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a b s t r a c t

The goal of this paper is to present architectures that provide the flexibility within a regular adder to

augment/decrement the sum of two numbers by a constant. This flexibility adds to the functionality of a

regular adder, achieving a comparable performance to conventional designs, thereby eliminating the

need of having a dedicated adder unit to perform similar tasks. This paper presents an adder design to

accomplish three-input addition if the third operand is a constant. This is accomplished by the

introduction of flag bits. Such designs are called Enhanced Flagged Binary Adders (EFBA). It also

examines the effect on the performance of the adder when the operand size is expanded from 16 bits to

32 and 64 bits. A detailed analysis has been provided to compare the performance of the new designs

with carry-save adders in terms of delay, area and power.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Multi-operand addition is a part of many complex arithmetic
algorithms, such as multiplication and certain DSP algorithms.
One of the popular multi-operand adders is the carry-save adder
[1] capable of adding more than two operands at a time.
The objective of this paper is to introduce the flexibility of
adding three-input operands to a regular adder, thereby eliminat-
ing the need of a special adder to do the same. This paper
investigates the use of parallel prefix adders, carry-skip and carry-
select adders [2] in order to achieve basic three-operand addition.
It also compares the performance of this technique with carry-
save addition (CSA) used as the benchmark for 16, 32 and 64-bit
operands.

In order to increment or decrement a sum of two numbers, A

and B by unity, parallel prefix adders can be easily modified to
generate a new set of intermediate outputs called flag bits, making
them Flagged Prefix Adders (FPA) [3]. These bits are used to invert
selected bits from the sum, A+B to generate the new result,
A+B+1 or A�B�1. In addition to prefix adders, hardware can be
incorporated within the carry-skip and carry-select adders to
accomplish the same leading to Flagged Binary Adders (FBA) [4].
The same concept can be used to generate appropriate flag bits, to
augment or decrement the sum of two numbers by an arbitrary
ll rights reserved.

ece.iit.edu (E. Oruklu),
operand, M. Enhanced Flagged Binary Adders (EFBA) [5] are
designed and implemented with the assumption that M is a
constant.

The advantage of using the proposed technique is that it
introduces extra functionality to a regular adder, making it more
flexible and convenient to use in applications such as image
processing, DSP operations, decimal arithmetic, modulo arith-
metic, and floating point multiplication. This paper starts with the
design and implementation of flagged binary adders, followed by
the design and implementation of enhanced flagged binary
adders. Circuits have been developed for three different operand
sizes, 16, 32, and 64 bits. A comparison has also been made
between EFBA designs and carry-save adders since the latter is
conventionally used for multi-operand addition.

Section 2 provides an overview of the different adder
architectures that have been utilized to investigate the perfor-
mance of the new technique. Section 3 has been dedicated to
the derivation of the logic in order to compute flag bits correctly.
Section 4 discusses the hardware implementation for the FBA,
and EFBA architectures. Section 5 presents a theoretical analysis
in order to understand what to expect after simulation. A gate
count analysis has been provided to estimate the effect on
area due to the extra hardware. The method of logical effort
has been applied for delay estimations. Section 6 lists a range
of applications for which constant addition is a necessity,
and the utilization of EFBA designs could be a more efficient
option over CSA. Section 7 investigates the performance of
each adder design for three different wordlengths in terms
of area, delay, and power based on results obtained from
synthesis and simulation. The conclusion has been provided in
Section 8.
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2. Background

The delay of an adder circuit often determines the clock cycle
time of a processor, especially if it falls in the critical path of the
design [24]. One of the primary causes, for the delay of an adder is
the rippling nature of the carry. The key to fast addition is to
compute carry bits for every bit position in parallel. The
recurrence relationship presented in (1) achieves this conveni-
ently by introducing the generate or g signal given by gi ¼ aibi and
the propagate or p signal given by pi ¼ ai4bi, where i represents
the bit position [1]. Ci+ 1 is the input carry for position i. In this
paper ‘‘4’’ refers to a logical OR operation to avoid confusion with
addition.

ciþ1 ¼ gi4pi ci ð1Þ

The parallel prefix adders compute the carries in parallel
efficiently by representing addition as a prefix computation [7].
Carry-skip and carry-select adders also employ similar techni-
ques to reduce the computation times for the carries [8].
The following subsections briefly discuss each of these architec-
tures.
2.1. Prefix adders

The parallel prefix adder (PPA) accomplishes the compu-
tation of the output carries in parallel by expressing binary
carry-propagate addition as a prefix computation. Parallel prefix
logic combines n inputs using an arbitrary associative dot
operator,J to get n outputs so that the outputs depend only
on the input operands. The J operator is shown in (2) where
(g1, p1) and (g2, p2) are the inputs and, (G, P) are the outputs [11].
Upper case letters are used to denote outputs when the
computation is performed on a range of bits over multiple
positions.

G¼ g14g2p1

P¼ p1p2
ð2Þ

The parallel prefix adder computes the sum in three stages
which comprise of the pre-processing, prefix computation and
post-processing stages as shown in Fig. 1. The prefix trees selected
Fig. 1. Block diagram of a prefix adder.
for this paper are the Brent–Kung [9], Ladner–Fischer [7], and the
Kogge-Stone [10] structures.
2.2. Carry-skip adders

A carry-skip adder uses the concept of generating the group
propagate signal in order to determine if the carry out of a set of
bits is identical to the carry in [11]. The carry-skip adder uses a
regular full adder for every bit position which also generates the
bit propagate signal, p. The adder structure is divided into blocks
of consecutive stages with the full adder scheme modified to
output the bit propagate signal. Every block generates a group
propagate signal represented as Pi:k. This signal determines,
whether the carry out, c0iþ1 of the block is propagated to the next
block, or if it is skipped and instead, the input carry, ck is directly
selected as the carry out, ciþ1. This is expressed according to (3):

ciþ1 ¼ Pi:k c0iþ14Pi:kck ð3Þ

2.3. Carry-select adders

The underlying strategy of the carry-select adder is to generate
two results in parallel [12,21]. One result assumes the input carry
to be a zero and the other assumes the input carry of one. The
carry-select adder is divided into blocks of m-bit vectors. Each
block generates two outputs according to the equations presented
in (4).

ðc0
m,S0Þ ¼ ADDðA,B,c0 ¼ 0Þ

ðc1
m,S1Þ ¼ ADDðA,B,c0 ¼ 1Þ

ð4Þ

Here, A, B and S are m-bit vectors. Once the input carry for a
particular stage has been computed and assigned, the final result
is selected from the two pre-computed sets.
2.4. Carry-save adders

When adding three numbers, the result can be represented
redundantly as two numbers [1]. One number consists of all the
sum bits and the other number is comprised of all the carry bits.
The carry propagation is saved for a later stage within the design.
Observe in Fig. 2, three bits in each column are operated upon
with (3,2) counters, generating the sum (S) and the carry (C) bits
as two separate outputs. The carry-save adders can be utilized as
efficient multi-operand adder circuits. They tend to be very fast
due to the absence of carry propagation until the last stage. An
added advantage is their simple structure. However, the potential
for further improvement is minimal [20].

Having discussed each adder, the following section discusses
the technique and hardware required to compute a new set of
intermediate outputs called flag bits, which eventually contri-
butes to three-input addition.
A
B
M

S
C

R

Fig. 2. 8-bit carry-save adder.
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Table 1
Flag bit logic using carry bits from the CPA.

Mk Mk�1 Fk,

0 0 Sk�1dk�1

0 1 Sk�1þdk�1

1 0 Sk�1 þdk�1

1 1 Sk�1 dk�1
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3. Flag bit computation

A variety of applications require certain arithmetic operations
such as incrementing the sum of two numbers by unity, finding
the absolute difference between two numbers, or augmenting the
sum of two numbers by a constant. One approach to perform
these operations is to utilize dual adders or use multi-operand
adders such as the carry-save adders. This paper presents area-
efficient hardware modifications whereby, only one kind of
regular adder is made capable of performing the above mentioned
operations by introducing a new set of bits, called the flag bits.
This set of intermediate outputs flag the inversion of the sum bits
(the result from the addition of two numbers) to generate
appropriate results. In other words, when the sum bits are XORed
with the flag bits, the output is another function result. The
technique first proposed, resulted in a new set of architectures
called the flagged prefix adders [3]. This paper generalizes the
technique to other binary adders and also derives the Boolean
expressions to generate flag bits for constant addition. The next
subsections describe these concepts in detail.

3.1. Increment and decrement sum by unity

Basic increment and decrement operations can be performed
by introducing flag bits, fi that are related to the group propagate,
Pi�1:0 signals according to [3,18]:

fi ¼ Pi�1:0 ð5Þ

For parallel prefix adders, the required signals to compute flag
bits can be easily generated at the output of the prefix tree which
is the second stage of the adder. For the carry-skip adder, these
signals are generated within the adder itself as can be seen in (3).
However, the carry-select adder does not generate the group
propagate signals and hence, it is infeasible to introduce the extra
flexibility to this family of adders [13]. A simple 8-bit example is
as follows. The final result (A+B+1) is obtained by XORing the
sum, S and flag bits, F.
A
 0
 0
 0
 0
 1
 0
 0
 1

B
 0
 1
 0
 0
 1
 1
 1
 0

S¼A+B
 0
 1
 0
 1
 0
 1
 1
 1

F
 0
 0
 0
 0
 1
 1
 1
 1

R¼A+B+1
 0
 1
 0
 1
 1
 0
 0
 0
3.2. Increment and decrement the sum by a constant, M

The computation of flag bits for three-input flagged binary
adders is slightly more complicated than that for the basic version
[14]. The flag bits as proven in this section are related to the third
operand and the carry outputs at every bit position. The
traditional logic equations for a full adder (FA) are [25]:

Sk ¼ Ak � Bk � ck

ckþ1 ¼ AkBk4Akck4Bkck
ð6Þ

Here, the adder takes in two input operands A and B, producing
a result, S and a carry out ck + 1 at every bit position k. Introducing
the third operand, M, which is the value by which the result S,

needs to be augmented or decremented, (6) can be rewritten as:

Rk ¼ Sk �Mk � dk

dkþ1 ¼ SkMk4Skdk4Mkdk
ð7Þ

Here R represents the final sum of A+B+M, and dk + 1 represents
the corresponding carry-output at every bit position k. Utilizing
the new set of equations, the new sum needs to be computed such
that, S+M¼S� F, where F is the flag function. The flag bits can be
seen as bits that indicate whether the current value is flagged to
change. Consequently, the flag bits can be computed based on
speculative elements of the constant.

dkþ1 ¼
Skdk Mk ¼ 0

Sk4dk Mk ¼ 1
Fk ¼

dk Mk ¼ 0

dk Mk ¼ 1

((
ð8Þ

Two bits from the third operand can be examined to determine
whether or not the carry-bit affects the flag bit in the current
position. For example, assume that Mk¼0 and Mk�1¼1 utilize the
relationship in (8) to achieve (9).

dkþ1 ¼ SkdkMk ¼ 0

dk ¼ Sk�14dk�1 Mk�1 ¼ 1
ð9Þ

The computation of the flag bits, therefore relies on the carry
bits that are generated after adding three operands, A, B, and M.

(8) and (9) can be utilized to derive Table 1. In order for the
equations to be computed properly, some initial conditions need
to be assumed and are given in (10).

S�1 ¼M�1 ¼ 0

F0 ¼M0
ð10Þ

The following example can further clarify this operation.
Having derived the logic required to compute flag bits for
different operations, the next section describes the hardware
implementation.
A¼9
 0
 0
 0
 0
 1
 0
 0
 1

B¼78
 0
 1
 0
 0
 1
 1
 1
 0

S
 0
 1
 0
 1
 0
 1
 1
 1

M¼57
 0
 0
 1
 1
 1
 0
 0
 1

F
 1
 1
 0
 0
 0
 1
 1
 1

R¼S+57
 1
 0
 0
 1
 0
 0
 0
 0
4. Implementation

This section starts with the description of flagged binary
adders. Parallel prefix adders and the carry-skip adder are
incorporated with extra hardware in order to obtain useful
results such as A+B+1 and A�B�1. This is followed by a
discussion of changes that need to be made in order to enable a
binary adder to add three operands, with the limitation that the
third operand is a constant (EFBA).

4.1. Flagged binary adders

This section describes the implementation of parallel prefix
and carry-skip adders incorporated with the technique of flag bit
generation. According to (5), the flag bits are directly computed
from the group propagate signals. This is accomplished within the
parallel prefix adders by modifying the prefix tree to output the
flag bits in addition to the carry outputs. The block diagram in
Fig. 1 is therefore modified to Fig. 3 as shown below.

The flag bits at the output of the prefix carry tree can be easily
obtained by changing all the gray cells to black cells [4]. This
change is feasible due to the very simple relationship between the
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An-1:0 Bn-1:0

Pre-Preprocessing

Modified Prefix 
Carry Tree

Flagged Inversion Cells

gn-1:0 pn-1:0

cn-1:0

Rn-1:0

incr

cmp

fn-1:0

Fig. 3. Modified PPA block diagram.

Si+1

incr

cmp

fi+1 fi1 0

RiRi+1

ci+1 ci

1 0

Si

Fig. 4. Flagged inversion cells.

Table 2
Results obtained from flagged binary adders.

incr cmp Result(Add) Result(Sub)

0 0 A+B A�B�1

0 1 A+B+1 A�B

1 0 �(A+B+2) B�A

1 1 �(A+B+1) (B�A�1)
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flag bits and the group propagate signals in (5). The prefix tree is
designed to provide the necessary group generate signals to
compute the carry bits and by including these cells in the last
stage of the tree, the group propagate signals are also readily
available. Notice the inclusion of a new block called Flagged
Inversion Cells (FIC) [3]. The FIC is the extra hardware required in
the final stage of the adder to compute the final output. A detailed
view of the FIC is shown in Fig. 4.

The signals, incr and cmp are used to select the appropriate
result from all the different possible results as listed in Table 2.
The minimal amount of additional hardware therefore comprises
of two levels of XOR gates and a multiplexer, thereby affecting the
critical path minimally. The same can be accomplished using the
carry-skip adders. The carry-skip adder can conveniently
incorporate the computation of flag bits since, it generates the
bit propagate signals for every bit position.

Therefore the computation of the flag bit for position i will
require an AND gate according to the following equation:

Pi�1:0 ¼ ANDk ¼ i�1
k ¼ 0 pk ð11Þ

The block diagram of the carry-skip adder is shown in Fig. 5.
Minimal modifications need to be made in order to accomplish
the same results. The idea of flag bit generation is utilized in the
following subsections to obtain constant addition.
4.2. Enhanced flagged binary adders

Enhanced flagged binary adders (EFBA) incorporate extra
hardware allowing the third operand to be an arbitrary constant
[4]. This implies that it is a requirement to know what the third
operand is going to be ahead of time before hardware modifica-
tions can be made to any adder design. The underlying technique
is to generate flag bits with the computation of flag bits getting
more complicated due to the dependence of the bits on the third
operand. Computation of flag bits for this new adder design also
depends on the carry outputs, readily computed according to (9).

Following the same example of 9+78+57, where (57)10¼

(00111001)2 is the constant, M, Fig. 6 shows the necessary gates
required to compute the carry outputs, dk. This figure is a direct
implementation of (9).

The carry signal will ripple through only one gate for every bit
position. Once the carry bits are obtained, the flag bits can be
computed in parallel according to Table 1 after a delay of one gate
level. Fig. 7 shows the logic gates required to compute the flag
bits.

Notice that F1¼d1, F2¼d2, F6¼d6, and F7¼d7. This implies that
the gates used to compute flag bits in these bit positions can be
eliminated in order to optimize the hardware. Similar optimiza-
tions can be applied for other constants. The flag bits, F will be
XORed with the sum bits, S, to get the final result, R. It is
important to note that the critical delay of the circuit will not
change if the constant is changed assuming that a 2-input AND
and a 2-input OR gate have equal delay. However, the types and
order of the 2-input gates utilized to compute dk will change. This
design provides two separate useful results with minor modifica-
tions and minimal impact on the critical delay. Flag logic can be
incorporated in parallel prefix, carry-skip, and carry-select adders
in a straightforward fashion. This family of adders was modified
to incorporate the flag logic shown in Fig. 7 for 16, 32, and 64-bit
operand sizes. The value of the constant chosen is equal to 57.

Typical applications requiring constant addition include
rounding algorithms and decimal arithmetic. Another useful
application for such an adder would be within a floating point
multiplier. This adder design can be also be used if reconfigurable
hardware is being utilized thereby making the change of
hardware easy.
5. Gate count and delay analysis

A theoretical analysis has been provided in this section to
estimate area and delay numbers for the proposed architectures.
The first subsection provides an approximate gate count for every
adder design to estimate area. This is followed by an analysis
based on the method of logical effort to estimate the delay along
the critical path of the circuits.

5.1. Gate count

In order to understand the tradeoffs between the extra
hardware and the added flexibility incorporated within the adder,
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A3:0 B3:0A7:4 B7:4A11:

8

B11:8A15:12 B15:12

S3:0

Flagged Inversion Cells

4 444 4

4-bit
CSK

4 4

c0c4c8c12cout

S15:12 S11:8 S7:4

4-bit
CSK

4-bit
CSK

4

4-bit
CSK

P3:0P7:4P11:8P15:12

incr

cmp

R

4 4 4 4

Fig. 5. Flagged carry-skip adder.

S0 d0

d1

d1 S1

d2

d2 S2 d3 S3 d4 S4 d5 S5 d6 S6 d7 S7

d3 d4 d5 d6 d7 d8

d0 = 0

Fig. 6. Carry computation for constant addition.

S0 d0

F1

S1 d1

F2

S2 d2

F3

S3 d3

F4

S4 d4

F5

S5 d5

F6F7

d6S6

F0 = M0 = 1

Fig. 7. Flag bit computation for constant addition.
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an area analysis in terms of gate count has been provided. This
analysis gives an idea of the impact that can be expected on the
area of a regular adder. The XOR, AND, OR, and INVERTER are all
considered as single gates for the presented analysis. The
multiplexer is considered as a separate complex gate entity.

For the normal prefix adder, consider, n as the wordlength and
k as the multiplying factor of the prefix adder architecture used. k

is a factor that determines the number of prefix cells for a given
architecture. The gate count (gc) used in an n-bit parallel prefix
adder (gcpp) can be summarized as in (12) [5]:

gcpp ¼ nðp and g cellsÞþkðblack prefix cellsÞ

þðn�1Þðgray prefix cellsÞþnðXORÞ ð12Þ

The p and g cells are utilized to calculate the bit propagate and
the bit generate signals in the pre-processing stage and therefore
contribute to a total of 2n AND/OR gates. The black and the gray
prefix cells are a part of the prefix tree, each comprising of 3 and 2
AND/OR gates, respectively. The post-processing stage consists of
a group of XOR gates to calculate the final sum. For a Brent–Kung
adder, k¼n [3], for the Ladner–Fischer prefix adder, k¼n/2 log2n/4

[3], and for the Kogge-Stone architecture, it has been proved that
k¼n log2n/4 [3].

The gate count will increase for a flagged prefix adder (gcfpp)
capable of performing basic increment decrement operations and
hence (12) is modified to give (13),

gcfpp ¼ nðp and g cellsÞþkðblack prefix cellsÞ

þðn�1Þðblack prefix cellsÞþnðMUXÞþ3nðXORÞ ð13Þ
The multiplexers are a part of the flag inversion cell logic as
seen in Fig. 4. The number of XOR gates increases from n to 3n due
to their presence in the flag inversion cells as well. Following the
same concept, the gate count for prefix adders capable of constant
addition (gcepa) is given in (14):

gcepa ¼ nðp and g cellsÞþkðblack prefix cellsÞ

þðn�1Þðgray prefix cellsÞþ2nðAND=ORÞþ2nðXORÞ ð14Þ

No modifications are made to the prefix tree in this case and
therefore, the prefix cells stay the same as in the original prefix
adder. However, the stages following the prefix tree comprise of
the cells that compute the new set of carry-signals and the flag bits.
2-input AND/OR gates are utilized in every bit position to compute
dk. The same holds true for the flag bits according to Table 1. In
addition to the n XOR gates required to compute the sum of two
input operands, an additional set of n XOR gates are required to
compute the final result, i.e., the sum of three-input operands.

In order to get optimum performance from a carry-skip adder,
it is recommended to divide the operand into groups of varying
lengths [11]. Example, it is advantageous to implement a 16-bit
carry-skip adder with 4 blocks. However instead of dividing the
16-bit operand into 4 blocks of 4 bits each, the blocks are 3, 5, 5,
and 3 bits long starting from the least significant block. For a
carry-skip adder, it is infeasible to express the gate count as an
equation since it depends on the number of groups that the adder
is divided into and the size of each group [11]. In this paper, the
following group sizes have been utilized.
Wordlength
 Group Size
16
 3-5-5-3

32
 3-5-8-8-5-3

64
 2-4-5-6-7-8-8-7-6-5-4-2
Consider mi as the group size which implies that each group
comprises of mi full adder (FA) modules. Each FA in turn consists
of 2 XOR gates, 2 AND gates and 1 OR gate, a total of 5 basic gates.
Also, each group includes AND gates in order to compute the
group propagate output. Each carry-skip module needs a multi-
plexer to select the output carry based on the group propagate
signal according to (3) and therefore each adder will consist of the
same number of multiplexers as there are groups. It is also
important to realize that when the group size exceeds 4 bits, it is
necessary to compute the group propagate utilizing multi-level
AND gates, in order to ensure, that the fan-in of any of the gates
does not exceed four. For a flagged carry-skip adder, an additional
set of AND gates are a part of the carry-skip module to enable the
correct computation of flag bits according to (5). On the other



ARTICLE IN PRESS

Table 3
Gate count for all adder implementation.

Adder designs

16 bits 32 bits 64 bits

Gate count Mux count Gate count Mux count Gate count Mux count

Brent–Kung 123 0 254 0 510 0

Ladner–Fischer 129 0 305 0 705 0

Kogge-stone 179 0 449 0 1089 0

Carry-skip 86 3 170 5 329 10

Carry-select 160 3 320 7 640 15

Flagged BK 141 16 285 32 573 64

Flagged LF 144 16 336 32 768 64

Flagged KS 192 16 480 32 1152 64

Flagged CSK 148 19 298 37 583 74

Enhanced BK 169 0 348 0 700 0

Enhanced LF 175 0 499 0 895 0

Enhanced KS 225 0 543 0 1279 0

Enhnaced CSK 164 3 264 5 519 10

Enhanced COS 206 3 414 7 830 15

Table 4
LE and PD for prefix adders.

Cell Term Values

Bitwise cell LEbit 9/3

PDbit 6/3

Black cell LEblackgu 4.5/3

LEblackgl 6/3

LEblackpl 10.5/3

LEblackg 4.5/3

PDblackg 7.5/3

PDblackp 6/3

Gray cell LEgraygu 4.5/3

LEgraygl 6/3

LEgraypu 6/3

PDgray 7.5/3

Buffer LEbuf 9/3

Sum XOR LExor 9/3

PDxor 9/3+12/3

Table 5
FO4 delay estimates for parallel prefix adders.

Adder design Logical effort

16 bits 32 bits 64 bits

Brent–Kung 9.4 11.4 15.4

Ladner–Fischer 9 11 14

Kogge-Stone 7.6 9 11.8
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hand, for an enhanced flagged carry-skip adder, the gate count is
only increased by 2n AND/OR gates to compute carry and flag bits.

Similar to the carry-skip adder, the carry-select adder is also
divided into groups. Assume, the n-bit adder is divided into
groups of size, m bits. Each group consists of an m-bit conditional
adder and (n/m)�1 MUXs. The conditional adder module in turn
consists of two m-bit FAs, thereby leading to a total of 10 m gates
in each module [10]. The total number of gates therefore equals

gcCOS ¼ ð10mÞðn=mÞðAND=ORÞþðn=mÞ�1ðMUXÞ ð15Þ

Once the adder is modified to incorporate the flag logic to
allow constant addition, the gate count is modified to:

gceCOS ¼ ð10mÞðn=mÞðAND=ORÞþðn=mÞ�1ðMUXÞþ2nðAND=ORÞþnðXORÞ

ð16Þ

Table 3 summarizes the gate count for each adder design.
These designs comprise of the conventional, flagged, and
enhanced versions for three different operand sizes.

5.2. Delay analysis with logical effort

Logical Effort (LE) is a method described in Ref. [6] to calculate
the critical delay of a circuit based on fan-out and gate size. This
section applies the method of logical effort to conventional prefix
adders, Enhanced Flagged Prefix Adders (EFPA), and the carry-
save adder. The focus is on prefix architectures, because they are
expected to give minimum delay. The carry-save adder is utilized
as a benchmark for the three-input designs since it is the most
widely used design for multi-operand addition.

The delay along the critical path, also called the path delay is
composed of two components, logical effort (LE) and parasitic delay

(PD) [15]. LE is used to estimate the load at the output of a cell and
PD is the delay of the cell itself. The path delay is obtained by
summing the LE and PD of all the cells that fall on the critical path
of the circuit [15].

In order to simplify the analysis, the prefix circuits have been
broken down into various cells as shown in Table 4. The function
of each cell has been well described in Ref. [15]. For conventional
parallel prefix adders with no extra hardware, the FO4 delay
based on the method of logical effort has been computed in Ref.
[15] and is presented in Table 5. Delays have been presented for
16, 32, and 64-bit operand sizes.

The critical path will change once the extra hardware is
incorporated within the design to enable constant addition. For
convenience, the critical path is marked in Fig. 8. The path ends at
F7 since, once all the flag bits, F0 – F7 are computed, the sum can
be easily obtained from the flag bits. Fig. 8 specifically applies to
the example used in the paper where the constant is 57. It is
important to recall that although the gates in the circuit will
change based on the constant, the critical path and therefore, the
critical delay will remain the same. This can be emphasized
looking at Table 1 and Fig. 7. Table 1 suggests that flag bits for all
bit positions can be computed using 2-input AND or OR gates with
complemented or uncomplemented inputs. Fig. 7 corresponds to
M¼(57)10. If the constant changes to (49)10¼(00110001)2, then
the order of the logic gates required to compute the flag bits
would change to OR, AND, AND, OR, AND, OR, and AND gates
starting from the least significant position. Therefore, it is just the
order of the gates that changes, not the critical delay. Note that it
is assumed that a 2-input OR gate and a 2-input AND gate will
have the same LE and PD values.

According to Fig. 8, the LE and PD will increase as given in (17)
and (18). LEOR2 and LEXOR2 represent the LE values for a 2-input
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Table 6
FO4 delay estimates for EFPA.

Adder design Logical effort

16 bits 32 bits 64 bits

Brent–Kung 55.4 99.06 188.4

Ladner–Fischer 55 98.66 188

Kogge-Stone 53.6 96.67 185.8

CSA 57.38 99.76 195.6

S0 d0

d1

d1 S1

d2

d2 S2 d3 S3 d4 S4 d5 S5

d3 d4 d5 d6

S6 d6

F7

S5 d5

F6F5

S3 d3

F4

S2 d2

F3

S1 d1

F2F1

d0S0 S4 d4

Critical path

Fig. 8. Flag logic for constant addition.
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OR gate and a 2-input XOR gate (to compute the final result).
These values are 5/3 and 4, respectively [6]. The PD values are 2
and 4 for the two gates [6]. Table 6 provides a delay estimate for
EFPA based on logical effort.

LEEFPA ¼ ðn�2ÞLEOR2þLEOR2þLEXOR2 ð17Þ

PDEFPA ¼ ðn�2ÞPDOR2þPDOR2þPDXOR2 ð18Þ

In order to compare the performance of the new adder designs
with a traditional multi-operand adder, the delay calculations
based on logical effort have also been done for a CSA [15]. The LE
and PD for a CSA has been represented in (19) and (20).

LECSA ¼ LEXORþLEAND2þLEXORþLEAND2

þLEOR2þLEXORþLEAND2þLEPPA ð19Þ

PDCSA ¼ PDXORþPDAND2þPDOR2þPDXORþPDPPA ð20Þ

Here LEPPA represents the LE of a parallel prefix adder whose
operand size is n. The CSA has been implemented to utilize a
Brent–Kung adder in the final stage. Certain assumptions such as,
all inputs arrive at the same time with equal drive, and uniform
gate size simplify the computations. The logical effort analysis
highlights the difference in delay, and the synthesis results
confirm the calculations. In the following section, a few example
case studies have been presented for the proposed constant adder
implementations.
6. Applications

Constant addition with flagged prefix adders can be applied to
wide variety of computer arithmetic implementations including
floating point operations, decimal arithmetic and image processing.
6.1. Floating point arithmetic

A floating number is represented as

F ¼ ð�1ÞSMbE
ð21Þ

where S is the sign bit, M is the unsigned fraction (significand), b
is the base of the exponent and E is the exponent. Most common
floating point representations use a biased exponent [22] as
expressed in (22):

E¼ Etrueþbias ð22Þ

where bias is a constant and Etrue is the true value of the exponent
represented in two’s complement.

Given two floating numbers: F1 ¼ ð�1ÞS1 M1b
E1�bias and F2 ¼

ð�1ÞS2UM2bE2�bias, the result of multiplication is given in (23)

F3 ¼ F1 � F2 ¼ ð�1ÞS3 M3b
E3�bias

ð23Þ

New exponent E3 will require addition of two exponents
E1 ¼ Etrue

1 þbias and E2 ¼ Etrue
2 þbias. However, bias should be

subtracted once to obtain the correct exponent (24)

E3 ¼ E1þE2�bias ð24Þ

Similarly, for floating point division, the bias value should be
added to the difference E1�E2:

E3 ¼ E1�E2þbias ð25Þ

It is important to note that bias value is fixed (constant) for the
floating point standard. Therefore, in both cases, two operand
additions (or subtractions) and a constant addition are required.
This proves that floating point multiplication and division can be
implemented optimally using EFBA described in Section 4.2.

6.2. Image addition with contrast enhancement

Adding a constant offset to all pixels in an image is a very
common, fundamental operation to brighten or darken images.
With the proposed flagged constant addition hardware, addition
of two images (for superimposed images) I1 and I2 with a constant
C can be performed simultaneously in a single pass. This operation
can be defined as:

I3ði,jÞ ¼ I1ði,jÞþ I2ði,jÞ7C ð26Þ

6.3. BCD addition

A simple application of the proposed adder would be for BCD
addition/subtraction. For BCD operations, when the intermediate
digit sum needs correction because it is greater than 9, a
correction vector 6 is added to the sum. The correction vector
never changes and is a constant. Many processors such as those
from Intel support this operation as a special instruction, Decimal

Adjust Accumulator (DAA). This instruction can be implemented in
hardware as two operand addition + constant addition as realized
by EFBA.

6.4. Signed-digit decimal addition

A signed-digit two-operand decimal adder with the benefit of
carry-free addition is presented in Ref. [23]. To add two signed-
digit decimals, xi and yi, three quantities must be found: the
intermediate sum ui, the carry ci and the correction ui�10 ci. The
operations to obtain these quantities are expressed in (27)–(29).

ui ¼ xiþyi ð27Þ

si ¼ ui�10�ciþci�1 ð28Þ
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ci ¼

�1 if ui o�8

1 if ui i47

0 otherwise

8><
>: ð29Þ

After ui and ci are computed, the correction vector must be
found and added. The correction vector corresponds to �10 ci.

However, since the incoming carry from the previous digit, ci�1,
must eventually be added to ui, it is convenient to think of the
correction vector as �10ci+ci�1. There are 8 possible values (71,
79, 710, 711) for the correction vector. The decimal adder
described in Ref. [23] is designed to be able to apply any of these
correction vectors based on the carry-input using the technique of
constant addition with flag bits. Therefore, the proposed EFBA
designs can be part of the signed-digit decimal adder hardware as
described above.
7. Simulation results

The binary adders described in the previous sections are
implemented and modified to be able to perform increment and
decrement operations. The adders are also modified to incorpo-
rate the flag logic according to Fig. 8 enhancing the functionality
of flagged adders to perform constant addition. Each adder was
designed for 16, 32 and 64-bit operand sizes. An analysis was
performed on all adders with regards to area, delay, and power.
The designs are implemented in the TSMC 0.18 mm technology
System-on-Chip design flow to investigate the power, area, and
delay tradeoffs. Synthesis is performed with Cadence Build Gates
and Encounter [16]. The nominal operating voltage is 1.8 V and
simulation is performed at T¼25 1C. Layouts are generated for
each adder design and parasitically extracted to obtain numbers
for area, delay and power.

7.1. Conventional adder architectures

The results for regular adders, without any modifications are
tabulated as shown in Table 7 for 16, 32 and 64-bit designs.

The Ladner–Fischer prefix tree aims at reducing the depth of
the tree in order to compute the carry-signals. The complexity
measure for this case is the gate count and speed. However it does
not perform well in terms of the capacitive fan out load. Contrary
to this is the Brent–Kung design that addresses the fan-out
restrictions, but the logical depth of the tree is increased.
Therefore, the Brent–Kung tree has a more regular structure,
which is easy to implement in terms of chip design and wiring
density. Another approach is the Kogge-Stone design that limits
the lateral logic fan-out to unity at each node, but increases the
number of lateral wires at each level. This accounts for the fact
that the Kogge-stone adder has the highest value for the multi-
plying factor k among the three prefix designs selected. Maximum
increase in area is observed with the Kogge-Stone adders with
increase in operand size. However, it should also be noted that the
Kogge-Stone adder has the best performance in terms of speed.
Table 7
Simulation results for conventional adder designs.

Adders/parameters 16 bits 32 bits

Area (mm2) Delay (ps) Power (mW) Area (mm2)

Brent–Kung 0.276 815 5.63E�04 0.8551
Ladner–Fischer 0.276 780 5.81E�04 0.8583
Kogge-Stone 0.496 682 7.78E�04 1.6146
Carry-skip 0.259 900 4.27E�04 0.6914
Carry-select 0.327 684 6.04E�04 1.3367
The objective of the carry-skip adder is to reduce the worst-
case delay by reducing the number of FA modules through which
the carry has to propagate [17]. Therefore, the adder consists of
small groups of ripple carry adders modified to include the skip
network. This leads to attractive regular structures, but unlike the
prefix adders, the carry-signals are not generated in parallel,
leading to a less attractive performance in terms of speed. The
carry-select adder consists of a pair of carry-propagate adders for
each group, leading to significant area consumption.

7.2. Flagged binary adder architectures

The regular adder architectures are modified to perform
operations presented in Section 4. Area, delay and power
estimates are also obtained for these designs. A comparison has
also been made between conventional designs and the flagged
architectures to study the impact of the additional hardware on
the critical path delay and area consumption.

For the prefix adders, the gray cells are converted to black
prefix cells, increasing the gate count by unity for each cell.
Also, the inclusion of the flagged inversion cells will account
for the rise in area consumption. As the bit count increases,
the number of prefix cells within the prefix tree also increases.
For a carry-skip adder, the increase in area can be attributed to
the fact that the maximum fan-in has been limited to 4. As the
number of bits increases, the number of AND gates required
in order to obtain all the necessary Group Propagate signals also
increases.

The delay of the flagged prefix adders increases almost linearly
with the increase in operand size. For, a carry-skip adder, this
does not hold true. Again, the multi-level AND gate inclusion
accounts for a higher increase in delay compared to the prefix tree
architectures. The carry-select adder has not been incorporated
with the flag logic since it proves to be an inefficient design.
Table 8 summarizes area, delay and power measurements for the
flagged binary adders for 3 different operand sizes.

The impact of the additional hardware is analyzed by looking
at the difference in area and delay between a regular adder and
flagged binary adder. The increase in area is more noticeable for
the Kogge-Stone adder than it is for the Brent–Kung or Ladner–
Fischer designs. Also notice the significant impact on area for the
carry-skip design. Although the gate count increase is higher for
the prefix trees, the layout shows a major difference for the carry-
skip adder. The variable group sizes utilized within the design is
responsible for the reduction in power consumption, but leads to
a negative impact on area consumption. The impact on delay
proves to be insignificant after inclusion of the flagged inversion
cells within each design. This particularly holds true for the prefix
adder designs. The critical path is affected minimally, compared to
the flexibility incorporated within the design. The Kogge-Stone
structures prove to be the fastest, but the trade-off is the area
consumption. It can also be observed, that the power consump-
tion for these structures is the highest probably due to the high
switching speed within the circuit.
64 bits

Delay (ps) Power (mW) Area (mm2) Delay (ps) Power (mW)

973 2.35E�03 1.8843 1255 3.97E�03

937 2.30E�03 1.8871 1163 4.11E�03

770 3.31E�03 3.701 993 6.21E�03

1184 9.05E�04 1.6432 1495 2.64E�103

900 9.47E�04 2.707 1245 2.81E�03
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Table 8
Simulation results for flagged binary adders.

Adders/parameters 16 bits 32 bits 64 bits

Area (mm2) Delay (ps) Power (mW) Area (mm2) Delay (ps) Power (mW) Area (mm2) Delay (ps) Power (mW)

Brent–Kung 0.2803 1118 7.06E�04 0.8917 1270 2.94E�03 2.0871 1553 4.27E�03
Ladner–Fischer 0.2821 1081 7.27E�04 0.9004 1238 3.10E�03 2.1691 1466 4.66E�03
Kogge-Stone 0.5362 987 9.92E�04 1.9146 1078 4.02E�03 3.9163 1300 6.47E�03
Carry-skip 0.3746 1200 6.13E�04 0.8499 1486 1.08E�03 1.9247 1797 3.12E�03

Table 9
Simulation results for enhanced flagged binary adders.

Adders/parameters 16 bits 32 bits 64 bits

Area (mm2) Delay (ns) Power (mW) Area (mm2) Delay (ns) Power (mW) Area (mm2) Delay (ns) Power (mW)

Brent–Kung 0.29 5.27 8.08E�04 0.9073 8.55 3.05E�03 2.1083 15.34 4.35E�03

Ladner–Fischer 0.2915 5.19 8.34E�04 0.9236 8.49 3.14E�03 2.2339 15.25 4.82E�03

Kogge-Stone 0.5456 5.12 1.12E�03 2.033 8.34 4.10E�03 4.1127 15.1 7.14E�03

Carry-skip 0.39 5.34 7.72E�04 0.8695 8.72 1.17E�03 2.0611 15.57 3.48E�03

Carry-select 0.4953 5.13 9.03E�04 1.5315 8.5 1.28E�03 3.2522 15.33 3.15E�03

Carry-save 0.3455 5.83 1.17E-03 1.2142 10.02 2.06E�03 2.4013 17.49 2.77E�03
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7.3. Enhanced flagged binary adders

A similar analysis is performed to study the impact of the flag
logic cells for constant addition. Numerical results have been
provided in Table 9 for each operand size. The constant utilized
for simulation is M¼57.

Traditionally, carry-save adders can be used to achieve three-
operand addition. This technique has been implemented for
different operand sizes in order to compare the performance of
the proposed architecture with the traditional approach. This can
be seen in Table 9 as well. The hardware can be optimized to
include fewer gates in the circuit when the carry-bit is the same
as the flag bit. Table 9 presents the worst-case scenario when that
circuit has not been optimized. Optimization will lead to fewer
gates and therefore better area result.

Area increases by approximately 2–4 times for all architectures
when the operand size is doubled. Increase in power with change
in operand size is significant for prefix structures compared to the
carry-save adder. This can be due to the high fan-in and
significant wiring complexity associated with the prefix trees.
The depth of the Kogge-Stone adder is the least among all three
adder architectures resulting in it being the fastest design. The
Ladner–Fischer adder has fewer levels compared to the Brent–
Kung adder, leading to lower delay numbers. Brent–Kung adders
however, have lower numbers of area making it a good choice
where area is a constraint. A trade-off between area and delay can
be observed for the Kogge-Stone flagged prefix adder, which is
observed to be the fastest design among all adder architectures
and consumes maximum area. The Ladner–Fischer tree provides a
good compromise in terms of area and speed.

Doubling the operand size, causes less than double the
increase in delay for all designs including the carry-select adder.
This is due to the inherent qualities of the basic adders
themselves. This is one of the reasons why these adders were
selected to implement constant addition. The increase in delay is
seen to be highest for the carry-skip and the carry-select adder.
This is due to the fact that unlike the prefix structures, the carries
are not obtained in parallel. The adders are divided into groups
and hence, each group waits for the preceding group to generate
the carry. The carry computation for constant addition falls in the
critical path of the design as explained in the previous section.
However, the added flexibility is an advantage.
It is important to notice the difference in delay between the
adders designed for constant addition and the carry-save adder.
EFBA architectures have a favorable performance compared to
the CSA. The delay incurred due to the additional hardware
incorporated to implement constant addition is less than the
delay incurred by the prefix adder in the last stage of a carry-save
adder. The delay results concur with the logical effort FO4 delay
estimates from Section 5. It can be concluded, that with minor
modifications to the hardware, more than one useful functional
results can be obtained utilizing prefix structures. In applications
such as decimal arithmetic, this flexibility can be exploited.
Constant addition can also be utilized with applications that use
floating point numbers where the exponent is always stored as a
biased number.
8. Conclusion

Prefix adder architectures capable of constant addition and
three-operand addition [19] for cell based design and their
synthesis have been implemented and investigated in this paper.
Prefix adders have been incorporated with minimal hardware to
compute a new set of bits called flag bits. The flag bits can be used
to obtain two different results, A+B and A+B+M.

The proposed design can be used as a replacement to carry-
save adders with the possibility of having the third operand as a
constant. EFBA designs have a favorable performance compared to
carry-save adders in terms of area and delay. The Kogge-Stone
adder and the Ladner–Fischer adder provide the best results when
incorporated with the extra hardware. One of the advantages
is the availability of two useful results within one circuit. It
eliminates the need to have dedicated adder units to perform the
operation since the new logic is incorporated within a regular
adder. For three-operand addition, the additional logic leads to a
significant increase in delay limiting their use for general three-
operand addition.

In terms of applications, EFBA designs can be used for decimal
arithmetic, floating point multiplication, signal processing and
image processing applications where a biasing constant needs to
be added to improve signal quality and also floating point
arithmetic.
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