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Abstract—The existence of channel variations (or fading) is
one of the crucial challenges that affects the capacity of wireless
networks. Recently, cooperative communications have emergedas
a promising approach to achieve spatial diversity and thereby
reduce the negative effects of fading on wireless channels. On the
other hand, in addition to channel variations, it is well-known that
interference among concurrent transmissions also severely limits
the network capacity particularly in multi-hop settings. Recent
studies indicate that the use of multiple channels can reduce the
wireless interference and thus greatly improve the overall network
capacity. In this paper, we propose a model termed as CoopMC
which employs multiple channels in cooperative networks to mit-
igate the impact of interference. This work primarily investigates
the capacity of CoopMC in multi-hop settings and derive the
asymptotic capacity bounds under random placements of nodes.
Our analysis reveals the important insights on when a network can
benefit from cooperative communications and how multi-channel
networking can further improve the network capacity.

I. I NTRODUCTION

One of the biggest dilemmas in practical wireless networks
is how to provide robust communication over fading channels.
Spatial diversity, in the form of employing multiple transmitter-
receiver (transceiver) antennas (e.g., multiple input multiple
output (MIMO) [1]-[2],[5],[6] is shown to be very effective
in coping fading in wireless channel. However, equipping a
wireless node with multiple antennas may not be practical, par-
ticularly handheld wireless devices, and nodes carrying one or
two antennas significantly limit the effectiveness of MIMO tech-
niques [2]-[6]. Recent studies address this limitation through the
use of a new paradigm known ascooperative communications—
also known as virtual MIMO systems—that draws from the
idea of using the broadcast nature of the wireless channel to
achieve spatial diversity. Under cooperative communications,
nodes equipped with a single transceiver (cooperative relays)
captures a neighboring source’s transmission and relay it to
the designated destination. The destination combines multiple
streams of the same information from both source and relay
nodes to recover the original information with high probability.
Therefore, by cooperatively relaying the information to the
destination, nodes equipped with single antenna achieve the
same advantages as those found in MIMO systems.

Due to the advances in cooperative communication, many
efforts have been spent in understanding and improving the
benefits of deploying cooperative relays in wireless networks,
including network capacity analysis, optimal power allocation,
resource allocation and relay assignment [3]-[5]. However, most
of these works on cooperative relaying have been mainly studied
from the standpoint of small-scale wireless networks—typically
a network with a single source, destination and relay—which

may not be realistic, especially for multi-hop wireless networks.
A few works in [4]-[6] address this limitation and demonstrate
that deploying cooperative relays in large-scale wirelessnetwork
in fact incurs several challenges. For instance, Zhuet. al [4]
shows both analytically and experimentally that deployingco-
operative relays in large-scale wireless networks can leadto an
elevated level of interference which in turn results in degraded
throughput and higher packet losses. On the other hand, in the
last few years studies [7], [8] show that employing multiple
channels in wireless networks can mitigate the negative effects
of interference and thus substantially enhance the performance
of wireless networks.

Motivated by these ideas, it is thus worth investigating
the benefits of integrating multiple channels into large-scale
cooperative wireless networks. In this paper, we address this
problem and propose a model known ascooperative network
with multiple channels(CoopMC) which deploys cooperative
relays in large-scale networks and uses multiple channels to
reduce the impact of interference in such networks. Specifically,
we focus on deriving the capacity of CoopMC model and reveal
the important insights on when a network can benefit from
cooperative communications and how multi-channel networking
can further improve the network capacity. To the best of our
knowledge, this is the first effort to quantify the capacity of
cooperative networks operating on multiple channels.

The remainder of the paper is as follows. We begin with
the description of our model, CoopMC, in section II and then
discuss the performance of cooperative transmissions in terms
of both the throughput and interference region. In section III,
we provide the analytical results of the throughput capacity
of random networks and compare the capacity under cases of
multi-channel cooperative networks, single-channel cooperative
networks, and traditional non-cooperative networks. We con-
clude our work in section IV.

II. COOPMC MODEL

We consider a static wireless network composed ofn nodes,
with each node being either a source node (s) or a destination
node (d). Contrary to direct transmission (i.e., no cooperation),
in cooperative transmission relays (r) are assigned to assist the
communication between the source and destination. Hence, we
assume that besidesn nodes there are sufficient number of
relays in the network,Θ(n2), and eachs − d link is assigned
with a single relay to aid the communication process. We further
consider the following assumptions for our model.
(A.i) There areC channels in the network and each node
(source, destination and relay) is equipped with a single half-
duplex interface. We use the(1, C) notation to denote these



networks.
(A.ii) Due to half-duplex nature, an interface can either transmit
or receive data on any one channel at a given time. A coopera-
tive link consists of a direct paths−d, and a relay paths−r−d.
This paper considers that direct path and relay path use the same
channel. Thus, a transmission from source to destination via a
relay path is completed in two time slots.
(A.iii) Each channel can support a maximum data rate ofWcoop

(Wdirect) bits/sec under cooperative (direct) communication,
independent of the number of channels. Therefore, the aggregate
data rate possible by using allC channels under both coop-
erative and direct communication areCWcoop and CWdirect

respectively.
Moreover, since the main aim of this work is to understand

the benefits of CoopMC model, we do not deal with issues
pertaining to resource/power allocation or relay selection. Please
see [6] for further details regarding these issues.

A. Throughput of Cooperative and Direct Transmissions

In [3], Laneman et.al characterizes the performance of
several cooperative relaying protocols such as AF (Amplify-
and-Forward), DF (Decode-and-Forward) in terms of outage and
ergodic capacities; the study primarily manifests the benefits of
cooperative transmission—in the absence of interference—as
opposed to direct transmission in the presence of fading. Due to
space limitations, we focus on the outage capacity of AF relay1

and use throughput, which is the product of outage capacity
and spectrum bandwidth (B) Hz, to determine the quality of
transmissions between source and destination in the presence
of relay. For baseline comparison, we also provide the results
for direct communication model. Hence, the throughput of both
cooperative (Wcoop) and direct communication (Wdirect) model
are expressed as follows:

Wcoop =
B

2
.Ψcoop, Wdirect = B.Ψdirect (1)

where the factor1/2 in Wcoop is based on the assumption (A.ii).
Ψcoop and Ψdirect respectively are the outage capacities of
cooperative and direct transmissions. Loosely speaking, outage
capacity measures the robustness of the transmissions to fading.
Thus, given the probability of outage,ρ, the outage capacities
are expressed as follows [3]:

Ψcoop = log2(1 + γ
√

ρφ), Ψdirect = log2(1 + γρσ2
sd) (2)

whereγ represents the transmit signal-to-noise ratio andφ =

2σ2
sd(

σ2
sr.σ2

rd

σ2
sr+σ2

rd

). The parameterσ2
ij is the fading variance be-

tween nodesi and j. This work focuses on the special case of
symmetric networks in which the fading variances are identical.
Specifically, we assume that each cooperative link can transfer
data at the rate ofWcoop (Wdirect for direct link) on channel
x, wherex ∈ C, provided that there are no interfering links
transmitting on channelx at the same time.

1In AF mode, the relay amplifies the information received from the source and then
forwards it to the destination without demodulation or decoding. It is tobe noted that the
results in this work are applicable for other relaying protocols and ergodic capacities as
well.

B. Link-based Interference Model

In sec. II-A, we quantified the throughput of cooperative link
under the assumption of “absence of interference”. However,
this assumption is not valid in practice, especially when relays
are deployed in multihop networks. We therefore study the
impact of interference of such networks by using the protocol
model proposed in [9]. In this model, a nodevj will not receive
the data from a transmittervi correctly if nodevj lies within
the interference region of another actively transmitting node
vk, i.e., ‖vj − vk‖ ≤ XI . This work mainly focuses on the
link-based protocol interference model2 rather than receiver or
transmitter based interference models studied in [4]. Further, we
assume an uniform interference and communication range,XI

and XS respectively, for all nodes—based on the assumption
of a fixed transmit power for all nodes, and add the following
two assumptions to our interference model: (A.iv) For the
simplicity of analysis, we model the interference region ofa
link by choosing the center of the link as the disk center and
then approximating the interfering region with a large disk, see
fig 1; (A.v) Since the area of the interference region depends
on the distance between the communicating pairs, we focus
on the scenario where each communicating pair is placed at a
maximum distance apart. Consequently, in CoopMC the relay
node is placed at a distance ofXSdr from both source and
destination,i.e., ‖s − r‖ = ‖r − d‖ = XSdr.

Fig. 1. The interference region of (a)s − d and (b)s − r − d links.

Now, we approximate the interference region of our baseline
model i.e., direct link s−d with a disk of radiusδd.XS . δd.XS

is given byXS +XI = (1+∆)XS , where∆ = XI/XS is the
interference ratio. The parameterXI +XS ensures that any two
links transmitting in some channelc′ will not conflict with each
other if their median areXI +XS apart. Conversely, we say that
two links are disjoint if the centers of the both disks are farther
away by δd.XS . Hence, we represent eachs − d link with a
disk of radiusδd.XS/2—property of Unit Disk Graph [4].

Similarly, we approximate the interference region of coop-
erative transmission with a disk of radiusδc.XS ; δc.XS is
determined as:

δc.XS =

{

(1 + ∆)XS : 1/2 < dr < 1/
√

2;

(∆ +
d2

r

2
√

d2
r−1/4

+ 1
2 )XS : 1/

√
2 ≤ dr ≤ ∆;

where, each cooperative link is associated with a disk of radius
δcXS/2 centered at the median ofs, d andr (see fig. 1).
From the value ofδc.XS , it is clear that when the cooperative
relay is placed close to the links− d, the perceived amount of
interference is same as that of direct transmission, i.e.,δc.XS =

2In link based interference model, we consider the interference region around a link.
Conversely, when a link is active, no nodes in the vicinity of either sender or receiver of
the link can take part in other communication process. Thus, we define the interference
region of a link as the union of the interference region of each communicating pair.



δd.XS ; however, when the relay is far apart from the links−d,
i.e., dr ≥ 1/

√
2, it incurs an increased level of interference.

Since the intensity of interference depends on the relay distance
dr, we represent the radius of interfering region under CoopMC
model asδ.XS = max(δc.XS , δd.XS).

Note A: In the sequel, we assume each cooperative link as
a s − d link with an interference disk of radiusδ.XS/2 and a
maximum data rate ofWcoop. This assumption simplifies our
analysis so that we can focus on understanding the benefits of
CoopMC model.

III. T HROUGHPUTCAPACITY FOR RANDOM NETWORKS

Under the assumption in Note A (Section II-B), we consider
that n nodes are randomly located on the surface of a torus of
unit area. Each node selects a destination randomly to which
it transmitsλcoop(n) bits/sec. The maximum value ofλcoop(n)
that can be supported by every source-destination pair withhigh
probability (whp)3 is defined as the per-node throughput of the
network [7], [9]. Since there are total ofn flows4, the network
capacity is defined to benλcoop(n).

A. Upper Bound

The capacity of CoopMC model under random network
setting is limited by the following three constraints [7].
1) Connectivity constraint: In random networks, this constraint
is necessary to ensure that the network is connectedwhp.

Previous work [9] shows thatXS(n) >
√

log n
πn is necessary

to guarantee connectivitywhp. From the interference model,
we know that the number of concurrent transmissions possible
on any single channel is limited to 1

(π(δXS/2)2)= 4
π (δXS)2 . In

addition, since each source-destination of a flow is separated by
an average ofΘ(1) (we assume a torus of area1m2) distance,
we have the average number of hops asΘ( 1

XS(n) ) between
each source-destination pair (see [9] for details). Thus, the
network capacity using allC channels is limited toO(

CWcoop

δ2XS(n) ).

SubstitutingXS(n) >
√

log n
πn , we obtain the upper bound for

network capacity asO(
CWcoop

δ2

√

n
log n ).

2) Interference constraint: The capacity of random cooperative
networks using multiple channels is also constrained by inter-
ference.

Lemma 1. The network capacity of random networks is atmost
O(

Wcoop

δ

√
nC) bits/sec for CoopMC model.

Proof: We adopt the reasoning introduced in [9] to get
the upper bound for the transport capacity of the network. We
assume that each source node originatesλ bits/sec. Let the
average distance between source and destination pairs beL̄
then the transport capacity of the network is given asλnL̄ bit-
meters/sec. In a time period of length one second, consider a
bit b, 1 ≤ b ≤ λn. Let us assume that it moves from its origin
to its destination in a sequence ofh(b) hops, where thehth hop
traverses a distance ofrh

b . Then we obtain

λn
∑

b=1

h(b)
∑

h=1

rh
b ≥ λnL̄ (3)

3In this paper,whp implies probability with≥ 1 − 1/n
4The traffic from a source node to destination node is called a flow

Let us defineH to be the total number of hops traversed by
all bits in one second, i.e.,H =

∑λn
b=1 H(b). Therefore, the

total number of bits transmitted by all nodes in a second is
equal toH. Since each node can transmit over a channel with
rateWcoop, the total number of bits transmitted by all nodes is
atmostWcoopn

2 , where the factor1/2 is due to the fact that there
aren nodes in the network and thus, we haven/2 number of
transmitter-receiver pairs in that time period. This yields H ≤
Wcoopn

2 .
From the interference model introduced above, we see that

disks of radiusδ/2 times the lengths of hops centered around
the links over the same channel in the same slot are essen-
tially disjoint. Since the area consumed on each channel is
bounded above by the area of the domain (i.e., torus of area
= 1m2), summing over all channels, we have the constraint
∑λn

b=1

∑h(b)
h=1

πδ2

4 (rh
b )2 ≤ CWcoop, which can be rewritten as

follows:
λn
∑

b=1

h(b)
∑

h=1

1

H
(rh

b )2 ≤ 4CWcoop

πδ2H
(4)

Note now that the quadratic function is convex. Hence,

(
λn
∑

b=1

h(b)
∑

h=1

1

H
rh
b )2 ≤

λn
∑

b=1

h(b)
∑

h=1

1

H
(rh

b )2 (5)

Combining (4) and (5) yields

λn
∑

b=1

h(b)
∑

h=1

rh
b ≤

√

4CWcoopH

πδ2
(6)

Now substitutingH ≤ Wcoopn
2 in (6) and using (3) givesλnL̄ ≤

Wcoop

δ

√

2nC
π . This proves that the upper bound for the transport

capacity of the network isO(
Wcoop

δ

√
nC) bits-meters/sec. Since

in a random network, each of the (s − d) pairs are separated
by an average distance ofΘ(1) meter (the area of torus=1m2),
we have the network capacity of CoopMC model under random
network setting as at mostO(

Wcoop

δ

√
nC) bits/sec.

3) Destination bottleneck constraint: The network capacity of
cooperative network is also restricted by the flows toward a
destination node,d.

Lemma 2. The capacity of random networks under bottleneck
constraint is atmostO(

Wcoopn
F (n) ) bits/sec for CoopMC model

where F (n) = Θ( log n
log log n ) is the maximum number of flows

from other nodes to a chosen destination.

Proof: Due to space constraints, we omit the proof as it
has already been presented in [7].
Combining the three bounds under the three constraints,
we obtain that the network capacity is atmost
O(min(

CWcoop

δ2

√

n
log n ,

Wcoop

δ

√
nC,

Wcoopn log log n
log n )) and

O(min(CWdirect

δ2
d

√

n
log n , Wdirect

δd

√
nC, Wdirectn log log n

log n ))bps

for CoopMC and baseline model respectively. The minimum of
three bounds is used to obtain an upper bound on the capacity.

Theorem 1. The upper bound on the capacity of a(1, C)
random network is as follows.

1) When C = O(δ2 log n), the network capacity is
O(

CWcoop

δ2

√

n
log n ) bits/sec.



2) WhenC = Ω(δ2 log n) and also= O(δ2n( log log n
log n )2),

the network capacity isO(
Wcoop

δ

√
nC) bits/sec.

3) WhenC = Ω(δ2n( log log n
log n )2), the network capacity is

O(
Wcoopn log log n

log n ) bits/sec.

B. Constructive Lower bound

To prove that the upper bound in Section III-A can be quite
tight, we construct a network and then design a routing scheme
and a transmission schedule as follows.
(1) Torus Division: We divide the unit-area torus into equal-
sized squares (or cells), each of areas(n) where we sets(n) =
min(max(100 log n

n , C
δ2n ), 1

F (n)2 ), F (n) is given byΘ( log n
log log n );

see III-A. Specifically, the size of each square must satisfythe
three constraints presented in Section III-A: cell size needed
to ensure connectivity, interference and destination bottleneck
constraint respectively. Note that each cell must contain certain
number of nodes to guarantee successful transmission of flow(s)
from source node(s) to its (their) intended destination node(s)
which is lying in the same cell as that of source node or another
cell; we can see that the number of nodes present in a cell in
fact depends on the size of each cell. We next bound the number
of nodes that are present in each cell of sizes(n).

Lemma 3. If s(n) is greater than 50 log n
n , each cell has

Θ(ns(n)) nodes per cell,whp.

Proof: This lemma can be proved using well-known results
(see Chapter 3, [10]). Due to space constraints, we do not repeat
the proof here.

To simplify the analysis, we takes(n) = 100 log n
n for a large

n and thus, Lemma 3 holdswhp.
Before stating Lemma 4, we make the following definition:

We say that cell B interferes with another cell A if a trans-
mission in cell B can affect the success of a simultaneous
transmission in cell A. We set the maximum distance over which
a node can communicate,XS , to be

√

8s(n). Note that with
this transmission distance, a node in one cell can communicate
with any node in its eight neighboring cells.

Lemma 4. The number of cells that interfere with any given
cell is bounded by a constantc1, i.e, independent ofn ands(n).

Proof: Under the link-based interference model, two links
are “non-interfering” if the median of two links are separated
by d = δ.XS . Using simple geometric arguments we get the
number of interfering cells,c1, as at mostc1 ≤ 2 d2

s(n) = 16δ2,
which is independent ofn ands(n).
(2) Routing Scheme: We construct a simple routing scheme
that chooses a route with the shortest distance to forward
packets. A straight line,s−d, is passing through the cells where
nodess and d are located [here,s refers to the source of the
flow and d refers to the final destination of the flow]. Packets
are delivered along the cells lying on thes − d line. Then, we
choose a node within each cell lying on the straight line to carry
that flow. The node assignment is based on load balancing. The
flow assignment process is presented below:
(2a) Assign source and destination nodes: For any flow that
originates from (terminates in) a cell, nodes (d) is assigned
to the flow. After this step, we are left with the flows passing

through a cell. (2b)Assign remaining flows: For load balancing,
we assign each remaining flow to a node that has been assigned
the least number of flows. Thus, each node has nearly the same
number of flows.

We use the result in [7] to bound the number ofs − d lines
passing through any cell. We state their lemma here.

Lemma 5. The maximum number of lines passing through any
cell is O(n

√

s(n)) whp.

Based on Lemma 3, we know that each cell hasΘ(ns(n))
nodes withwhp. Besides, each cell hasO(n

√

s(n)) flows based
on Lemma 5 and hence each node in the network is assigned
at most O( 1√

s(n)
) flows [see step 2(b) of routing scheme].

Combining with step 2(a) and destination bottleneck constraint,
the total flows assigned to every node isO(1+F (n)+1/

√

s(n)
which is also dominated byO(1/

√

s(n)) (note thats(n) is at
most (1/F (n))2, thusF (n) is at most1/

√

s(n)).
(3) Transmission Scheduling: We consider a scheduling
scheme for a(1, C) network. Any transmissions in this model
must satisfy the following constraints: (a) each interfaceonly
allows one transmission/reception at the same time; and (b)any
two transmissions on any channel should not interfere with each
other.

We propose atime-division multi-access(TDMA) scheme to
schedule transmissions [7], which satisfy the aforementioned
constraints. In this scheme, a second is divided into a number
of edge-color slots and at most one transmission/receptionis
scheduled at every node during edge-color slot which satisfies
the constraint (a). Further, each edge-color slot is divided into
mini-slots and in each mini-slot, each transmission satisfies the
aforementioned constraints (a) and (b).

We now describe the two time slots as follows:
(1) Edge-color slot: First, we map each cooperative link to
direct link (this satisfies assumption in Note A, see Sec-
tion. II-B) and then construct a routing graph in which vertices
represent the nodes in the network and an edge denotes trans-
mission/reception of a node. In this construction, one hop along
a flow is associated with one edge in the routing graph. In [11],
it is shown that this routing graph can be edge-colored with
at mostO(1/

√

s(n)) colors. We now divideone secondinto
O(1/

√

s(n)) edge-color slots and thus, each edge-color slot has
a length ofΩ( 1

1/
√

s(n)
)= Ω(

√

s(n)) seconds. Since each slot is

represented with a unique edge-color, all edges connectingto a
vertex use different colors and thus, each node has at most one
transmission/reception scheduled in any edge-color time slot.
(2) Mini-slot: Second, we divide each edge-color slot into mini-
slots. We build a schedule that assigns a transmission to a node
in a mini-slot within a edge-color slot over a channel. We
construct an interference graph in which nodes represent the
vertices of the graph and edges denotes interference between
two nodes. Based on Lemma 4, every cell has at mostc1

interfering cells and each cell hasΘ(ns(n)) nodes based on
Lemma 3. Hence, each node has at mostO(c1ns(n)) edges
in the interference graph. It is shown that a graph of degree
atmost k can be vertex-colored with at mostk + 1 colors.
Therefore, the interference graph can be vertex-colored with
at mostO(c1ns(n)) colors. We usek1c1ns(n)(= c2ns(n)) to
denote the number of vertex-colors (wherek1 is a constant). We



know that two nodes with same vertex color do not interfere
with each other while nodes with different colors interfere
with each other. Hence, we schedule the interfering nodes
either on different channels or on different minislots on the
same channel. We divide each edge-color slot into

⌈

c2ns(n)
C

⌉

mini-slots on every channel and assign the mini-slots on each
channel from 1 to

⌈

c2ns(n)
C

⌉

. A node assigned with a colorx,

1 ≤ x ≤ c2ns(n) is allowed to transmit in mini-slot
⌈

x
C

⌉

on
channel(x mod C) + 1.

Now, we analyze the capacity of the(1, C) network.
Recall that each edge-color slot has a length ofΩ(

√

s(n))
seconds and each edge-color slot is further divided into
⌈

c2ns(n)
C

⌉

mini-slots over every channel. Therefore, each

mini-slot has a length ofΩ(

√
s(n)

⌈

c2ns(n)
C

⌉ ). Since each channel

can transmit at the rate ofWcoop bps, in each mini-

slot, λcoop(n) = Ω(
Wcoop

√
s(n)

⌈

c2ns(n)
C

⌉ ) can be transported. Since
⌈

c2ns(n)
C

⌉

≤ c2ns(n)
C +1, we haveλcoop(n) = Ω(

CWcoop

√
s(n)

c2ns(n)+C )

bps. Hence,λcoop(n) = Ω(min(
CWcoop

c2n
√

s(n)
,Wcoop

√

s(n) )).

Thus, the network capacitynλcoop(n) is given by
λcoop(n) = Ω(min(

CWcoop

c2

√
s(n)

,Wcoopn
√

s(n) ))

= Ω(min(
CWcoop

δ2
√

s(n)
,Wcoopn

√

s(n) )) bits/sec.

Substituting the size of cell, s(n) =
min(max(100 log n

n , C
δ2n ), 1

F (n)2 ), we have the following
theorem.

Theorem 2. The lower bound on the capacity of a(1, C)
random network is as follows.

1) WhenC = O(δ2 log n), s(n) = Θ( log n
n ), the network

capacity isΩ(
CWcoop

δ2

√

n
log n ) bits/sec.

2) WhenC = Ω(δ2 log n) and also= O(δ2n( log log n
log n )2) and

s(n) = Θ( C
δ2n ), the network capacity isΩ(

Wcoop

δ

√
nC)

bits/sec.
3) WhenC = Ω(δ2n( log log n

log n )2) and s(n) = Θ( 1
F (n)2 ), the

network capacity isΩ(
Wcoopn log log n

log n ) bits/sec.

The lower bound matches with the upper bound
(Theorem 1) implying that the bounds are tight
and thus, the network capacity isnλcoop =

Θ(min(
CWcoop

δ2

√

n
log n ,

Wcoop

δ

√
nC,

Wcoopn log log n
log n ))

for CoopMC model. Substituting Wdirect and
δd in the above capacity equations, we get the
network capacity for direct model asnλdirect =

Θ(min(CWdirect

δ2
d

√

n
log n , Wdirect

δd

√
nC, Wdirectn log log n

log n )).

C. Comparison to Non-Cooperative Wireless Networks

We now compare the performance of CoopMC model with
the baseline model for the cases whereWcoop > or ≤ Wdirect

and δ = δd or δc. Specifically, we analyze the perfor-
mance of CoopMC model over baseline model in terms of
Outage Throughput
Interfering Region. We already know that whenWcoop ≤

Wdirect, there is no benefit in employing cooperative relays and
thus, we focus on the cases whereWcoop is greater thanWdirect

and δ = max(δd, δc). Figures 2 and 3 depicts the network

capacity of cooperative and direct model for the following two
cases: Wcoop

δ2
d

> Wdirect

δ2
d

and Wcoop

δ2
c

< Wdirect

δ2
d

. From these
figures, we see that the network capacity of both cooperative
and direct model has three regions (or constraints) (A, B, C)
that follows from the Theorems 1 and 2. We also note that
the capacity of both the models remains constant in region C.
This is because in region C all transmissions can be regardedas
interference-free and hence, addition of more channels do not
add any further benefits. Forδc ≥ 1 andδd ≥ 1, we now study
the following cases:
Case A. δ = δd and Wcoop

δ2

d

>
Wdirect

δ2

d

: In this case, we make

two observations: (a) The cooperative transmission (s − r − d)
incurs same amount of interference (δ = δd) as that of direct
transmission (s−d) and (b) Cooperative transmissions− r−d
has higher benefits over direct transmission in terms of the
outage throughput (Wcoop > Wdirect). From fig. 2, we see that
when 1 ≤ C < δ2

dn( log log n
log n )2, the network capacities,nλcoop

and nλdirect, indeed increases with the increase in number
of channels. However, as mentioned earlier we see that when
C ≥ δ2

dn( log log n
log n )2, the network capacities of both models

remains constant. Finally, due to the fact that presence of relay
does not incur any additional interference andWcoop > Wdirect,
we can conclude that cooperative scheme outperforms direct
model forC ≥ 1.
Case B. δ = δc and Wcoop

δ2
c

>
Wdirect

δ2

d

: In this case, though

the presence of relay incurs an increased level of interference
(δc) as opposed to direct transmission (δd), we see that CoopMC
model in fact achieves a capacity gain ofWcoopδ2

d

Wdirectδ2
c

> 1 over
direct model forC ≥ 1. This gain is due to the fact that
Wcoop is much higher thanWdirect and in particularWcoop

is >
Wdirectδ

2
c

δ2
d

and thus, overshadows the negative effects of
interference.
Case C. δ = δc and Wcoop

δc
<

Wdirect

δd
: In this case, even

though Wcoop > Wdirect, the position of relay indeed leads
to an increased level of interference and thus, reduces the
capacity of cooperative model by a factor ofWcoopδ2

d

Wdirectδ2
c

< 1
[Regions A and B, fig. 3]. In fig. 3, we see that whenC <

δ2
cn( log log n

log n
)2

(Wcoop/Wdirect)2
, direct model outperforms cooperative model,

that isnλdirect > nλcoop. On the other hand, we also see that

whenC >
δ2

cn( log log n

log n
)2

(Wcoop/Wdirect)2
, cooperative model outperforms di-

rect model and further reaches constant atC ≥ δ2
cn( log log n

log n )2.
Intuitively, this improvement is due to the fact that when links
operate in multiple channels, interference is no longer a limiting
factor [region C in fig. 3] and hence, CoopMC model can
outperform direct model whenWcoop > Wdirect.

Clearly, we see that employing multiple channels (C > 1) can
significantly improve the performance of cooperative networks
as opposed to single channel case (C = 1) by mitigating
the negative effects of interference and thereby increasing the
spatial reuse. Importantly, we see that whenWcoop > Wdirect

and sufficient number of channels are present in the network,
we can greatly enhance the performance of cooperative wireless
networks.

IV. CONCLUSION

In contrast to existing studies that either focus on single
channel or small-scale cooperative networks, we take a different
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approach and study a model known as cooperative network
with multiple channels (CoopMC) under multi-hop settings.
Specifically, we derive the lower and upper bounds on the
capacity of CoopMC model under random placements of nodes
and study the benefits of this model over baseline model.
We show that employing multiple channels can significantly
mitigate the impact of interference and thus greatly enhance
the performance of cooperative networks.
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