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Abstract 
This paper introduces a new datapath architecture for reconfigurable processors. The proposed datapath is 

based on Network-on-Chip approach and facilitates tight coupling of all functional units. Reconfigurable 

functional elements can be dynamically allocated for application specific optimizations, enabling polymor-

phic computing. Using a modified network simulator, performance of several NoC topologies and parame-

ters are investigated with standard benchmark programs, including fine grain and coarse grain computations. 

Simulation results highlight the flexibility and scalability of the proposed polymorphic NoC processor for a 

wide range of application domains.  
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1. Introduction 
 

Technological advances in Field Programmable Gate 

Arrays (FPGA) and performance improvement of recon-

figurable systems is making a large impact on signal pro-

cessing and computer processing. In addition, Sys-

tem-on-Chip (SoC) methodology facilitates tightly place-

ment of reconfigurable arrays with embedded gen-

eral-purpose processors. In the past reconfigurable hard-

ware has been used as a prototyping platform to aid in time 

to market development of application specific integrated 

circuits (ASIC). Increasingly, it is being shown that utiliz-

ing reconfigurable features in the field is producing designs 

with higher performance, lower cost, lower power, de-

creased design time, and increased flexibility. 

Application-specific instruction set processors (ASIP) 

use extensions to standard processor instruction sets to 

achieve significant performance gains within various ap-

plication domains. It has been shown that this approach 

will be a primary driver for future processor improvements 

[1]. Polymorphic processors [2,3] attempt to retain the 

flexibility advantages of general-purpose processors while 

providing the same advantages inherent in ASIPs and cus-

tom hardware logic. Polymorphism is a term borrowed 

from computer science, which is the ability for an object 

to utilize a common interface and yet execute custom 

type-specific actions based on the input type. Polymor-

phic computing provides the same functionality to a 

computer processor; creating a common programming 

interface, but allowing the execution of the algorithm to 

be application specific. Hence, the goal of a polymorphic 

processor is a general-purpose processor that can be recon-

figured easily to accommodate application specific optimi-

zations as needed. 

This work presents a novel and unique polymorphic 

processor design. Integration of reconfigurable elements 

into a traditional general-purpose processor is achieved 

through replacement of the processor datapath with a net-

work-on-chip (NoC) design. This NoC enables a higher 

level of fine-grained flexibility in the operation of the pro-

cessor. The flexibility of the polymorphic NoC (PolyNoC) 

processor can be leveraged in many ways to achieve no-

ticeable performance gains. A cycle-accurate simulator is 

produced to demonstrate the performance gains achievable 

by the PolyNoC architecture. 

 
2. Related Work 
 

Reconfigurable computing has been the subject of 

much research [4] and it has been shown that reconfigu-

rable computing can provide a significant improvement 

in performance over standard general-purpose processors 

[5,6]. Reconfigurable architectures offer a reduction in 

size and cost, improved time to market, and increased 

flexibility. All of which are especially important for em-
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bedded systems. The majority of systems focus on the 

integration of a general purpose processor with a recon-

figurable resource array (most often an FPGA). The goal 

of polymorphic processor is to integrate these two units 

into a common design methodology and run-time control 

system.  

An overview of the current trends and types of archi-

tectures has been studied and is shown in Figure 1 [7]. 

In Figure 1a, the reconfigurable array is communicating 

with the general purpose processor through the I/O data 

bus. In Figure 1b and 1c, reconfigurable array is moved 

closer to the processor to decrease the communication 

cost. In Figure 1d, the reconfigurable unit is coupled 

within the processor as a configurable functional unit. 

With the increasing size and complexity of programma-

ble fabrics and the use of soft core processor, a processor 

core can also be embedded inside the reconfigurable fab-

ric as shown in Figure 1e. 

These approaches have all been applied in very differ-

ent application domains. Research has been performed to 

accelerate cryptographic systems [8], Euclidean distance 

transformation [9], matrix multiplication [10], and mul-

timedia applications for imaging [11] and video pro-

cessing [12]. In addition research has been performed 

into creation of polymorphic processors, which can be 

reconfigured and applied to multiple application domains 

[2,3,13-15].  

A common problem for all polymorphic processors is 

the integration of design flow for both software and re-

configurable hardware. Some work has been performed 

in auto generation of hardware design targeted at recon-

figurable polymorphic processors [16-18]. Most of these 

approaches use the standard C language to capture pro-

gram functionality and then through compiler optimiza-

tion extract sections to be targeted at reconfigurable re-

sources. 

 

3. Reconfigurable Datapath Design 
 

The proposed PolyNoC processor attempts to closely 

integrate a general-purpose processor with reconfigurable 

elements. This tight coupling produces a polymorphic 

reconfigurable processor, which can be reconfigured and 

extended in real time to include application specific opti-

mizations. Enabling the ability to tailor the processor ar-

chitecture to the specific application at run time is an im-

portant feature of this design. 

Prior approaches at integration of reconfigurable ele-

ments to general-purpose processor have had various 

types of implementation ranging from simple attachment 

as a peripheral to tighter coupling to the memory system 

or co-processor usage. The PolyNoC processor ap-

proaches the design goals by integrating the reconfigura-

ble elements into the foundation of the processor archi-

tecture. Unlike previous designs, the datapath of the pro-

cessor is replaced with a network-on-chip (NoC). Instead 

of traditional direct wire communication with pipeline 

registers, the PolyNoC processor utilizes a NoC for all 

element-to-element communication. The use of a NoC 

provides many advantages to the design and enables the 

PolyNoC processor to achieve its main goal of real time 

reconfigurability. 
 

 
a) 

 
b) 

 
c) 

 
d) 

  
e) 

Figure 1. Integration of processors and reconfigurable logic 

 

The NoC provides a flexible interconnect and allows 

new functional computation elements to be added and 
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subtracted in real time. Furthermore, the NoC relieves the 

designer from strict constraints on placement and order-

ing of functional elements, as the NoC will provide ele-

ment-to-element communication regardless of each ele-

ments placement. However, the NoC also place many 

constrains on the overall processor operation. In particu-

lar, the latency penalty from the NoC needs to be over-

come by the additional advantages provided by the Poly-

NoC processor, namely the ability to reconfigure the pro-

cessor to have application specific optimizations. 

 

4. PolyNoC Processor Architecture 
 

The PolyNoC processor architecture can be seen in 

Figure 2. It consists of a standard instruction and data 

cache connected to a instruction fetch and decode unit. 

Next, the instruction is passed to a packetizer. The pack-

etizer wraps the instruction into a NoC packet and then 

transmits it through the NoC. The packetizer also keeps 

track of all instruction executions and issues new instruc-

tions. The NoC delivers instruction packets to functional 

units. Each instruction slowly progresses from functional 

unit to functional unit, stopping to get a subset of execu-

tion done.  

Rather than starting from scratch when designing the 

processor, an existing processor architecture has been 

adopted and extended. This enables the PolyNoC proces-

sor to focus on architectural issues, without dealing with 

the many contributing factors from compiler and instruc-

tion set changes. In addition, the use of a common target 

processor allows the PolyNoC processor to utilize all ex-

isting software and compiler tools available for the target 

processor. For these reasons, the PolyNoC processor is 

designed to execute SPARC code and emulate a SPARC 

processor [19]. Specifically the PolyNoC processor is 

based upon the LEON3 SPARC processor.  

The base level of functional units represents roughly 

the stages of execution of the SPARC processor the de-

sign is modeled on. These base functional units consist of 

the register file, memory controller, ALU, and FPU. Each 

functional unit performs computations that are roughly 

equivalent to the pipeline stages of a LEON3 SPARC 

processor, the target processor being extended into the 

PolyNoC. As such, much of the implementation of the 

basic functional units can remain unchanged from a target 

general-purpose processor. Only modifications to the 

input and output communications are necessary.  

Besides base functional units, additional functional 

units can be added to the system. These are represented 

by blocks of reconfigurable functional units, which can be 

configured depending on the current application. For 

example, they can be used to instantiate additional core 

units such as additional FPU functional elements. By in-

stantiating additional FPU elements, the processor can be 

tailored to execute a floating-point heavy application. The 

reconfigurable functional blocks can also be configured to 

implement custom user logic. By enabling custom logic, 

the processor can execute new custom instructions. These 

instructions and logic can be heavily optimized and de-

signed to support a specific application, enabling a great 

deal of performance increase. 

 

 
Figure 2. Network-on-Chip Datapath for Polymorphic Pro-

cessors 

 
5. Functional Units 
 

5.1. Packetizer 

 
The packetizer, as shown in Figure 3, functions as the 

primary control of instruction execution. It feeds a pro-

gram counter (PC) value to the instruction cache unit and 

accepts the incoming instructions for execution. In order 

to overcome the increase in execution time caused by the 

NoC latency and to leverage the flexibility advantages of 

the NoC datapath, the packetizer allows for multiple in-

struction issues and out-of-order completion. To accom-

plish this, the packetizer must track the issuing and com-
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pletion of all instructions and control the update of the 

PC.  

The packetizer allows for an unlimited number of in-

structions in flight. This is constrained by the amount of 

instruction level parallelism present in the program. Be-

fore issuing any instruction, it is checked for data de-

pendency. This dependency check is performed by the 

built in dependency tracker detailed in the Section 5.1.1. 

The dependency tracker analyses i) data dependency 

among in-flight instructions and ii) control oriented de-

pendencies from branch instructions. Once the depend-

ency tracker declares the instruction as dependency free, 

it will be issued for execution and dependency tracker is 

updated with dependencies of the newly issued instruc-

tion. 

 
Figure 3. Packetizer Block Diagram 

 

In order to issue an instruction for execution, it needs 

to be packetized and transmitted to the NoC. The pack-

etizer decodes the instruction to determine the list of 

necessary functional elements. For example, a basic 

ADD instruction will need to visit the register file to ob-

tain input register operands, then the ALU unit for exe-

cution of the operation, then return to the register file to 

write the results into the output register and finally return 

to the packetizer to update execution completion status. 

Once an instruction is decoded, the functional element 

destinations are fed into the functional element sched-

uler, as detailed in Section 5.1.2. The functional element 

scheduler will return a network id for each functional 

element required. 

A NoC packet is created to hold the necessary instruc-

tion contents. The critical data is the instruction itself and 

the destination list of functional elements. All of this data 

are wrapped into a NoC data packet, encoded with the 

destination of the first functional element and transmitted 

into the NoC. As instructions are completed they return 

to the packetizer. The packetizer checks the status of the 

packet to ensure it was correctly executed. Any instruc-

tion that failed execution will return as a trap condition 

(the packetizer will update the PC to a trap handler). If 

the instruction was a branch instruction, the new PC val-

ue will be included. As a final step, the packetizer will 

pass the completed instruction to the dependency tracker 

to remove any dependencies caused by this packet. 

 

5.1.1 Dependency Tracker 

 

The dependency tracker is responsible for determining 

if a new instruction is dependency free from all currently 

executing instructions. The tracker accomplishes this 

task by maintaining an internal list of all data and control 

dependencies of currently executing instructions. When a 

new instruction is to be executed, it compares the neces-

sary registers to the dependency lists and determines if it 

can be executed. 

The dependency lists are implemented as simple bit 

flags. Two 32 bit registers are created to track status of 

the instruction registers, eight global, eight local, eight 

input and eight output integer registers and 32 floating 

point registers. Each bit indicates if a data dependency 

exists for that register. As each instruction begins execu-

tion, it is registered with the dependency tracker. At this 

time all destination registers being written by the instruc-

tion are flagged in the tracking register. When a new 

instruction is to be executed, all source registers are 

compared with the tracking registers. If bits correspond-

ing to all source registers are clear, the instruction is free 

from data dependencies. The final step occurs when an 

instruction completes execution. In this case the bits cor-

responding to the destination register are cleared from 

the tracking list to indicate that there is no longer a data 

dependency for those registers. 

In addition to tracking data dependencies, the depend-

ency tracker also tracks control dependencies. Unlike a 

traditional datapath, it is difficult to signal flush opera-

tions for instructions in flight. As such, no branch pre-

diction is used and all branching cases cause a control 

dependency. When a control instruction is in-flight all 

future instructions hold off on execution until resolution 

of the branch instruction. The dependency tracker pro-

vides this tracking for the packetizer to control instruc-

tion issuing. In addition, as the register windows are af-

fected by a SAVE or RESTORE instruction, they too 

exhibit a control dependency. All instruction must await 

completion before execution. 

The dependency tracker is critical to the overall opera-

tion of the PolyNoC processor. Together with the pack-

etizer it enables a multiple issue instruction datapath. 

Since, the NoC datapath imparts latency penalties to ex-

ecution compared to a traditional processor, a large mit-

igating factor provided by the PolyNoC processor is the 

ability to extract instruction level parallelism from the 

instruction stream. The dependency tracker is crucial for 

this ability. It checks each subsequent instruction for 

dependencies. If the instruction is found to be free of 
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dependencies then it is executed at the same time as the 

prior instruction. This behavior helps to keep the execu-

tion elements fully utilized and provides significant ben-

efits to overall execution time. 

 

5.1.2 Functional Element Scheduler 

 

The functional element scheduler provides addressing 

and scheduling of functional elements to the packetizer. 

It maintains a list of all functional elements, their NoC 

addresses, and the functional element type. For simple 

cases with only one instance of each functional element, 

it simply returns the address of the element when a re-

quest is made for an element of that type. For cases when 

more than one element of a type has been created, it per-

forms scheduling. The current PolyNoC processor per-

forms scheduling through a round robin scheduling algo-

rithm. This schedules all functional elements equally and 

distributes instruction load evenly. It also benefits from a 

very simple implementation and critically requires no 

signaling from any functional element. For these reasons, 

it was chosen as the scheduling algorithm for the Poly-

NoC processor. Further performance gains can be made 

through more advanced and intelligent scheduling algo-

rithms since the round robin algorithm does not take into 

account current status of functional elements. 

 

5.2. Register File 
 

The register file implements and provides access to all 

processor registers. It implements the register definitions 

according to the SPARC architecture [19]. It defines a 

set of overlapping windows general-purpose instruction 

registers. These overlapping windows provide function-

ality to pass parameters between subroutine calls. The 

execution of SAVE and RESTORE instructions allow 

the adjustment to a new register window, which contains 

shared output and input registers for different window 

values. 

The register file further implements 32 floating-point 

general-purpose registers. These registers are usable by 

all floating-point instructions. In addition to gen-

eral-purpose registers, the register file also implements 

the SPARC control and status registers. These control 

and status registers provide access to configuration and 

status of a SPARC processor and are necessary for com-

pliance with SPARC execution model. Some status reg-

isters are critical in execution, for example the processor 

state register (PSR) holds the contents of the condition 

codes. The register file also supports the execution of the 

SAVE and RESTORE instructions, shifting the register 

window up or down. All of these options combine to 

make a fully compliant SPARC register set.  

 

5.3. Memory Controller 
 

The memory controller enables access to external ad-

dressed memory. This supports both reading and writing 

of external memory. The basic functionality of the 

memory controller is simple and its implementation is 

straightforward. The SPARC standard defines the pri-

mary external memory bus to use the AMBA AHB bus 

protocol. Therefore, the PolyNoC processor and the 

memory controller implements an AMBA AHB master 

controller for accessing the bus.  

In addition to providing access to the external memory 

space, small amount of configuration memory space 

must also be implemented within the memory controller. 

This memory space provides plug-n-play capabilities for 

the AHB bus, enabling AHB bus slaves to be added and 

configuration options and memory address locations 

stored. This configuration space is crucial to the memory 

controller master controller and used to generate chip 

selects and initiate access to AHB slaves. 

 

5.4. Arithmetic Logic Unit 
 

The ALU performs all integer arithmetic and logic 

computations for instructions. In addition to execution of 

basic instructions, the ALU also computes memory ad-

dresses and branch and jump targets. The ALU must be 

robust enough to support arithmetic and logic operations 

for all data types as required by the SPARC instruction 

set. ALU performance can have a significant impact on 

over all processor performance but from the standpoint 

of the operation of the PolyNoC processor, it does not 

present any new challenges.  

 

5.5. Floating-Point Unit 
 

Like the ALU, the FPU performs all arithmetic and 

logic computations for floating point operations. This 

implements all basic computations on standard IEEE-754 

floating-point numbers. The implementation can vary 

widely and have performance impacts on the PolyNoC 

processor. A potential advantage of the PolyNoC pro-

cessor is the ability to incorporate multiple or even dif-

ferent FPU implementations allowing for design choices 

that are not feasible with a traditional general purpose 

processor. 

 
6. NoC Interconnect 
 

The network-on-chip (NoC) interconnect links all 

functional elements together and enables communication 

among them. Any instruction will traverse the NoC mul-

tiple times during execution. For the basic SPARC in-

struction with just the core functional elements, it will 

require 3 to 5 trips through the NoC to complete execu-

tion of each instruction (similar to pipeline stages). 

Therefore, performance of the NoC links is very im-
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portant to the overall performance of the PolyNoC pro-

cessor.  

The NoC should also be able to provide a scalable ar-

chitecture with a dynamic layout. The PolyNoC proces-

sor’s main advantages are in flexibility and reconfigura-

tion. The greatest performance gains are obtained by real 

time reconfiguration of the number and type of function-

al elements. The NoC must be able to support to addition 

and subtraction of functional elements with no impact to 

overall NoC performance. In addition, due to the heavy 

dependency on latency, the NoC needs to scale well. As 

additional functional elements are added and the total 

number of nodes within the NoC increases, the average 

latency for travel over the NoC should not grow rapidly. 

If the NoC latency increases too quickly, any perfor-

mance gain from additional functional elements can be 

lost due to the penalties from increased execution time.  

The NoC also needs to be able to support a flexible 

packet type and size. Each NoC packet will need to en-

capsulate an instruction and all necessary information for 

execution of that instruction. Data carried by the packets 

will vary between each instruction. To save on overall 

packet size, the packet should allow for a flexible packet 

size to shrink or grow according to the demands of the 

individual instruction. Packet structure should have a 

minimum amount of overhead when encapsulating an 

instruction and data. Minimizing this overhead reduces 

the overall packet size and lower the overall bandwidth 

requirements for interconnect links. 

The traffic generation for the PolyNoC processor is 

dependent on instruction execution. As a result, the traf-

fic load is reduced compared to other NoC systems. The 

execution of instructions tends to be limited by the com-

putational time of the functional elements. This stark 

limit on the number of instructions currently executing 

makes for a low overall bandwidth requirement. The low 

bandwidth requirement provides one of the main NoC 

design techniques to improve performance. The Poly-

NoC processor can run the NoC communications on a 

separate and higher frequency clock then the functional 

elements. Since latency is a critical NoC parameter, the 

higher NoC clock allows compensating for the NoC de-

lay. The latency figure is computed based on the NoC 

clock. When running the NoC at a higher clock frequen-

cy, the overall NoC delay is drastically reduced. In many 

cases, it seems reasonable to run the NoC clock at 4 or 8 

times the functional element clock. This provides the 

ability to have up to 4 or 8 clock cycles of latency for 

NoC transmission within a single functional element 

execution clock cycle, potentially hiding all latency pen-

alties during execution. 

The PolyNoC processor presents a very unique set of 

requirements for a NoC. In addition, the traffic genera-

tion is the result of instruction execution. This type of 

traffic load is uncommon and has not been studied in 

depth. For these reasons, it is difficult to approach the 

design of the NoC from theoretical statistical approach, 

as is often applied during NoC research. Instead, this 

work has focused on an experimental approach. A simu-

lator for NoC design exploration has been created and 

various NoC design parameters have been modified and 

tested to determine the impact on NoC performance. 

 
7. NoC Architecture Exploration 
 

This section presents an exploration of the architectur-

al and topology issues impacting the performance of the 

PolyNoC processor [3]. The Network Simulator 2 (ns-2) 

[20] is utilized as a network simulation platform. ns-2 is 

extended to simulate the execution of the PolyNoC pro-

cessor. With this simulation platform, instruction trace 

data from real world benchmark programs can be run 

through the simulator and it provides an excellent re-

search tool for the study of the PolyNoC processor.  

The ns-2 simulator is a discrete event simulator target-

ing networking research. It has been used in a wide vari-

ety of networking research including simulation of NoC 

architecture and protocols. It provides support for a wide 

range of networking techniques, in addition to robust 

access to the underlying framework to allow for custom 

modification and extension of the simulator. ns-2 is im-

plemented in C++ with an interface layer based upon 

OTcl. All major simulation objects are created as discrete 

objects in C++. It provides very fine grained access to all 

objects within a network, packet structure, link parame-

ters, routing agents, network node modeling, and support 

for modeling of all layers of the OSI stack. Beyond the 

extensive list of built in networking objects, ns-2 pro-

vides the ability to extend the platform to incorporate 

new designs and techniques. This extensibility is heavily 

utilized for modeling the PolyNoC network execution. 

ns-2 was modified and extended to support simulation 

of a processor executing with a NoC datapath. To facili-

tate this, a new custom set of applications, agents, nodes, 

and packets were added to the ns-2 simulator. All func-

tional units within the processor are represented in the 

ns-2 simulator as an application. These applications then 

communicate with each other using the ns-2 node net-

work simulation.  

Using the ns-2 simulator, four main network topolo-

gies were studied and compared as shown in Figure 4. 

These topologies consist of Ring, Modified Ring, 2D 

Mesh, and Crossbar architectures. The ring architecture 

provides a simple baseline implementation. Due to the 

fact that a processor datapath is highly sequential, it is 

very similar to the flow of data through a traditional 

datapath. The modified ring structure attempts to provide 

a more robust scalability than the standard ring. In this 
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architecture similar functional units are placed in parallel 

on the ring structure. This incurs a minor increase in link 

cost, but provides the same total delay over the ring re-

gardless of number of functional units instantiated. The 

next architecture studied is the standard 2D mesh archi-

tecture. The architecture is a rectangular layout with 

bi-directional links between neighboring nodes. The final 

architecture explored is a crossbar. The crossbar archi-

tecture is an extreme architecture in which every node 

has a link to every other node. This shrinks all commu-

nications to only a single hop away, but comes with a 

very sharp increase in link cost as the network scales in 

nodes. Figure 5 shows an example ns-2 script for evalu-

ating the performance of a simple PolyNoC processor 

architecture (i.e., ring topology with only basic function-

al elements). 

 In addition to exploration of the various topologies, 

the impact of increasing the number of functional units 

was also explored. The increase in the number of func-

tional units and the ease of integration to the processor 

design is fundamental to a polymorphic processor. In-

creasing the number of computational functional units 

(both ALU and FPU) directly impacts the overall per-

formance.  

 

 
a) Ring                b) Modified Ring 

 

c) 2D Mesh              d) Crossbar 

 

Figure 4. NoC topologies investigated 

 

 

 
 

8. Simulation Results 
For performance analysis, benchmark programs have 

been compiled for execution on the PolyNoC processor 

simulator. The benchmarks come from the well-known 

MiBench benchmark suite [21]. MiBench provides a set 

of commercially representative embedded systems pro-

grams. Extracted from this set and used are the CRC32, 

FFT, IFFT, ADPCM.encode, ADPCM.decode, and 

BasicMath benchmark. This set of benchmarks provides 

a varied application load to get an initial impression on 

the performance of the proposed processor design. 

 CRC32 - Performs a 32-bit Cyclical Redundancy 

Check on input data. CRC checks are often used as 

error checking during data transmission.  

 FFT/IFFT - Performs a fast Fourier transform or an 

inverse fast Fourier transform on an input data array. 

The FFT is used for frequency analysis during signal 

processing in a very wide range of application do-

mains. 

 ADPCM encode/decode - Adaptive Differential 

Pulse Code Modulation is a variation of the more 

common Pulse Code Modulation (PCM). This varia-

tion takes in 16-bit linear PCM samples and converts 

them to 4-bit samples providing significant com-

pression. This algorithm is executed over samples of 

speech. 

 BasicMath - Performs common mathematical com-

putations that very frequently do not have hardware 

implementations. In this benchmark cubic function 

solving, integer square roots and angular conversion 

are computed.    

 

Benchmark programs are first run on the TSIM LE-

ON3 SPARC simulator. As the benchmarks are execut-

ed, a trace of all executed instructions is captured. This 

provides a cycle accurate, in-order instruction trace of 

the benchmark when it is executed on a commercially 

available SPARC processor. The instruction trace is then 

used as input to the ns-2 based simulator. The use of this 

trace provides an accurate traffic model of the execution 

of the PolyNoC processor. Trace based traffic model 

accurately represents the transmission of instruction 

packets into the NoC by the packetizer unit. This allows 

for very basic modeling of the instruction execution time, 

without being concerned with the full simulation of 

SPARC processor, significantly easing the implementa-

tion and execution time of the simulator. 
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Figure 5. Sample ns-2 script for instantiating a PolyNoC processor architecture (ring topology)

 

 

 

 

 

# This will simulate the CRC32 Algorithm  

# with 1 ALU, 1 FPU, 1 RegFile, 1 MemCntrl 

set FileName "CRC32_Ring_1_1_1_1" 

# Select the benchmark to run 

set Benchmark_Select_Num 4 

# Link speed 

set link_speed 6.4Gb 

# Instruction Window Size 

set inst_win_size 16 

puts "Now starting execution of $FileName" 

 

# Use only the needed packet headers. 

remove-all-packet-headers 

add-packet-header IP RTP NoC 

 

# Create a new simulator object 

set ns [new Simulator] 

#Define a 'finish' procedure 

proc finish {} { 

        global ns nf FileName Benchmark_Select_Num  

           link_speed inst_win_size 

        $ns flush-trace 

 # Print details of the execution to the screen  

 # for reference 

 puts "Executed file $FileName" 

 puts "Benchmark selected was $Benchmark_Select_Num" 

 puts "Link Speed was $link_speed" 

 puts "Instruction Window Size was $inst_win_size" 

        exit 0 

} 

#Create five nodes 

set n1 [$ns node] 

set n2 [$ns node] 

set n3 [$ns node] 

set n4 [$ns node] 

set n5 [$ns node] 

 

#Create links between the nodes 

$ns duplex-link $n1 $n2 $link_speed 0ms DropTail 

$ns duplex-link $n2 $n3 $link_speed 0ms DropTail 

$ns duplex-link $n3 $n4 $link_speed 0ms DropTail 

$ns duplex-link $n1 $n5 $link_speed 0ms DropTail 

 

# Attach NoC Agents to all nodes 

set noc1 [new Agent/NoC] 
$ns attach-agent $n1 $noc1 

set noc2 [new Agent/NoC] 

$ns attach-agent $n2 $noc2 
 

set noc3 [new Agent/NoC] 
$ns attach-agent $n3 $noc3 

set noc4 [new Agent/NoC] 

$ns attach-agent $n4 $noc4 
set noc5 [new Agent/NoC] 

$ns attach-agent $n5 $noc5 

 
 

#Attach a NoC Packetizer to node 1. 

set packetizer [new Application/NoC/Packetizer] 
$packetizer attach-agent $noc1 

 

#Attach a PE application to nodes 2-5. 
set reg_file [new Application/NoC/PE] 

$reg_file set process_time_ 0.00000001 

$reg_file attach-agent $noc2 

set alu [new Application/NoC/PE] 

$alu attach-agent $noc3 

set fpu [new Application/NoC/PE] 
$fpu attach-agent $noc4 

set mem_cntrl [new Application/NoC/PE] 

$mem_cntrl set process_time_ 0.00000004 
$mem_cntrl attach-agent $noc5 

 

$packetizer set benchmark_select_ $Benchmark_Select_Num 
$packetizer set inst_window_ $inst_win_size 

$packetizer loadtrace 
puts "We are done Loading the Trace" 

 

$packetizer scheduler add-packetizer [$packetizer get-addr]  
  [$packetizer get-port] 

$packetizer scheduler add-reg_file [$reg_file get-addr]  

  [$reg_file get-port] 

$packetizer scheduler add-alu [$alu get-addr] [$alu get-port] 

$packetizer scheduler add-fpu [$fpu get-addr] [$fpu get-port] 

$packetizer scheduler add-mem_cntrl [$mem_cntrl get-addr]  
  [$mem_cntrl get-port] 

puts "We are done setting the processing element address." 

 
$ns compute-routes 

 

$packetizer sim-trace 
 

#Call the finish procedure after 5 seconds of simulation time 

$ns at 1.0 "finish_stats" 
$ns at 1.0 "finish" 

 

proc finish_stats {} { 
 global reg_file alu fpu mem_cntrl 

 set reg_util [$reg_file get-util] 

 puts "Reg File utilization is $reg_util" 
 set alu_util [$alu get-util] 

 puts "ALU File utilization is $alu_util" 

 set fpu_util [$fpu get-util] 
 puts "FPU utilization is $fpu_util" 

 set mem_util [$mem_cntrl get-util] 

 puts "Mem control utilization is $mem_util" 
} 

 

#Run the simulation 

$ns run 
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The total execution time for all benchmarks can be 

seen in Tables 1 - 4. Table results show the total number 

of cycles to execute each benchmark with four different 

topologies. The total cycle count is an accurate measure 

of the performance of the processor. A higher performing 

processor will be able to execute more instructions in 

less time. All the values presented were obtained using 

an instruction window size of 16, with an assumed NoC 

clock rate 8 times the datapath clock. It is reasonable 

assume the NoC clock can run at a higher rate then the 

functional elements datapath clock. This prevents the 

PolyNoC processor from becoming NoC bound wherein 

instruction execution time is limited by the NoC latency 

and the increase from additional functional units pro-

vides no performance gains.  
 

Table 1.  Ring Execution Time (Clock Cycles) 

kramhcneB 
1 ULALL

1 ULA 

1 ULAL

1 ULA 

AL1 UL

AL1 U 

AL1 UL

AL1 U 

FFT 6,126,842 4,852,776 6,085,547 5,012,044 

IFFT 6,268,858 4,997,153 6,170,402 5,229,513 

CRC32 55,454,286 56,015,776 37,911,220 39,543,279 

BasicMath 55,457,834 55,999,913 48,527,041 48,667,159 

ADPCM. 

decode 
131,658,428 137,093,837 108,790,756 114,671,543 

ADPCM. 

encode 
137,409,561 141,663,042 108,037,207 112,377,209 

 

Table 2.  Modified Ring Execution Time (Clock Cycles) 

kramhcneB 
1 ULALL

1 ULA 

1 ULAL

1 ULA 

AL1 UL

AL1 U 

AL1 UL

AL1 U 

FFT 6,126,842 4,881,443 5,916,996 4,683,730 

IFFT 6,268,858 5,024,278 6,001,722 4,737,821 

CRC32 55,454,286 55,454,286 38,905,161 38,905,161 

BasicMath 55,457,834 54,029,474 45,804,379 44,455,720 

ADPCM. 

decode 
131,658,428 131,658,428 100,332,329 100,332,329 

ADPCM. 

encode 
137,409,561 137,409,561 100,499,675 100,499,675 

 

Table 3.  2D Mesh Execution Time (Clock Cycles) 

kramhcneB 
1 ULALL

1 ULA 

1 ULAL

1 ULA 

AL1 UL

AL1 U 

AL1 UL

AL1 U 

FFT 5,767,886  4,351,394 5,495,290 4,082,665 

IFFT 5,925,990  4,508,450  5,605,831 4,250,474 

CRC32 51,971,730  51,971,730 33,941,356 33,941,356 

BasicMath 51,937,483  50,494,185 41,226,881 39,269,764 

ADPCM. 

decode 
118,765,944  118,765,944 84,968,305 84,968,305 

ADPCM. 

encode 
129,321,184  129,321,184 88,790,061 88,790,061 

 

Table 4.  Crossbar Execution Time (Clock Cycles) 

kramhcneB 
1 ULALL

1 ULA 

1 ULAL

1 ULA 

AL1 UL

AL1 U 

AL1 UL

AL1 U 

FFT 5,718,123 4,341,824 5,385,672 3,984,087 

IFFT 5,876,096 4,498,707 5,500,106 4,099,194 

CRC32 52,295,414 52,295,414 31,817,863 31,817,863 

BasicMath 50,968,786 49,225,920 39,486,512 37,229,961 

ADPCM. 

decode 
118,781,718 118,781,718 85,392,11 82,539,211 

ADPCM. 

encode 
129,750,238 129,750,238 85,654,074 85,654,074 

Results show that all architectures exhibit scalability, 

and increased performance as the number of functional 

units increase. It can be seen that they all perform similar 

when only a single functional unit of each type is used. 

The advantages only become significant as the number 

of functional units increase. As the number of functional 

units is increased modestly from one to two ALUs/FPUs, 

significant performance improvements are achieved. It is 

important to note that a PolyNoC processor would allow 

this performance boost to be selectively applied during 

run time as reconfigurable elements are configured to act 

as additional functional units. The applications that are 

heavily FPU operation oriented benefit most from addi-

tional FPU elements, similarly ALU oriented bench-

marks get more performance from an increase in number 

of ALU elements. 

 The ring architecture is simple and has very low re-

source cost however, its performance is lacking. The 

performance increase from additional function units is 

cannibalized by increased packet delay through the net-

work. When more functional units are added, the latency 

of the overall NoC transmission increases due to the need 

to traverse the additional intermediate nodes. The addi-

tional penalty from NoC latency counteracts any perfor-

mance gains from more functional elements, and in some 

cases actually lowers the overall performance of the 

PolyNoC processor. The modified ring architecture helps 

to mitigate the additional penalty from extra functional 

elements by eliminating the growth of delay when add-

ing more functional units. In this case, the additional 

units do not increase the latency from NoC transmission. 

However, it still exhibits a similar weakness in overall 

structure; the ring based architecture delay is too high 

and prevents optimal processor execution either for the 

original ring or modified ring. On the other hand, the 2D 

Mesh architecture looks very promising as a candidate 

for NoC architecture. The max number of nodes com-

pared to delay grows at a polynomial rate, producing a 

slow increase in delay relative to increase in total number 

of functional elements. Furthermore, for small mesh siz-

es, a large portion of communication occurs exclusively 

between neighboring nodes, allowing for an optimal 1 

cycle delay time. This enables minimal latency. Near 

neighbor effect can also be maximized by careful layout 

of the 2D mesh. The mesh structure should be laid out 

such that node that frequently communicate with each 

other. For example, majority of instructions transits to 

the ALU after visiting the register file. Finally, the 

Crossbar architecture represents a reference point for 

comparison. It provides a connection from every node to 

every other node and it allows for a constant delay time 

of 1 clock for all packet transmissions. This can be seen 

as an upper limit to performance gains independent of 

architectural choices. This reference point is a valid 

comparison for the other topologies. With all packet de-

lays at an optimal 1 cycle delay, it achieves the highest  
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Figure 6. Cost vs. Performance analysis of different NoC topologies and number of functional units 

PolyNoC performance. The overall performance is now 

limited by the performance of the functional elements, 

and the overall parallelism that can be extracted from the 

instruction stream 

Both the performance and the hardware resource con-

sumption of the architectures can be seen in Figure 6. 

This figure presents the cost of each architecture based 

on the total number of individual point to point unidirec-

tional links. Results indicate the superior performance of 

the 2D Mesh architecture. With much lower total cost, it 

is able to achieve a performance that is only slightly re-

duced from the upper limit set by the Crossbar imple-

mentation.  

In conclusion, the 2D mesh structure is able to outper-

form all other topologies studied. It is able to scale well 

with additional functional units. As the more units are 

added, the additional latency in NoC transmission is 

controlled and overall system performance goes up. In 

general, the performance of the 2D mesh is fairly close to 

the theoretical maximum demonstrated through the 

crossbar architecture. 2D mesh structure also performs 

best at cost scaling. The link cost for point to point links 

grows very slowly compared to other implementation, 

while still providing large gains in total PolyNoC per-

formance.  

The final PolyNoC processor design with incorporation 

of optimal parameters can be seen in Figure 7. It shows 

the detailed layout of the NoC architecture and the 

placement of reconfigurable arrays and basic functional 

units. From the topology results, it is clear that the 2D 

mesh architecture provides the optimal balance of per-

formance and cost. For these reasons it is chosen as the 

basis of the NoC architecture. This design provides a 

basic 4 x 4 mesh layout. This is a relatively small layout 

which could easily be scaled to larger size. 4 x 4 layout 

provides space for all basic units and a total of 11 recon-

figurable arrays for application specific functional units. 

The design makes use of 2-input, 3-input, and 4-input 

switches as the backbone of the communication infra-

structure. Each switch is interfaced to a single functional 

unit. Functional units can be a basic unit supporting the 

execution of the standard SPARC ISA, or a reconfigura-

ble unit supporting the creation of new application spe-

cific instruction. 

 

9. Conclusion 
 
In this work, a new reconfigurable processor architecture 

has been introduced. Traditional fixed pipeline based 

datapath is replaced with a reconfigurable NoC based 

communications channel. Functional elements can 

communicate with others elements and they can be add-

ed and reconfigured dynamically enabling polymorphic 

operations. Several NoC topologies were explored to 

find the optimal organization for a NoC based datapath. 

Industry standard MiBench benchmarks were used to 

study the execution of the PolyNoC processor. Results 



 

Copyright © 2012 SciRes.                                                                                   CS 

demonstrate that the PolyNoC processor provides signif-

icant advantages in flexibility of design. It is able to 

support both very large stream based optimizations (i.e., 

computation of ADPCM block based encoding), while 

also performing very fine grained, highly coupled cus-

tom instruction group optimizations, (i.e., optimization 

of the CRC32 hash update loop). Therefore, PolyNoC 

processor allows easy incorporation of reconfigurable 

arrays, both coarse and fine grained, for application spe-

cific optimizations. 
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Figure 7. 4x4 2D Mesh Architecture 
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