

The final impact of this result is a decrease in overall system performance.  For ten different data sets, the 

performance for the hardware architectures can be seen in Table 1.2.  
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It is also important to notice that the 8 channel implementation is able to achieve results much closer to 

the theoretical ideal.  In addition to the overall performance, the 8-channel implementation exhibits a 

standard deviation of 1.98 compared to a standard deviation of 3.48 for the 4-channel approach.  Hence, 

the 8 channel implementation provides a much more robust performance.  The reason for this more robust 

performance is due to the placement of the window filters.  The 8 channel result is able to use smaller 

filters with a similar overlap, and still be able to cover a larger portion of the frequency spectrum.  

 

1.5.5 Execution time 

 

For ultrasonic imaging, real-time rate is considered to be a processing rate exceeding 1 kHz.  This gives 

only a short 1 ms time window to perform all capture and processing of data.  The execution time result 

for all the architectures is shown in Table 1.3.  This table goes into further depth by breaking down the 

execution time for each algorithmic processing step. 

 

It can be shown that the pure software approaches fail to reach the real-time requirement.  The basic 

software implementation with only a simple processor without a floating-point unit (FPU) struggles to 

perform all the computations.  With the move to a more complicated microprocessor, incorporating a FPU 

unit, the design is able to improve to a time of 37.7ms, although still well below the required rate.  Both 

of these designs demonstrate that a software only solution is not reasonable for this application. 

 

Table 1.3 also shows the execution time for both radix-2 and radix-4 pure hardware architectures.  These 

implementations aim for high performance using fast hardware processing elements and a highly parallel 

implementation, with multiple FFT cores for faster processing.  Correspondingly, the designs easily 

exceed the processing rates required and provide orders of magnitude improvement in execution time 

compared to the software implementations, being 370 times faster.  
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As expected the hardware/software co-design architecture is able to achieve a middle ground performance 

between the two pure designs.  The hardware/software co-design is able to achieve a performance rate of 

3.05ms. While the design currently does not meet the real-time requirements, it is close enough to be 

optimized to achieve the needed performance.  Through the use of final optimization of clock rate and 

code optimization it would be reasonable to expect performance gains to meet the requirements. 

 

1.5.6 Resource usage 

 

Resource usage is characterized with the three major resources provided within the Xilinx Virtex 4 FPGA 

device; logic slices, block RAMs, and DSP48s. Logical slices provide the fundamental configurable 

logical resources in an FPGA device. They provide the ability to perform all logic, arithmetic, and ROM 

storage and have addition elements to enable distributed RAM storage.  The particular device used 

provides support for up to 30,720 slices.  For larger RAM storage needs, the device also provides 192 

distributed dual port 18 Kbit RAM blocks. The final important resource items provided are 192 DSP48 

elements (Xilinx, 2007). 

 

The evaluation of these three resources is a good representation of the cost of the implementation.  The 

resource consumption for all the designs is shown in Table 1.4. The resource usage tends to follow the 

trend in execution time performance. As the designs become more complex, they are able to achieve 

higher performance rates.  

 

1.6  Future trends 

 

A common challenge today for ultrasonic imaging is the synergetic integration of sensor devices, signal 

processing units and miniaturization.  There has been an increasing demand for portable, handheld sensor 



Review Copy 

 

23 

 

devices which can operate not only in controlled environments such as laboratories or clinics but also in 

the field.  These devices could have a major impact on the ease of use and simplification of the diagnosis 

processes for medical practitioners or test engineers.  However, there are major design challenges for the 

development of compact sensor devices. These challenges are: 

 

Low power consumption: Portable and handheld devices use battery power. Consequently, power 

consumption of the devices should be kept to a minimum in order to obtain a truly field operable device. 

Compact size: Besides power consumption, portable devices enforce a very limited design space for the 

hardware components.  An ideal solution would be tighter integration of the components with system-on-

chip (SoC) design.  SoC provides a single chip solution for complete system implementation, with built-in 

embedded input/output interfaces, control units-processors, and data processing elements. 

High computational rate: Real-time operation with instantaneous results is a critical requirement for 

ultrasonic systems. Therefore, the hardware and software components should be designed primarily to 

cope with very complex computational requirements of real–time systems. 

Adaptability: The evolving standards and/or introduction of new testing, imaging or diagnostic techniques 

can cause a sensor device to become out-dated in a very short life-span. An ideal system should be 

designed in such a manner that the hardware kernel can be updated in order to make it future proof.  It is 

also important to have a feature-proof system in which more functionality can be added. 

Network Connectivity: The sensor device should be capable of transmitting and receiving over the internet 

for remote data access. 

Integration with MEMS sensors: A complete system-on-chip solution necessitates using MEMS sensor 

arrays for imaging, target detection, and classification.  

 

In order to meet all the design criteria, optimizations are required at both architectural level and 

algorithmic level. The following technology and signal processing trends are promising for next 

generation of ultrasonic imaging devices:  
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1. Development of time-frequency (T/F) algorithms for robust target (flaw) detection and estimation. 

The backscattered signal information in ultrasonic non-destructive testing is non-stationary due to 

frequency dependent scattering, attenuation and dispersion. The standard spectral analysis cannot 

determine the time of arrival of different frequency components in the signal. Joint T/F 

representations of such signals are more revealing. Therefore, T/F distributions such as Gabor 

Transform (GT), Wigner-Ville Distribution (WVD), Choi-Williams (CW) distribution and Wavelet 

Transform (WT) should be analysed for optimal ultrasonic flaw detection (Oruklu et al., 2009b). 

2. Design and synthesis of adaptive system-on-chip architectures which can support dynamic 

reconfiguration of on-chip processing engines through internal switches and/or partial programming 

of FPGA devices. 

 

Recently, similar multi-core and multiple Processing Element (PE) designs have been proposed in 

International Technology Roadmap for Semiconductors (ITRS) executive reports and conference 

proceedings: “A possible ultimate evolution of on-chip architectures is asynchronous heterogeneous 

multi-core with hierarchical processors organization” (Hutchby, 2007). Reconfigurable ultrasonic 

imaging architectures that conform to the “More than Moore” domain definitions of the ITRS should be 

designed for sustaining high computational capability and adaptability (Oruklu and Saniie, 2009a). 

 

3. Sensor development and integration for System-in-a-Package (SiP) devices. 

ITRS long-term projections also indicate the necessity of System in a Package (SiP) devices (ITRS, 

2009).  System in a Package (SiP) devices focus on full integration with sensors and actuators, based on a 

wide range of new technologies such as MEMS sensors. Correspondingly, MEMS actuators can be 

integrated with digital signal processing engines for a single chip solution in ultrasound imaging 

applications.  
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1.7 Further information 

 

More information in this topic can be found in the journal publications; IEEE Transactions on 

Ultrasonics, Ferroelectrics and Frequency Control, Journal of the Acoustical Society of America, 

Ultrasonics (Elsevier)  and in the proceedings of IEEE Ultrasonics Symposium, International Congress on 

Ultrasonics, and Acoustical Society of America meetings. 

 

1.8 Conclusion 

 

This chapter presented the theory and application of split-spectrum processing in ultrasonic flaw detection 

problems.  Frequency diversity of grain and flaw echoes suggests that order statistics and neural network 

post processors can be used for flaw echo visibility enhancement.  When statistical information in the 

observations deteriorates (e.g., null observations) and a priori information is not available, neural network 

post processors perform more robustly.  Furthermore, a case study demonstrates that reconfigurable 

embedded systems are capable of real-time realization of ultrasonic imaging applications. 
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Fig. 1.1. Ultrasonic testing setup using a steel block (type 1018, grain size 50μm) to evaluate the 

characteristics of flaw echo and grain scattering. 
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Fig. 1.2 Ultrasonic experimental flaw signal (top trace) and frequency-diverse minimum detector 

result (bottom trace).  A broadband ultrasonic transducer with 5MHz center frequency and a 

pulser/receiver (Panametric, type 5052) operating in pulse-echo mode is used for the 

experimental measurement. 
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Fig. 1.3. Frequency-diverse ultrasonic flaw detection system based on split-spectrum processing 

 

 

Fig. 1.4. Frequency bands in split-spectrum processing, where b is the filter bandwidth, Δf is the 

frequency step within the bands, and f1…fn are the subbands’ center frequency. 
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Fig. 1.5. Observation channels (output of split-spectrum processing) where the null observations 

are  in higher frequency bands. 
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Fig. 1.6. a) Attenuation transfer function, b) Scattering transfer function  
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Fig. 1.7. Inverse distribution functions of Chi-distributed target-plus-clutter and 

Weibull-distributed clutter   
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Fig. 1.8. Probability of detection of Chi distributed target-plus-clutter in Weibull distributed 

clutter for various ranks of OS filters with n =25 and the probability of false alarm set at 0.001 
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Fig. 1.9. Inverse distribution functions of Rayleigh-distributed target-plus-clutter and Rayleigh 

distributed clutter  
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Fig. 1.10. Probability of detection of Rayleigh distributed target in Rayleigh distributed clutter 

for various ranks of OS filters with n =25 and the probability of false alarm set at 0.001. 
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Fig. 1.11. Three layer feed-forward neural network for SSP flaw detection 

 

 

 

Fig. 1.12. Neural node model 
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Fig. 1.13. Training data and desired neural network output 

 

 

 

Fig. 1.14. Detection results using Neural Network based SSP 
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Fig. 1.15. Experimental data in time domain, frequency domain and frequency bands of SSP 

filters 
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Fig. 1.16. Comparison of detection results when SSP channels covering the low frequency region 
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Fig. 1.17. Comparison of detection results when SSP channels covering the full frequency range  
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Fig. 1.18. FPGA based real-time ultrasonic flaw detection system 

 

 

 

Fig. 1.19. Software interface designed for ultrasonic flaw detection system 
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Fig. 1.20. Hardware/Software co-design components 

 

 

Table 1.1 FCR enhancement of various ultrasonic target detectors (average of multiple measurements) 

 

 
 

 Input 

FCR 

Neural 

Networks 

Detector 

Minimum 

Detector 

Median 

Detector 

Average 

Detector 

Geometric 

Mean Detector 

Polarity 

Threshold 

Detector 

SSP filters covering only the low frequency range of the signal 

 1.1 dB 46.8 dB 7.9 dB 7.1 dB 5.0 dB 7.0 dB 0 dB 

SSP filters covering the full frequency range of the signal 

 1.1 dB 23.7 dB 1.7 dB 1.0 dB 1.4 dB 1.5 dB 0.3 dB 
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Table 1.2 Comparison of FCR improvement using different hardware and software (HW/SW) co-design 

techniques using minimum detector 

 

Data set 

Input 

FCR 

(dB) 

Software 

Implementation  

4-channel 

(db) 

Software 

Implementation 

8-channel 

(db) 

HW/SW Co-Design 

4-channel 

(dB) 

Hardware 

Radix-2 

4-channel 

(dB) 

Hardware 

Radix-2 

8-channel 

(dB) 

1 3.69 6.50  8.91 8.96 3.02 11.90 

2 -2.33 15.80  17.12 15.46 12.31 13.20 

3 2.24 12.67  11.96 9.67 8.73 8.90 

4 -3.74 16.36  17.44 14.00 10.11 13.30 

5 0.00 10.39  12.18 10.53 7.31 9.95 

6 1.54 10.22  9.89 7.24 7.43 8.78 

7 2.69 11.10  13.77 9.08 8.49 10.29 

8 4.14 7.21  12.31 9.99 5.50 10.78 

9 4.25 8.38  7.35 4.44 0.87 7.44 

10 -1.70 10.27  10.42 11.43 10.48 12.39 

Average 1.07 10.89 12.14 10.08 7.43 10.69 
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Table 1.3 Processing time of the SSP algorithm 

Algorithm Stage 

Software 

without FPU 

(Cycles) 

Software 

with FPU 

(Cycles) 

HW/SW 

Codesign with 

FFT 

Accelerator 

(Cycles) 

Hardware only 

(Radix-2 FFT  

IP-core) 

(cycles) 

Hardware only 

(Radix-4 FFT  

IP-core) 

(cycles) 

FFT 28,764,300 599,026 3,456 5,190 1,322 

Bandpass filtering 98,884 99,153 91,456 1,024 1,024 

Inverse FFT 109,978,539 2,396,039 13,824 5,190 1,322 

Post Processing 1,086,792 66,169 196,661 1,024 1,024 

Total Cycles 140,540,767 3,772,536 305,397 12,428 4,692 

Total Execution Time 1,405.5ms 37.7ms 3.05ms 108μs 40.8μs 

 
 

 

 

Table 1.4 FPGA resource usage for implementing SSP 

 

Software 

Architecture without 

FPU 

Software 

architecture with 

FPU 

HW/SW 

Co-Design 

Hardware 

Architecture 

(4-channel) 

Hardware 

Architecture 

(8-channel) 

Slices 1307 1886 5836 8378 14505 

DSP48 3 7 25 30 54 

RAM16 35 35 39 28 48 

 
 


