
Journal of Signal and Information Processing, 2012, *, **-**
doi:10.4236/jsip.2012.***** Published Online *** 2012 (http://www.scirp.org/journal/jsip)

Copyright © 2012 Sces. JSIP

Human Friendly Interface Design for Virtual Fitting Room
Applications on Android based Mobile Devices

Cecilia Garcia Martin and Erdal Oruklu

Department of Electrical and Computer Engineering
Illinois Institute of Technology
Chicago, Illinois, USA
Email: erdal@ece.iit.edu

Received August 6th, 2012.

ABSTRACT

This paper presents an image processing design flow for virtual fitting room (VFR) applications, targeting both personal
computers and mobile devices. The proposed human friendly interface is implemented by a three-stage algorithm:
detection and sizing of the user’s body, detection of reference points based on face detection and augmented reality
markers, and superimposition of the clothing over the user’s image. Compared to other existing VFR systems, key
difference is the lack of any proprietary hardware components or peripherals. Proposed VFR is software based and
designed to be universally compatible as long as the device has a camera. Furthermore, JAVA implementation on
Android based mobile systems is computationally efficient and it can run in real-time on existing mobile devices.

Keywords: virtual fitting room; face detection; augmented reality; virtual reality; human friendly interfaces.

1. Introduction
Today, mobile commerce and online sales are increasing
at a rapid rate. In 2011, mobile traffic on Black Friday
was 14.3 percent of all retail traffic compared to 5.6
percent in 2010 [1]. Sales on mobile devices increased to
9.8 percent from 3.2 percent year over year [2].
Nevertheless, one area online sales traditionally
struggled is fashion items and clothing. It is estimated
that majority of the consumers don’t buy clothing online
because they don’t want to take any risk with the sizes.
In addition, a large percentage of the purchased items are
returned. This brings an additional financial burden to
retail companies. Therefore, the objective of this work is
to develop a virtual fitting room (VFR) application that
can run on any mobile device that has a camera and
network connection. This VFR application can enhance
the way customers shop online and help them to choose
the correct type and size of the clothing item. The
proposed algorithm is designed to be computationally
efficient and it can be used with existing smartphone
devices, improving the way users shop online for new
clothes.

In the next section, we first discuss the existing
approaches for virtual fitting room applications. Section

III presents the detection and sizing of the user’s body. In
Section IV, we present a face detection method and
augmented reality markers for determining the reference
points. VFR software implementation details and the
user interface are shown in Section V. Finally in Section
VI, JAVA based Android application development is
presented.

2. Background
Several commercial products exist for VFR
implementation. Styku [3] presents a body scanner that
creates a complete 3D model of the user. This 3D model
is then used in other webpages to try the clothing items
on. The model can be rotated, it can match any size and
it even uses a color map to analyze the fit. The body
scanning is implemented using Microsoft’s Kinect and
Asus’ Xtion devices. A VFR implementation by JCPteen
[4] gets an image of the user and using adobe flash
player displays the clothing items. At the beginning, it
shows a shadow on the screen where users have to fit
themselves and after that the cloth is displayed. In this
system if the user is moving, the item won’t follow or
track him. Zugara [5] offers a VFR that is similar to the
JCPteens since the items don’t move once they are
displayed. It is based on the augmented reality concept.

Human Friendly Interface Design for Virtual Fitting Room Applications on Android based Mobile Devices

Copyright © 2012 SciRes. JSIP

2

The VFR doesn’t consider the proportions of the user,
only shows how it looks as a fixed template. Similarly,
Swivel [6] is labeled as a Try-On system that let users to
see how clothes and accessories look on them in
real-time. On the Ray-Ban [7] web page, there is a
Virtual Mirror where a user can see how the glasses fit
on him. If the user turns his head, the model fits the
glasses. User only needs to download a plugin and install
it. The program works based on augmented reality: At
the beginning the user has to match the face within a
shape and position the eyes in a line that it is shown so it
takes references of the head. After that it displays the
model of glasses that have been chosen. On the Google
Play there is one app for Android mobile devices,
Divalicious [8], called itself as a virtual dressing room
with more than 300 brands. It works by changing the
clothes of a default model. Finally, there is AR-Door [9]
which has also has a product based on Microsoft Kinect
[10]. With this system, the camera tracks the person’s
body and a 3D copy of clothing is superimposed on top
of the users’ image.

The key difference in our approach is the lack of any
proprietary hardware components or peripherals.
Proposed VFR is software based (Java) and designed to
be universally compatible as long as the device has a
camera. For the Android application, the minimum API
version supported is the 14. Additionally, proposed
algorithm can track and resize the clothing according to
user’s spatial position.

In order to create the Android app, we have developed a
human-friendly interface [11][12][13] which is defined as an
interactive computing system providing the user an easier way
to communicate with the machines In particular, this can be
achieved through touch-screen operations and gestures similar
to what people naturally feel with their five senses. Creating
intuitive interfaces with a few buttons that illustrate the basic
functionality to the user is paramount for the wider acceptance
of the virtual reality applications. This was one of the key
objectives of this study.

3. Detecting and Sizing the Body
First step of the proposed VFR method is the acquisition
of the shape of the body to get reference points.
Reference points are then used to determine where to
display the clothes. In order to obtain the body shape, we
applied several techniques: i) Filtering with thresholding,
Canny edge detection, K-means, and ii) Motion detection
or skeleton detection wherein multiple frames were
analyzed for any movement. However, the results were
unreliable and not good enough to obtain reference
points for displaying cloths.

Therefore, we introduced a new detection methodology
based on locating the face of the user, adjusting a
reference point at his/her neck and displaying the clothes
based on that point. In addition, another point of
reference can be obtained by using an Augmented
Reality (AR) marker. Details of this algorithm are
explained in Section IV.

For obtaining the size of the user, we follow a similar
automated body feature extraction technique as shown in
[14]. The idea is to set up the user in front of the camera
and hold him at the beginning at a certain predetermined
distance. The algorithm extracts points on the shoulders
and the belly. Measuring the distance between these
points and knowing the distance from the user to the
camera, the size of the user can be obtained. When the
image (video frame) is acquired, a Canny edge detection
filter is applied to obtain only the silhouette of the body.
Canny edge detection is really susceptible to noise that is
present in unprocessed data; therefore it uses a filter
where the raw image is convolved with a Gaussian filter.
After convolution, four filters are applied to detect
horizontal, vertical and diagonal edges in the processed
image. Morphological functions are also applied to
obtain a closed silhouette. Finally, an 8-points Freeman
chain code, shown in Figure 1 is applied to assign a
direction to each pixel.

Figure 1 - Freeman's codification

We can choose to apply 8 or 4 chain code, then the
following formula can be used:

)y +) + (delta *(deltax +z = 224 (1)
which gives the sequence corresponding to rows 1-8 in
the preceding table: z = {11,7,6,5,9,13,14,15}. These
values can be used as indices into the table, improving
the speed of computing the chain code. Each variation
between consecutive numbers represents a variation of
45º so if the difference of direction between consecutive
points is measured and if the change is more than two
(90º) then a feature point is detected and marked in the
image.

 (2)
This is the same than saying that the absolute difference
between two points is bigger than 2 as Eq. (2) states.

Human Friendly Interface Design for Virtual Fitting Room Applications on Android based Mobile Devices

Copyright © 2012 SciRes. JSIP

3

Finally the distance between them is measured in the
image and related to the distance from user to the camera
to obtain the size. Figure 2 shows an example of feature
points extraction and the red line that should be taken for
the measure.

Figure 2 - Feature points extraction

4. Reference Points and Cloth display
A reference point is required to determine where the user
is located. Using face detection, the neck (point of
reference) is easily detected and the cloths can be fitted
automatically for the user. On the other hand, by using
an AR marker (point of reference), a user will have more
freedom to choose how the cloths fit on her/him. Both
reference points can be obtained and displayed by using
the OpenCV (Open Source Computer Vision) library
[15]. OpenCV is a library of programming functions for
real time computer vision applications. This library
provides a comprehensive computer vision infrastructure
and thereby allows users to work at a higher abstraction
layer. Additionally, library functions are optimized for
fast and efficient processing.

4.1. Face Detection
In order to detect faces, we use the Haar-like features
[16][21] that are digital image features used in object
recognition. Other face detection approaches in the
literature include methods using OpenCV [17],
rectangular features [18] as well as improvements to
make the algorithms faster for hardware implementation
[19][20].

The Haar-like features are so called because they are
computed similar to the coefficients in Haar wavelet
transforms. A set of these features can be used to encode
the contrasts exhibited by a human face and their spatial
relationships. A Haar-like feature considers adjacent
rectangular regions at a specific location in a detection
window, sums up the pixel intensities in these regions

and calculates the difference between them. This
difference is then used to categorize subsections of an
image by comparing it to a learned threshold that
separates non-objects from objects. Since a Haar-like
feature is only a classifier, a large number of Haar-like
features are necessary to describe an object with
sufficient accuracy. The database to obtain a strong
learner for the object that we want to detect and where
the Haar-like features are organized is called classifier
cascade.

In the case of proposed VFR algorithm, the encoded
contrasts are the contrasts of the human face as well as
their spatial relationships. This classifier needs to be
trained with hundreds of samples of a particular object,
which will represent the positive examples. Negative
examples are also trained with samples that are not
considered as the object to detect. All the samples must
have the same size (for example 20x20). The classifier
must be easily resizable to be able to detect the object
with different size in the image. Therefore, the matching
procedure has to be executed on several scales.
OpenCV uses an xml file that contains all of the
characteristics to detect the face. This xml file is read by
the function “cvHaarDetectObjects” and it is compared
with a region of interest of the input image and the
classifier returns 1 if the object is detected, 0 otherwise.
If every simple classifier is positive, the cascade
classifier is positive, otherwise it is negative. In other
words, the face detection is made with a sum of these
detected samples in a predefined position. Once the face
is detected a rectangle is plotted around the face and the
location of a reference point is chosen based on the
supposition that the neck is placed at the middle of the
head, half of the rectangle’s height. Also it is taken that it
measures approximately a third of the head height, hence
a third of the rectangle height. Note that only one face
will be detected and it will be the one closest to the
camera.

4.2. Marker Detection
An augmented reality marker is used to display
(superimpose) the cloths over the users’ image. In order
to detect the marker and obtain a reference, an algorithm
with seven stages has been used.
• Divide image in regions: When the image is

received, it is divided into regions of 40x40 pixels
and there are horizontal and vertical scan lines
every 5pixels.

• Detect edges in regions: For each region, a
Gaussian derivative filter is used to detect the
black/white edges. The filter used is [-3 -5 0 5
3]*A. Once an edge is detected a Sobel operator is

Human Friendly Interface Design for Virtual Fitting Room Applications on Android based Mobile Devices

Copyright © 2012 SciRes. JSIP

4

used to determine the orientation of the edges. The
Sobel operator used is:

 (3)
In Figure 3 we can see the edges in blue if they are
vertical and green if they are horizontal.

Figure 3 - Detected edges after Sobel operator

• Find Segments: A Random Sample Consensus
grouper algorithm is then used to create the line
segments in the regions. This algorithm groups
series of points that can be fitted into lines. First, it
arbitrarily takes 2 points of the same region with
the same orientation, then the close points that have
a compatible orientation are added to the line
segment. Finally, lines containing at least 4
segments are considered as a detected line. This can
be observed in Figure 4.

Figure 4 - Detected lines

• Extend lines along edges: So far only pixels on scan
lines were scanned. Now, the lines are extended
pixel by pixel until a detected corner or until there
is no edges. The green lines displayed on Figure 5
represent the extension of the previous red lines
from one corner to another corner.

Figure 5 - Extended lines from one corner to another

• Keep lines with corner: The lines with at least one
corner are kept.

• Find markers: Chains of 3 or 4 lines are kept. A
chain of line is found when the end of one line
corresponds to the beginning of the second one.
The rectangles with a black inside are checked as
markers. The two markers on Figure 6 are now
detected. However, we want to detect only our
marker.

Figure 6 - Markers Detected

• Identify markers: The last step is to identify the
inside of the marker to check that it is our marker.
As we can see on the left picture, this step only
checks that the marker has a black center and is
white on the inside of the boundaries as we can see
in Figure 7.

Figure 7 - Points recognized to identify the marker.

• The result of all these steps combined is shown on
Figure 8. We can see that only our marker is
detected and we have the desired reference point.

Human Friendly Interface Design for Virtual Fitting Room Applications on Android based Mobile Devices

Copyright © 2012 SciRes. JSIP

5

Figure 8 - Result of marker detection

Keeping the marker in a position near the belt or even
using one with the AR marker allows obtaining the
reference point and can properly place clothes. This also
would be comfortable to the user because he will have
free hands.

4.3. Cloth Display
Cloth masks are needed to determine which pixels
should be displaying the clothes and which ones not.
Each cloth should have a mask; there is an example of a
mask in Figure 9. A stabilization method is used since
face detection provides a rectangle for identification that
moves quickly in position and size. As a consequence,
the mean of 5 previous images is shown.

Figure 9 - Cloth and its mask

4.4. VFR Application Flow Chart
Figure 10 shows the flowchart of the VFR functionality.
The algorithm includes several options to change
parameters with user input. By pressing 1 or 2, the
detection method is changed (1 for AR marker, 2 for face
detection). Choosing between S, M and L changes a
coefficient and it changes the size of the selected item.
By pressing a key between Z and N the user will be able
to try different items available in the fitting room. + and
– make the width of the cloth bigger or smaller. Finally,
with the arrow keys, incremental changes can be done
and the position of the item can be modified to make it
more accurate. Figure 11 shows a typical VFR
application example running on a laptop computer with
webcam.

5. VFR Implementation and Interface

For universal compatibility across different mobile
devices, we developed a Java Applet [22], which
presents an ideal solution to enable every customer to be
able to run the Virtual Fitting Room. Java provides easy
functions to create a graphical user interface to select
size, different cloths and adjust the position of the
clothes. On the other side, the OpenCV code needs to be
adapted from C++ to Java [25]. In order to be able to
execute the algorithm in Java, JavaCV is used which is a
java wrapper for OpenCV library [23][24]. JavaCV
includes the commonly used libraries by researchers in
the field of computer vision, such as OpenCV, FFmpeg,
libdc1394, PGR, FlyCapture, OpenKinect, videoInput,
and AR-ToolKitPlus. Hence, the same functions that had
been used in C++ can be now used in Java. JavaCV also
comes with hardware-accelerated displays, easy-to-use
methods to execute code in parallel on multiple cores,
user- friendly geometric and color calibration of cameras
and

Figure 10 - VFR Flowchart

projectors, and detection and matching of feature points.
The final look of the VFR java applet and the user
interface can be seen in Figure 12.

Human Friendly Interface Design for Virtual Fitting Room Applications on Android based Mobile Devices

Copyright © 2012 SciRes. JSIP

6

Figure 11 - VFR example

Figure 12 - VFR graphic interface

6. Android Based App Development
The Android app has been developed using Eclipse and
Java. Android SDK [26] used in combination with ADT
plugin in Eclipse present a flexible environment to built
and test any Android applications. This app is available
for any device with front camera but will work at full
with two cameras.

Once the Android VFR app is started, the user can
choose between different options. First he has to select
the size, between XSmall, by default, and XLarge. After
that he selects the clothing that he wants to try. The app
detects the face of the user and it displays the cloth using
as reference a rectangle that is drawn around the face of
the user (Green rectangle in Figure 13). The size of this
rectangle depends on the user’s face: if the user is close
to the camera the rectangle will be bigger, on the other
hand if he is farther it will be smaller. By using this
rectangle and references, the clothes that are going to
appear in the screen are scaled by the app.

The maximum distance that the user can reach with his
arm sometimes isn’t enough to obtain a clear view so
here the app offers two possibilities. One is leaving the
phone in a fixed position and make himself fit into the
screen and see how the clothes fit on him or use the
button to switch to the back camera and let someone else
hold the phone and take a picture of the user to be able to
check how the cloth looks in him.

The clothes that are displayed on the screen follow and
track the user similar to desktop computer
implementation shown in Section V. In order to calculate
the position where the image has to be displayed, the
measurements from the face rectangle and the image
width and height has been used. The image is displayed
setting the origin, reference point, at the top-left corner.
X coordinate is obtained by acquiring the X center of the
rectangle and subtracting half of the image’s width. Y
coordinate is obtained starting from the bottom point of
the rectangle and adding one third of the image’s height.
This is represented in Figure 13. The equations applied
are:

tYdex].offseclothes[in mRect.bottoposY

tXdex].offseclothes[in-/2imageWidth-rXRect.centeposX

+=

=

 (4)

Both equations have an offset in X and Y coordinates
since the images used may have different sizes.

As expected, the camera follows the user in real time. In
order to implement the face detection, the Android’s face
detection API is used, released in the Android 4.0 SDK,
which can detect the face in the previous frame and
specify facial features as the position of the eyes or the
mouth. To use this, a FaceDetectionListener has been
implemented and it returns an array containing all the
faces that have been detected with their characteristics.

A transformation has to be applied to the rectangle’s
coordinates that come from (-1000, -1000) top-left to
(1000,1000) bottom-right in order to be able to adjust it
to any android screen. Using the API has been chosen
over using JavaCV and the Haar-like classifier because
this one has been optimized for Android systems. To
adjust the clothes, it has been settled as ImageView and
displayed with addView() method from that class.

Human Friendly Interface Design for Virtual Fitting Room Applications on Android based Mobile Devices

Copyright © 2012 SciRes. JSIP

7

Figure 13 - Calculations for the position

The VFR app works using activities; these are single and
focused “actions” that the user can do. Each activity has
its own lifecycle and as soon as the app is started the
main activity comes to the foreground of the system. In
Figure 14, the complete lifecycle of an activity can be
seen. The visible lifetime of the app happens between
onStart() until a call to onStop(). The foreground
lifetime, interacting with the user, occurs between
onResume() and onPause(). It has to be noted that we
have to declare in the AndroidManifest all the hardware
that it is going to be used in our device as well as the
fundamental characteristics of our app. The user
interface has been created in a hierarchical way using
View and different Layouts provided.

In order to show the camera, a class CameraPreview
extending SurfaceView has been used to draw the camera
surface embedded inside a view hierarchy. This class
works as a secondary thread that can render into the
screen and also has an activity cycle as the Activity does.
In this case, it follows SurfaceCreated(),
SurfaceChanged() and SurfaceDestroyed() where
Created() and Destroyed() sets the visibility of the
window and Change() looks for any change on it.

In the main activity of the VFR, there are the listeners for
the user interface buttons as well as the method to adjust
the position of the clothes depending on the face
position. In Figure 15, the final view of the Android
VFR can be seen.

Figure 14 - Android Activity lifecycle

Figure 15 - Final view of Android VFR

Human Friendly Interface Design for Virtual Fitting Room Applications on Android based Mobile Devices

Copyright © 2012 SciRes. JSIP

8

Finally, the performance of the application has been
analyzed using the debugging tool called DDMS (Dalvik
Debug Monitor Server). When DDMS starts, it connects
to Android Debug Bridge (adb). When a device is
connected, a VM monitoring service is created between
adb and DDMS, which notifies DDMS when a VM
process is initiated or the changes that have been done
through an assigned port that usually is the 8600.

In order to measure the performance of the tool, the
method profiling has been started. This tool tracks
certain metrics about a method, such as number of calls,
execution time, and time spent executing the method.
Here two panels are obtained: the timeline panel that
describes when each thread and method started/stopped
and on the other hand the profile panel that provides a
summary of what happened inside a method. With the
profile panel comes a table that shows exclusive time,
that is the time spent in a method and the inclusive time
that is the time spent in the method plus the time spent in
any other called method (child).

Based on this profiling, face detection algorithm takes
only 0.1% exclusive time and 13.7% of inclusive time.
This is due to the fact that its child has to display the
cloths depending upon the position of the face. The
method for drawing (i.e., displaying) clothes shows an
exclusive time of 0.2% and 29.7% of inclusive time.
Therefore, it can be seen that the most expensive
processes, in terms of computation time, are the ones
related with image displaying.

7. Conclusion
In this work, a virtual fitting room application for mobile
devices was implemented successfully. The main
objective to obtain a real time, platform independent
application was achieved. Users are able to select sizes
from XS to XL and chose between different cameras on
the device to implement the VFR. In addition, the
algorithm can track and scale the clothing according to
user’s position and movement. By deploying it to the
Android Market or Apple Store, this application can be
used by retail companies for increasing their online
presence.

REFERENCES
[1] IBM Coremetrics Benchmark Reports, Available at:

http://www-01.ibm.com/software/marketing-solutions/be
nchmark-reports/index-2011.html. Accessed on Feb 10,
2012.

[2] IBM Press release, November 29, 2011. Available at:
http://www-03.ibm.com/press/us/en/pressrelease/36113.w

ss
[3] Skytu, http://www.styku.com/business/
[4] JCPteen,

http://www.seventeen.com/fashion/virtual-dressing- room
[5] Zugara, http://zugara.com/
[6] Swivel, http://www.facecake.com/swivel/index2.html.
[7] RayBan,

http://www.ray-ban.com/usa/science/virtual-mirror
[8] Divalicious, http://www.divaliciousapp.com
[9] Topshop,

http://ar-door.com/dopolnennaya-realnost/?lang=en
[10] Microsoft Kinect,

http://www.microsoft.com/en-us/kinectforwindows/
[11] M. Popa, “Hand gesture recognition based on

accelerometer sensors”, International Conference on
Networked Computing and Advanced Information
Management, pp. 115-120, June 2011.

[12] J. Liu, “A new Reading Interface Design for Senior
Citizens”, Instrumentation, Measurement, Computer,
Communication and Control, pp. 349-352, October 2011.

[13] N. Kubota, D. Koudu, and S. Kamijima,
“Human-Friendly Interface Based on Visual Attention for
Multiple Mobile Robots”, Automation Congress World,
pp. 1-6, July 2006.

[14] Y. Lin, Mao-Jiun and J. Wang, “Automated body feature
extraction from 2D images”, Expert Systems with
Applications, vol. 38, no. 3, pp. 2585-2591, 2011.

[15] Intel Inc., “Open Computer Vision Library”.
http://opencv.org/

[16] Haar-like feature:
http://opencv.willowgarage.com/wiki/FaceDetection

[17] M. Zuo, G. Zeng, and X. Tu, “Research and improvement
of face detection algorithm based on the OpenCV”,
International Conference on Information Science and
Engineering (ICISE), pp. 1413-1416, December 2010.

[18] D. Lee, “A face detection and recognition system based
on rectangular feature orientation”, International
conference on System Science and Engineering(ICSSE),
pp. 495-499, July 2010

[19] L. Acasandrei, and A. Barriga, “Accelerating Viola-Jones
face detection for embedded and SoC environments”,
2011 Fifth ACM/IEEE international conference
Distributed Smart Cameras (ICDSC), pp. 1-6, August
2011.

[20] S. Rigos, “A hardware acceleration unit for face
detection”, Mediterranean Conference on Embedded
Computing (MECO), pp. 17-21, June 2012.

[21] C. Chai, and Y. Wang, “Face detection based on extended
Haar-like features”, International Conference on
Mechanical and Electronics Engineering (ICMEE), pp.
442-445, August 2010.

[22] Java documentation:
http://download.oracle.com/javase/6/docs/api/

[23] S. Audet, “Java interface to OpenCV”, accessed July

Human Friendly Interface Design for Virtual Fitting Room Applications on Android based Mobile Devices

Copyright © 2012 SciRes. JSIP

9

2011. http://code.google.com/p/javacv/
[24] Java Wrapper: http://code.google.com/p/javacv/
[25] S. Audet, Hints for Converting OpenCV C/C++ code to

JavaCV
http://code.google.com/p/javacv/wiki/ConvertingOpenC
V

[26] Android developers
http://developer.android.com/develop/index.html

