
Circuits and Systems, 2012, *, **
doi:****/cs.2012.***** Published Online ** 2012 (http://www.scirp.org/journal/cs)

Copyright © 2012 SciRes. CS

A Reconfigurable Network-on-Chip Datapath for

Application Specific Computing

Joshua Weber and Erdal Oruklu
Department of Electrical and Computer Engineering

Illinois Institute of Technology

Chicago, Illinois 60616-3793

Abstract
This paper introduces a new datapath architecture for reconfigurable processors. The proposed datapath is

based on Network-on-Chip approach and facilitates tight coupling of all functional units. Reconfigurable

functional elements can be dynamically allocated for application specific optimizations, enabling polymor-

phic computing. Using a modified network simulator, performance of several NoC topologies and parame-

ters are investigated with standard benchmark programs, including fine grain and coarse grain computations.

Simulation results highlight the flexibility and scalability of the proposed polymorphic NoC processor for a

wide range of application domains.

Keywords: Reconfigurable computing, Network-on-Chip, network simulators, polymorphic computing

1. Introduction

Technological advances in Field Programmable Gate

Arrays (FPGA) and performance improvement of recon-

figurable systems is making a large impact on signal pro-

cessing and computer processing. In addition, Sys-

tem-on-Chip (SoC) methodology facilitates tightly place-

ment of reconfigurable arrays with embedded gen-

eral-purpose processors. In the past reconfigurable hard-

ware has been used as a prototyping platform to aid in time

to market development of application specific integrated

circuits (ASIC). Increasingly, it is being shown that utiliz-

ing reconfigurable features in the field is producing designs

with higher performance, lower cost, lower power, de-

creased design time, and increased flexibility.

Application-specific instruction set processors (ASIP)

use extensions to standard processor instruction sets to

achieve significant performance gains within various ap-

plication domains. It has been shown that this approach

will be a primary driver for future processor improvements

[1]. Polymorphic processors [2,3] attempt to retain the

flexibility advantages of general-purpose processors while

providing the same advantages inherent in ASIPs and cus-

tom hardware logic. Polymorphism is a term borrowed

from computer science, which is the ability for an object

to utilize a common interface and yet execute custom

type-specific actions based on the input type. Polymor-

phic computing provides the same functionality to a

computer processor; creating a common programming

interface, but allowing the execution of the algorithm to

be application specific. Hence, the goal of a polymorphic

processor is a general-purpose processor that can be recon-

figured easily to accommodate application specific optimi-

zations as needed.

This work presents a novel and unique polymorphic

processor design. Integration of reconfigurable elements

into a traditional general-purpose processor is achieved

through replacement of the processor datapath with a net-

work-on-chip (NoC) design. This NoC enables a higher

level of fine-grained flexibility in the operation of the pro-

cessor. The flexibility of the polymorphic NoC (PolyNoC)

processor can be leveraged in many ways to achieve no-

ticeable performance gains. A cycle-accurate simulator is

produced to demonstrate the performance gains achievable

by the PolyNoC architecture.

2. Related Work

Reconfigurable computing has been the subject of

much research [4] and it has been shown that reconfigu-

rable computing can provide a significant improvement

in performance over standard general-purpose processors

[5,6]. Reconfigurable architectures offer a reduction in

size and cost, improved time to market, and increased

flexibility. All of which are especially important for em-

 .

Copyright © 2012 SciRes. CS

bedded systems. The majority of systems focus on the

integration of a general purpose processor with a recon-

figurable resource array (most often an FPGA). The goal

of polymorphic processor is to integrate these two units

into a common design methodology and run-time control

system.

An overview of the current trends and types of archi-

tectures has been studied and is shown in Figure 1 [7].

In Figure 1a, the reconfigurable array is communicating

with the general purpose processor through the I/O data

bus. In Figure 1b and 1c, reconfigurable array is moved

closer to the processor to decrease the communication

cost. In Figure 1d, the reconfigurable unit is coupled

within the processor as a configurable functional unit.

With the increasing size and complexity of programma-

ble fabrics and the use of soft core processor, a processor

core can also be embedded inside the reconfigurable fab-

ric as shown in Figure 1e.

These approaches have all been applied in very differ-

ent application domains. Research has been performed to

accelerate cryptographic systems [8], Euclidean distance

transformation [9], matrix multiplication [10], and mul-

timedia applications for imaging [11] and video pro-

cessing [12]. In addition research has been performed

into creation of polymorphic processors, which can be

reconfigured and applied to multiple application domains

[2,3,13-15].

A common problem for all polymorphic processors is

the integration of design flow for both software and re-

configurable hardware. Some work has been performed

in auto generation of hardware design targeted at recon-

figurable polymorphic processors [16-18]. Most of these

approaches use the standard C language to capture pro-

gram functionality and then through compiler optimiza-

tion extract sections to be targeted at reconfigurable re-

sources.

3. Reconfigurable Datapath Design

The proposed PolyNoC processor attempts to closely

integrate a general-purpose processor with reconfigurable

elements. This tight coupling produces a polymorphic

reconfigurable processor, which can be reconfigured and

extended in real time to include application specific opti-

mizations. Enabling the ability to tailor the processor ar-

chitecture to the specific application at run time is an im-

portant feature of this design.

Prior approaches at integration of reconfigurable ele-

ments to general-purpose processor have had various

types of implementation ranging from simple attachment

as a peripheral to tighter coupling to the memory system

or co-processor usage. The PolyNoC processor ap-

proaches the design goals by integrating the reconfigura-

ble elements into the foundation of the processor archi-

tecture. Unlike previous designs, the datapath of the pro-

cessor is replaced with a network-on-chip (NoC). Instead

of traditional direct wire communication with pipeline

registers, the PolyNoC processor utilizes a NoC for all

element-to-element communication. The use of a NoC

provides many advantages to the design and enables the

PolyNoC processor to achieve its main goal of real time

reconfigurability.

a)

b)

c)

d)

e)

Figure 1. Integration of processors and reconfigurable logic

The NoC provides a flexible interconnect and allows

new functional computation elements to be added and

Copyright © 2012 SciRes. CS

subtracted in real time. Furthermore, the NoC relieves the

designer from strict constraints on placement and order-

ing of functional elements, as the NoC will provide ele-

ment-to-element communication regardless of each ele-

ments placement. However, the NoC also place many

constrains on the overall processor operation. In particu-

lar, the latency penalty from the NoC needs to be over-

come by the additional advantages provided by the Poly-

NoC processor, namely the ability to reconfigure the pro-

cessor to have application specific optimizations.

4. PolyNoC Processor Architecture

The PolyNoC processor architecture can be seen in

Figure 2. It consists of a standard instruction and data

cache connected to a instruction fetch and decode unit.

Next, the instruction is passed to a packetizer. The pack-

etizer wraps the instruction into a NoC packet and then

transmits it through the NoC. The packetizer also keeps

track of all instruction executions and issues new instruc-

tions. The NoC delivers instruction packets to functional

units. Each instruction slowly progresses from functional

unit to functional unit, stopping to get a subset of execu-

tion done.

Rather than starting from scratch when designing the

processor, an existing processor architecture has been

adopted and extended. This enables the PolyNoC proces-

sor to focus on architectural issues, without dealing with

the many contributing factors from compiler and instruc-

tion set changes. In addition, the use of a common target

processor allows the PolyNoC processor to utilize all ex-

isting software and compiler tools available for the target

processor. For these reasons, the PolyNoC processor is

designed to execute SPARC code and emulate a SPARC

processor [19]. Specifically the PolyNoC processor is

based upon the LEON3 SPARC processor.

The base level of functional units represents roughly

the stages of execution of the SPARC processor the de-

sign is modeled on. These base functional units consist of

the register file, memory controller, ALU, and FPU. Each

functional unit performs computations that are roughly

equivalent to the pipeline stages of a LEON3 SPARC

processor, the target processor being extended into the

PolyNoC. As such, much of the implementation of the

basic functional units can remain unchanged from a target

general-purpose processor. Only modifications to the

input and output communications are necessary.

Besides base functional units, additional functional

units can be added to the system. These are represented

by blocks of reconfigurable functional units, which can be

configured depending on the current application. For

example, they can be used to instantiate additional core

units such as additional FPU functional elements. By in-

stantiating additional FPU elements, the processor can be

tailored to execute a floating-point heavy application. The

reconfigurable functional blocks can also be configured to

implement custom user logic. By enabling custom logic,

the processor can execute new custom instructions. These

instructions and logic can be heavily optimized and de-

signed to support a specific application, enabling a great

deal of performance increase.

Figure 2. Network-on-Chip Datapath for Polymorphic Pro-

cessors

5. Functional Units

5.1. Packetizer

The packetizer, as shown in Figure 3, functions as the

primary control of instruction execution. It feeds a pro-

gram counter (PC) value to the instruction cache unit and

accepts the incoming instructions for execution. In order

to overcome the increase in execution time caused by the

NoC latency and to leverage the flexibility advantages of

the NoC datapath, the packetizer allows for multiple in-

struction issues and out-of-order completion. To accom-

plish this, the packetizer must track the issuing and com-

 .

Copyright © 2012 SciRes. CS

pletion of all instructions and control the update of the

PC.

The packetizer allows for an unlimited number of in-

structions in flight. This is constrained by the amount of

instruction level parallelism present in the program. Be-

fore issuing any instruction, it is checked for data de-

pendency. This dependency check is performed by the

built in dependency tracker detailed in the Section 5.1.1.

The dependency tracker analyses i) data dependency

among in-flight instructions and ii) control oriented de-

pendencies from branch instructions. Once the depend-

ency tracker declares the instruction as dependency free,

it will be issued for execution and dependency tracker is

updated with dependencies of the newly issued instruc-

tion.

Figure 3. Packetizer Block Diagram

In order to issue an instruction for execution, it needs

to be packetized and transmitted to the NoC. The pack-

etizer decodes the instruction to determine the list of

necessary functional elements. For example, a basic

ADD instruction will need to visit the register file to ob-

tain input register operands, then the ALU unit for exe-

cution of the operation, then return to the register file to

write the results into the output register and finally return

to the packetizer to update execution completion status.

Once an instruction is decoded, the functional element

destinations are fed into the functional element sched-

uler, as detailed in Section 5.1.2. The functional element

scheduler will return a network id for each functional

element required.

A NoC packet is created to hold the necessary instruc-

tion contents. The critical data is the instruction itself and

the destination list of functional elements. All of this data

are wrapped into a NoC data packet, encoded with the

destination of the first functional element and transmitted

into the NoC. As instructions are completed they return

to the packetizer. The packetizer checks the status of the

packet to ensure it was correctly executed. Any instruc-

tion that failed execution will return as a trap condition

(the packetizer will update the PC to a trap handler). If

the instruction was a branch instruction, the new PC val-

ue will be included. As a final step, the packetizer will

pass the completed instruction to the dependency tracker

to remove any dependencies caused by this packet.

5.1.1 Dependency Tracker

The dependency tracker is responsible for determining

if a new instruction is dependency free from all currently

executing instructions. The tracker accomplishes this

task by maintaining an internal list of all data and control

dependencies of currently executing instructions. When a

new instruction is to be executed, it compares the neces-

sary registers to the dependency lists and determines if it

can be executed.

The dependency lists are implemented as simple bit

flags. Two 32 bit registers are created to track status of

the instruction registers, eight global, eight local, eight

input and eight output integer registers and 32 floating

point registers. Each bit indicates if a data dependency

exists for that register. As each instruction begins execu-

tion, it is registered with the dependency tracker. At this

time all destination registers being written by the instruc-

tion are flagged in the tracking register. When a new

instruction is to be executed, all source registers are

compared with the tracking registers. If bits correspond-

ing to all source registers are clear, the instruction is free

from data dependencies. The final step occurs when an

instruction completes execution. In this case the bits cor-

responding to the destination register are cleared from

the tracking list to indicate that there is no longer a data

dependency for those registers.

In addition to tracking data dependencies, the depend-

ency tracker also tracks control dependencies. Unlike a

traditional datapath, it is difficult to signal flush opera-

tions for instructions in flight. As such, no branch pre-

diction is used and all branching cases cause a control

dependency. When a control instruction is in-flight all

future instructions hold off on execution until resolution

of the branch instruction. The dependency tracker pro-

vides this tracking for the packetizer to control instruc-

tion issuing. In addition, as the register windows are af-

fected by a SAVE or RESTORE instruction, they too

exhibit a control dependency. All instruction must await

completion before execution.

The dependency tracker is critical to the overall opera-

tion of the PolyNoC processor. Together with the pack-

etizer it enables a multiple issue instruction datapath.

Since, the NoC datapath imparts latency penalties to ex-

ecution compared to a traditional processor, a large mit-

igating factor provided by the PolyNoC processor is the

ability to extract instruction level parallelism from the

instruction stream. The dependency tracker is crucial for

this ability. It checks each subsequent instruction for

dependencies. If the instruction is found to be free of

Copyright © 2012 SciRes. CS

dependencies then it is executed at the same time as the

prior instruction. This behavior helps to keep the execu-

tion elements fully utilized and provides significant ben-

efits to overall execution time.

5.1.2 Functional Element Scheduler

The functional element scheduler provides addressing

and scheduling of functional elements to the packetizer.

It maintains a list of all functional elements, their NoC

addresses, and the functional element type. For simple

cases with only one instance of each functional element,

it simply returns the address of the element when a re-

quest is made for an element of that type. For cases when

more than one element of a type has been created, it per-

forms scheduling. The current PolyNoC processor per-

forms scheduling through a round robin scheduling algo-

rithm. This schedules all functional elements equally and

distributes instruction load evenly. It also benefits from a

very simple implementation and critically requires no

signaling from any functional element. For these reasons,

it was chosen as the scheduling algorithm for the Poly-

NoC processor. Further performance gains can be made

through more advanced and intelligent scheduling algo-

rithms since the round robin algorithm does not take into

account current status of functional elements.

5.2. Register File

The register file implements and provides access to all

processor registers. It implements the register definitions

according to the SPARC architecture [19]. It defines a

set of overlapping windows general-purpose instruction

registers. These overlapping windows provide function-

ality to pass parameters between subroutine calls. The

execution of SAVE and RESTORE instructions allow

the adjustment to a new register window, which contains

shared output and input registers for different window

values.

The register file further implements 32 floating-point

general-purpose registers. These registers are usable by

all floating-point instructions. In addition to gen-

eral-purpose registers, the register file also implements

the SPARC control and status registers. These control

and status registers provide access to configuration and

status of a SPARC processor and are necessary for com-

pliance with SPARC execution model. Some status reg-

isters are critical in execution, for example the processor

state register (PSR) holds the contents of the condition

codes. The register file also supports the execution of the

SAVE and RESTORE instructions, shifting the register

window up or down. All of these options combine to

make a fully compliant SPARC register set.

5.3. Memory Controller

The memory controller enables access to external ad-

dressed memory. This supports both reading and writing

of external memory. The basic functionality of the

memory controller is simple and its implementation is

straightforward. The SPARC standard defines the pri-

mary external memory bus to use the AMBA AHB bus

protocol. Therefore, the PolyNoC processor and the

memory controller implements an AMBA AHB master

controller for accessing the bus.

In addition to providing access to the external memory

space, small amount of configuration memory space

must also be implemented within the memory controller.

This memory space provides plug-n-play capabilities for

the AHB bus, enabling AHB bus slaves to be added and

configuration options and memory address locations

stored. This configuration space is crucial to the memory

controller master controller and used to generate chip

selects and initiate access to AHB slaves.

5.4. Arithmetic Logic Unit

The ALU performs all integer arithmetic and logic

computations for instructions. In addition to execution of

basic instructions, the ALU also computes memory ad-

dresses and branch and jump targets. The ALU must be

robust enough to support arithmetic and logic operations

for all data types as required by the SPARC instruction

set. ALU performance can have a significant impact on

over all processor performance but from the standpoint

of the operation of the PolyNoC processor, it does not

present any new challenges.

5.5. Floating-Point Unit

Like the ALU, the FPU performs all arithmetic and

logic computations for floating point operations. This

implements all basic computations on standard IEEE-754

floating-point numbers. The implementation can vary

widely and have performance impacts on the PolyNoC

processor. A potential advantage of the PolyNoC pro-

cessor is the ability to incorporate multiple or even dif-

ferent FPU implementations allowing for design choices

that are not feasible with a traditional general purpose

processor.

6. NoC Interconnect

The network-on-chip (NoC) interconnect links all

functional elements together and enables communication

among them. Any instruction will traverse the NoC mul-

tiple times during execution. For the basic SPARC in-

struction with just the core functional elements, it will

require 3 to 5 trips through the NoC to complete execu-

tion of each instruction (similar to pipeline stages).

Therefore, performance of the NoC links is very im-

 .

Copyright © 2012 SciRes. CS

portant to the overall performance of the PolyNoC pro-

cessor.

The NoC should also be able to provide a scalable ar-

chitecture with a dynamic layout. The PolyNoC proces-

sor’s main advantages are in flexibility and reconfigura-

tion. The greatest performance gains are obtained by real

time reconfiguration of the number and type of function-

al elements. The NoC must be able to support to addition

and subtraction of functional elements with no impact to

overall NoC performance. In addition, due to the heavy

dependency on latency, the NoC needs to scale well. As

additional functional elements are added and the total

number of nodes within the NoC increases, the average

latency for travel over the NoC should not grow rapidly.

If the NoC latency increases too quickly, any perfor-

mance gain from additional functional elements can be

lost due to the penalties from increased execution time.

The NoC also needs to be able to support a flexible

packet type and size. Each NoC packet will need to en-

capsulate an instruction and all necessary information for

execution of that instruction. Data carried by the packets

will vary between each instruction. To save on overall

packet size, the packet should allow for a flexible packet

size to shrink or grow according to the demands of the

individual instruction. Packet structure should have a

minimum amount of overhead when encapsulating an

instruction and data. Minimizing this overhead reduces

the overall packet size and lower the overall bandwidth

requirements for interconnect links.

The traffic generation for the PolyNoC processor is

dependent on instruction execution. As a result, the traf-

fic load is reduced compared to other NoC systems. The

execution of instructions tends to be limited by the com-

putational time of the functional elements. This stark

limit on the number of instructions currently executing

makes for a low overall bandwidth requirement. The low

bandwidth requirement provides one of the main NoC

design techniques to improve performance. The Poly-

NoC processor can run the NoC communications on a

separate and higher frequency clock then the functional

elements. Since latency is a critical NoC parameter, the

higher NoC clock allows compensating for the NoC de-

lay. The latency figure is computed based on the NoC

clock. When running the NoC at a higher clock frequen-

cy, the overall NoC delay is drastically reduced. In many

cases, it seems reasonable to run the NoC clock at 4 or 8

times the functional element clock. This provides the

ability to have up to 4 or 8 clock cycles of latency for

NoC transmission within a single functional element

execution clock cycle, potentially hiding all latency pen-

alties during execution.

The PolyNoC processor presents a very unique set of

requirements for a NoC. In addition, the traffic genera-

tion is the result of instruction execution. This type of

traffic load is uncommon and has not been studied in

depth. For these reasons, it is difficult to approach the

design of the NoC from theoretical statistical approach,

as is often applied during NoC research. Instead, this

work has focused on an experimental approach. A simu-

lator for NoC design exploration has been created and

various NoC design parameters have been modified and

tested to determine the impact on NoC performance.

7. NoC Architecture Exploration

This section presents an exploration of the architectur-

al and topology issues impacting the performance of the

PolyNoC processor [3]. The Network Simulator 2 (ns-2)

[20] is utilized as a network simulation platform. ns-2 is

extended to simulate the execution of the PolyNoC pro-

cessor. With this simulation platform, instruction trace

data from real world benchmark programs can be run

through the simulator and it provides an excellent re-

search tool for the study of the PolyNoC processor.

The ns-2 simulator is a discrete event simulator target-

ing networking research. It has been used in a wide vari-

ety of networking research including simulation of NoC

architecture and protocols. It provides support for a wide

range of networking techniques, in addition to robust

access to the underlying framework to allow for custom

modification and extension of the simulator. ns-2 is im-

plemented in C++ with an interface layer based upon

OTcl. All major simulation objects are created as discrete

objects in C++. It provides very fine grained access to all

objects within a network, packet structure, link parame-

ters, routing agents, network node modeling, and support

for modeling of all layers of the OSI stack. Beyond the

extensive list of built in networking objects, ns-2 pro-

vides the ability to extend the platform to incorporate

new designs and techniques. This extensibility is heavily

utilized for modeling the PolyNoC network execution.

ns-2 was modified and extended to support simulation

of a processor executing with a NoC datapath. To facili-

tate this, a new custom set of applications, agents, nodes,

and packets were added to the ns-2 simulator. All func-

tional units within the processor are represented in the

ns-2 simulator as an application. These applications then

communicate with each other using the ns-2 node net-

work simulation.

Using the ns-2 simulator, four main network topolo-

gies were studied and compared as shown in Figure 4.

These topologies consist of Ring, Modified Ring, 2D

Mesh, and Crossbar architectures. The ring architecture

provides a simple baseline implementation. Due to the

fact that a processor datapath is highly sequential, it is

very similar to the flow of data through a traditional

datapath. The modified ring structure attempts to provide

a more robust scalability than the standard ring. In this

Copyright © 2012 SciRes. CS

architecture similar functional units are placed in parallel

on the ring structure. This incurs a minor increase in link

cost, but provides the same total delay over the ring re-

gardless of number of functional units instantiated. The

next architecture studied is the standard 2D mesh archi-

tecture. The architecture is a rectangular layout with

bi-directional links between neighboring nodes. The final

architecture explored is a crossbar. The crossbar archi-

tecture is an extreme architecture in which every node

has a link to every other node. This shrinks all commu-

nications to only a single hop away, but comes with a

very sharp increase in link cost as the network scales in

nodes. Figure 5 shows an example ns-2 script for evalu-

ating the performance of a simple PolyNoC processor

architecture (i.e., ring topology with only basic function-

al elements).

 In addition to exploration of the various topologies,

the impact of increasing the number of functional units

was also explored. The increase in the number of func-

tional units and the ease of integration to the processor

design is fundamental to a polymorphic processor. In-

creasing the number of computational functional units

(both ALU and FPU) directly impacts the overall per-

formance.

a) Ring b) Modified Ring

c) 2D Mesh d) Crossbar

Figure 4. NoC topologies investigated

8. Simulation Results
For performance analysis, benchmark programs have

been compiled for execution on the PolyNoC processor

simulator. The benchmarks come from the well-known

MiBench benchmark suite [21]. MiBench provides a set

of commercially representative embedded systems pro-

grams. Extracted from this set and used are the CRC32,

FFT, IFFT, ADPCM.encode, ADPCM.decode, and

BasicMath benchmark. This set of benchmarks provides

a varied application load to get an initial impression on

the performance of the proposed processor design.

 CRC32 - Performs a 32-bit Cyclical Redundancy

Check on input data. CRC checks are often used as

error checking during data transmission.

 FFT/IFFT - Performs a fast Fourier transform or an

inverse fast Fourier transform on an input data array.

The FFT is used for frequency analysis during signal

processing in a very wide range of application do-

mains.

 ADPCM encode/decode - Adaptive Differential

Pulse Code Modulation is a variation of the more

common Pulse Code Modulation (PCM). This varia-

tion takes in 16-bit linear PCM samples and converts

them to 4-bit samples providing significant com-

pression. This algorithm is executed over samples of

speech.

 BasicMath - Performs common mathematical com-

putations that very frequently do not have hardware

implementations. In this benchmark cubic function

solving, integer square roots and angular conversion

are computed.

Benchmark programs are first run on the TSIM LE-

ON3 SPARC simulator. As the benchmarks are execut-

ed, a trace of all executed instructions is captured. This

provides a cycle accurate, in-order instruction trace of

the benchmark when it is executed on a commercially

available SPARC processor. The instruction trace is then

used as input to the ns-2 based simulator. The use of this

trace provides an accurate traffic model of the execution

of the PolyNoC processor. Trace based traffic model

accurately represents the transmission of instruction

packets into the NoC by the packetizer unit. This allows

for very basic modeling of the instruction execution time,

without being concerned with the full simulation of

SPARC processor, significantly easing the implementa-

tion and execution time of the simulator.

 .

Copyright © 2012 SciRes. CS

Figure 5. Sample ns-2 script for instantiating a PolyNoC processor architecture (ring topology)

This will simulate the CRC32 Algorithm

with 1 ALU, 1 FPU, 1 RegFile, 1 MemCntrl

set FileName "CRC32_Ring_1_1_1_1"

Select the benchmark to run

set Benchmark_Select_Num 4

Link speed

set link_speed 6.4Gb

Instruction Window Size

set inst_win_size 16

puts "Now starting execution of $FileName"

Use only the needed packet headers.

remove-all-packet-headers

add-packet-header IP RTP NoC

Create a new simulator object

set ns [new Simulator]

#Define a 'finish' procedure

proc finish {} {

 global ns nf FileName Benchmark_Select_Num

 link_speed inst_win_size

 $ns flush-trace

 # Print details of the execution to the screen

 # for reference

 puts "Executed file $FileName"

 puts "Benchmark selected was $Benchmark_Select_Num"

 puts "Link Speed was $link_speed"

 puts "Instruction Window Size was $inst_win_size"

 exit 0

}

#Create five nodes

set n1 [$ns node]

set n2 [$ns node]

set n3 [$ns node]

set n4 [$ns node]

set n5 [$ns node]

#Create links between the nodes

$ns duplex-link $n1 $n2 $link_speed 0ms DropTail

$ns duplex-link $n2 $n3 $link_speed 0ms DropTail

$ns duplex-link $n3 $n4 $link_speed 0ms DropTail

$ns duplex-link $n1 $n5 $link_speed 0ms DropTail

Attach NoC Agents to all nodes

set noc1 [new Agent/NoC]
$ns attach-agent $n1 $noc1

set noc2 [new Agent/NoC]

$ns attach-agent $n2 $noc2

set noc3 [new Agent/NoC]
$ns attach-agent $n3 $noc3

set noc4 [new Agent/NoC]

$ns attach-agent $n4 $noc4
set noc5 [new Agent/NoC]

$ns attach-agent $n5 $noc5

#Attach a NoC Packetizer to node 1.

set packetizer [new Application/NoC/Packetizer]
$packetizer attach-agent $noc1

#Attach a PE application to nodes 2-5.
set reg_file [new Application/NoC/PE]

$reg_file set process_time_ 0.00000001

$reg_file attach-agent $noc2

set alu [new Application/NoC/PE]

$alu attach-agent $noc3

set fpu [new Application/NoC/PE]
$fpu attach-agent $noc4

set mem_cntrl [new Application/NoC/PE]

$mem_cntrl set process_time_ 0.00000004
$mem_cntrl attach-agent $noc5

$packetizer set benchmark_select_ $Benchmark_Select_Num
$packetizer set inst_window_ $inst_win_size

$packetizer loadtrace
puts "We are done Loading the Trace"

$packetizer scheduler add-packetizer [$packetizer get-addr]
 [$packetizer get-port]

$packetizer scheduler add-reg_file [$reg_file get-addr]

 [$reg_file get-port]

$packetizer scheduler add-alu [$alu get-addr] [$alu get-port]

$packetizer scheduler add-fpu [$fpu get-addr] [$fpu get-port]

$packetizer scheduler add-mem_cntrl [$mem_cntrl get-addr]
 [$mem_cntrl get-port]

puts "We are done setting the processing element address."

$ns compute-routes

$packetizer sim-trace

#Call the finish procedure after 5 seconds of simulation time

$ns at 1.0 "finish_stats"
$ns at 1.0 "finish"

proc finish_stats {} {
 global reg_file alu fpu mem_cntrl

 set reg_util [$reg_file get-util]

 puts "Reg File utilization is $reg_util"
 set alu_util [$alu get-util]

 puts "ALU File utilization is $alu_util"

 set fpu_util [$fpu get-util]
 puts "FPU utilization is $fpu_util"

 set mem_util [$mem_cntrl get-util]

 puts "Mem control utilization is $mem_util"
}

#Run the simulation

$ns run

Copyright © 2012 SciRes. CS

The total execution time for all benchmarks can be

seen in Tables 1 - 4. Table results show the total number

of cycles to execute each benchmark with four different

topologies. The total cycle count is an accurate measure

of the performance of the processor. A higher performing

processor will be able to execute more instructions in

less time. All the values presented were obtained using

an instruction window size of 16, with an assumed NoC

clock rate 8 times the datapath clock. It is reasonable

assume the NoC clock can run at a higher rate then the

functional elements datapath clock. This prevents the

PolyNoC processor from becoming NoC bound wherein

instruction execution time is limited by the NoC latency

and the increase from additional functional units pro-

vides no performance gains.

Table 1. Ring Execution Time (Clock Cycles)

kramhcneB
1 ULALL

1 ULA

1 ULAL

1 ULA

AL1 UL

AL1 U

AL1 UL

AL1 U

FFT 6,126,842 4,852,776 6,085,547 5,012,044

IFFT 6,268,858 4,997,153 6,170,402 5,229,513

CRC32 55,454,286 56,015,776 37,911,220 39,543,279

BasicMath 55,457,834 55,999,913 48,527,041 48,667,159

ADPCM.

decode
131,658,428 137,093,837 108,790,756 114,671,543

ADPCM.

encode
137,409,561 141,663,042 108,037,207 112,377,209

Table 2. Modified Ring Execution Time (Clock Cycles)

kramhcneB
1 ULALL

1 ULA

1 ULAL

1 ULA

AL1 UL

AL1 U

AL1 UL

AL1 U

FFT 6,126,842 4,881,443 5,916,996 4,683,730

IFFT 6,268,858 5,024,278 6,001,722 4,737,821

CRC32 55,454,286 55,454,286 38,905,161 38,905,161

BasicMath 55,457,834 54,029,474 45,804,379 44,455,720

ADPCM.

decode
131,658,428 131,658,428 100,332,329 100,332,329

ADPCM.

encode
137,409,561 137,409,561 100,499,675 100,499,675

Table 3. 2D Mesh Execution Time (Clock Cycles)

kramhcneB
1 ULALL

1 ULA

1 ULAL

1 ULA

AL1 UL

AL1 U

AL1 UL

AL1 U

FFT 5,767,886 4,351,394 5,495,290 4,082,665

IFFT 5,925,990 4,508,450 5,605,831 4,250,474

CRC32 51,971,730 51,971,730 33,941,356 33,941,356

BasicMath 51,937,483 50,494,185 41,226,881 39,269,764

ADPCM.

decode
118,765,944 118,765,944 84,968,305 84,968,305

ADPCM.

encode
129,321,184 129,321,184 88,790,061 88,790,061

Table 4. Crossbar Execution Time (Clock Cycles)

kramhcneB
1 ULALL

1 ULA

1 ULAL

1 ULA

AL1 UL

AL1 U

AL1 UL

AL1 U

FFT 5,718,123 4,341,824 5,385,672 3,984,087

IFFT 5,876,096 4,498,707 5,500,106 4,099,194

CRC32 52,295,414 52,295,414 31,817,863 31,817,863

BasicMath 50,968,786 49,225,920 39,486,512 37,229,961

ADPCM.

decode
118,781,718 118,781,718 85,392,11 82,539,211

ADPCM.

encode
129,750,238 129,750,238 85,654,074 85,654,074

Results show that all architectures exhibit scalability,

and increased performance as the number of functional

units increase. It can be seen that they all perform similar

when only a single functional unit of each type is used.

The advantages only become significant as the number

of functional units increase. As the number of functional

units is increased modestly from one to two ALUs/FPUs,

significant performance improvements are achieved. It is

important to note that a PolyNoC processor would allow

this performance boost to be selectively applied during

run time as reconfigurable elements are configured to act

as additional functional units. The applications that are

heavily FPU operation oriented benefit most from addi-

tional FPU elements, similarly ALU oriented bench-

marks get more performance from an increase in number

of ALU elements.

 The ring architecture is simple and has very low re-

source cost however, its performance is lacking. The

performance increase from additional function units is

cannibalized by increased packet delay through the net-

work. When more functional units are added, the latency

of the overall NoC transmission increases due to the need

to traverse the additional intermediate nodes. The addi-

tional penalty from NoC latency counteracts any perfor-

mance gains from more functional elements, and in some

cases actually lowers the overall performance of the

PolyNoC processor. The modified ring architecture helps

to mitigate the additional penalty from extra functional

elements by eliminating the growth of delay when add-

ing more functional units. In this case, the additional

units do not increase the latency from NoC transmission.

However, it still exhibits a similar weakness in overall

structure; the ring based architecture delay is too high

and prevents optimal processor execution either for the

original ring or modified ring. On the other hand, the 2D

Mesh architecture looks very promising as a candidate

for NoC architecture. The max number of nodes com-

pared to delay grows at a polynomial rate, producing a

slow increase in delay relative to increase in total number

of functional elements. Furthermore, for small mesh siz-

es, a large portion of communication occurs exclusively

between neighboring nodes, allowing for an optimal 1

cycle delay time. This enables minimal latency. Near

neighbor effect can also be maximized by careful layout

of the 2D mesh. The mesh structure should be laid out

such that node that frequently communicate with each

other. For example, majority of instructions transits to

the ALU after visiting the register file. Finally, the

Crossbar architecture represents a reference point for

comparison. It provides a connection from every node to

every other node and it allows for a constant delay time

of 1 clock for all packet transmissions. This can be seen

as an upper limit to performance gains independent of

architectural choices. This reference point is a valid

comparison for the other topologies. With all packet de-

lays at an optimal 1 cycle delay, it achieves the highest

Circuits and Systems, 2012, *, **
doi:****/cs.2012.***** Published Online ** 2012 (http://www.scirp.org/journal/cs)

Copyright © 2012 SciRes. CS

Figure 6. Cost vs. Performance analysis of different NoC topologies and number of functional units

PolyNoC performance. The overall performance is now

limited by the performance of the functional elements,

and the overall parallelism that can be extracted from the

instruction stream

Both the performance and the hardware resource con-

sumption of the architectures can be seen in Figure 6.

This figure presents the cost of each architecture based

on the total number of individual point to point unidirec-

tional links. Results indicate the superior performance of

the 2D Mesh architecture. With much lower total cost, it

is able to achieve a performance that is only slightly re-

duced from the upper limit set by the Crossbar imple-

mentation.

In conclusion, the 2D mesh structure is able to outper-

form all other topologies studied. It is able to scale well

with additional functional units. As the more units are

added, the additional latency in NoC transmission is

controlled and overall system performance goes up. In

general, the performance of the 2D mesh is fairly close to

the theoretical maximum demonstrated through the

crossbar architecture. 2D mesh structure also performs

best at cost scaling. The link cost for point to point links

grows very slowly compared to other implementation,

while still providing large gains in total PolyNoC per-

formance.

The final PolyNoC processor design with incorporation

of optimal parameters can be seen in Figure 7. It shows

the detailed layout of the NoC architecture and the

placement of reconfigurable arrays and basic functional

units. From the topology results, it is clear that the 2D

mesh architecture provides the optimal balance of per-

formance and cost. For these reasons it is chosen as the

basis of the NoC architecture. This design provides a

basic 4 x 4 mesh layout. This is a relatively small layout

which could easily be scaled to larger size. 4 x 4 layout

provides space for all basic units and a total of 11 recon-

figurable arrays for application specific functional units.

The design makes use of 2-input, 3-input, and 4-input

switches as the backbone of the communication infra-

structure. Each switch is interfaced to a single functional

unit. Functional units can be a basic unit supporting the

execution of the standard SPARC ISA, or a reconfigura-

ble unit supporting the creation of new application spe-

cific instruction.

9. Conclusion

In this work, a new reconfigurable processor architecture

has been introduced. Traditional fixed pipeline based

datapath is replaced with a reconfigurable NoC based

communications channel. Functional elements can

communicate with others elements and they can be add-

ed and reconfigured dynamically enabling polymorphic

operations. Several NoC topologies were explored to

find the optimal organization for a NoC based datapath.

Industry standard MiBench benchmarks were used to

study the execution of the PolyNoC processor. Results

Copyright © 2012 SciRes. CS

demonstrate that the PolyNoC processor provides signif-

icant advantages in flexibility of design. It is able to

support both very large stream based optimizations (i.e.,

computation of ADPCM block based encoding), while

also performing very fine grained, highly coupled cus-

tom instruction group optimizations, (i.e., optimization

of the CRC32 hash update loop). Therefore, PolyNoC

processor allows easy incorporation of reconfigurable

arrays, both coarse and fine grained, for application spe-

cific optimizations.

S2 S3 S3 S2

S3 S4 S4 S3

S3 S4 S4 S3

S2S3S3S2

ReCon

Array

ReCon

Array
FPU

ReCon

Array

ReCon

Array
Packetizer

Register

File

ReCon

Array

ReCon

Array
ALU

Memory

Controller

ReCon

Array

ReCon

Array

ReCon

Array

ReCon

Array

ReCon

Array

Figure 7. 4x4 2D Mesh Architecture

10. References

[1] “International technology roadmap for semiconductors,”

2009. [Online] Available:

http://www.itrs.net/Links/2009ITRS/Home2009.htm.

[2] D. Hentrich, E. Oruklu and J. Saniie, "Polymorphic

Computing: Definition, Trends, and a New Agent-Based

Architecture," Circuits and Systems, Vol. 2 No. 4, 2011,

pp. 358-364.

[3] J. Weber, E. Oruklu, and J. Saniie, “Architectural topolo-

gies for NoC datapath polymorphic processors," Elec-

tro/Information Technology (EIT), 2011 IEEE Interna-

tional Conference on, pp.1-6, May 2011.

[4] K. Compton and S. Hauck, “Reconfigurable computing: a

survey of systems and software,” ACM Comput. Surv.

vol. 34, no. 2, pp. 171– 210, 2002.

[5] Z. Guo, W. Najjar, F. Vahid, and K. Vissers, “A quantita-

tive analysis of the speedup factors of FPGAs over pro-

cessors,” in FPGA ’04: Proceedings of the 2004

ACM/SIGDA 12th international symposium on Field

programmable gate arrays. New York, NY, USA: ACM,

2004, pp. 162–170.

[6] K. Underwood, “FPGAs vs. CPUs: trends in peak float-

ing-point performance,” in FPGA ’04: Proceedings of the

2004 ACM/SIGDA 12th international symposium on

Field programmable gate arrays. New York, NY, USA:

ACM, 2004, pp. 171–180.

[7] T. Todman, G. Constantinides, S. Wilton, O. Mencer, W.

Luk, and P. Cheung, “Reconfigurable computing: archi-

tectures and design methods,” Computers and Digital

Techniques, IEE Proceedings -, vol. 152, no. 2, pp.

193–207, Mar 2005.

[8] R. Cheung, N. Telle, W. Luk, and P. Cheung, “Customi-

zable elliptic curve cryptosystems,” Very Large Scale In-

tegration (VLSI) Systems, IEEE Transactions on, vol. 13,

no. 9, pp. 1048–1059, Sept. 2005.

[9] P. Baglietto, M. Maresca, and M. Migliardi, “Euclidean

distance transform on polymorphic processor array,” in

Computer Architectures for Machine Perception, 1995.

Proceedings. CAMP ’95, Sep 1995, pp. 288–293.

[10] G. Kuzmanov and W. van Oijen, “Floating-point matrix

multiplication in a polymorphic processor,” in

Field-Programmable Technology, 2007. ICFPT 2007. In-

ternational Conference on, Dec. 2007, pp. 249–252.

[11] S. Chai, S. Chiricescu, R. Essick, B. Lucas, P. May, K.

Moat, J. Norris, M. Schuette, and A. Lopez-Lagunas,

“Streaming processors for next generation mobile imag-

ing applications,” Communications Magazine, IEEE, vol.

43, no. 12, pp. 81–89, Dec. 2005.

[12] H. Hubert and B. Stabernack, “Profiling-based hard-

ware/software coexploration for the design of video cod-

ing architectures,” Circuits and Systems for Video Tech-

nology, IEEE Transactions on, vol. 19, no. 11, pp.

1680–1691, Nov. 2009.

[13] C. Rupp, M. Landguth, T. Garverick, E. Gomersall, H.

Holt, J. Arnold, and M. Gokhale, “The napa adaptive

processing architecture,” in FPGAs for Custom Compu-

ting Machines, 1998. Proceedings. IEEE Symposium on,

apr 1998, pp. 28 –37.

[14] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G.

Kuzmanov, and E. Panainte, “The molen polymorphic

processor,” Computers, IEEE Transactions on, vol. 53,

no. 11, pp. 1363 – 1375, nov. 2004.

[15] N. Vassiliadis, G. Theodoridis, and S. Nikolaidis, “The

arise approach for extending embedded processors with

arbitrary hardware accelerators,” Very Large Scale Inte-

gration (VLSI) Systems, IEEE Transactions on, vol. 17,

no. 2, pp. 221–233, Feb. 2009.

[16] M. Gokhale and J. Stone, “NAPA C: compiling for a

hybrid risc/fpga architecture,” in FPGAs for Custom

Computing Machines, 1998. Proceedings. IEEE Sympo-

sium on, Apr 1998, pp. 126–135.

[17] J. Cong, G. Han, and Z. Zhang, “Architecture and com-

piler optimizations for data bandwidth improvement in

configurable processors,” Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on, vol. 14, no. 9,

pp. 986–997, Sept. 2006.

[18] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “SPARK: a

high-level synthesis framework for applying parallelizing

compiler transformations,” in VLSI Design, 2003. Pro-

ceedings. 16th International Conference on, Jan. 2003,

pp. 461–466.

[19] The SPARC Architecture Manual, Version 8, Sun Mi-

crosystems, 1992. [Online]. Available:

http://www.sparc.org/standards/V8.pdf

[20] ns-2, The Network Simulator,

http://nsnam.isi.edu/nsnam/index.php/Main_Page

[21] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T.

Mudge, and R. Brown, “Mibench: A free, commercially

representative embedded benchmark suite,” in Workload

Characterization, 2001. WWC-4. 2001 IEEE Internation-

al Workshop on, dec. 2001, pp. 3 – 14.

http://www.itrs.net/Links/2009ITRS/Home2009.htm
http://www.sparc.org/standards/V8.pdf
http://nsnam.isi.edu/nsnam/index.php/Main_Page

