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I. ABSTRACT

Wireless Mesh Networks (WMNs) are multi hop net-
works in which the mesh clients rely on static mesh
routers (or directly via other mesh clients) to relay data
from one point to another in a multihop fashion. WMN
gained significant attention because of the numerous
applications it supports, e.g., broadband home network-
ing, community and neighborhood networks, delivering
video, building automation, in entertainment and sport-
ing venues etc. But the main challenge of these multihop
networks is the susceptibility to various security threats.
In this paper, we address the problem of gray hole
attack in which a malicious node refuses to forward a
subset of the packets it receives. We present the attack
in a simple network of mesh routers in the framework
of a non-cooperative markov game between genuine
and malicious mesh router. The main objective of the
legitimate node (Player I) is to maximize its throughput
by minimizing the loss caused by the attackers. On the
other hand , the main goal of the attacker (Player II) is
to minimize the throughput of the network by dropping
the data packets. We investigate the nash equilibrium
of the non cooperative game by allowing the nodes to
select their own actions that optimizes the individual
performance in terms of the packet delivery ratio.

II. INTRODUCTION

Using Wireless Mesh Networks (WMNs) [1] to pro-
vide better wireless services in the future is emerging
as a popular choice for Internet Service Providers (ISPs)
because of the advantages like reliability, market cover-
age, scalability and low upfront cost. WMNs also play
a significant role in broadband home networking, com-
munity and neighborhood networks, delivering video,
building automation etc. However, WMNs lack security
guarantees in various protocol layers and hence it is not
yet ready for wide-scale deployment. The main reasons
for the security challenges are due to the open medium,

dynamic topology, and distributed architecture of the
mesh networks [1], [2].

In a WMN, there are two types of nodes: mesh routers
and mesh clients. Mesh routers are static and they form
the backbone of the network. Mesh clients can access
the network through these mesh routers in a multihop
fashion. It is not difficult to understand that routing plays
a significant role in a multihop communication and hence
the focus of most of the malicious attacks like gray hole
attacks, sybil attacks, denial of service attacks etc. In this
work, we focus on the gray hole attacks (aka selective
forwarding attacks)[3], [4]. Section III discusses the gray
hole attacks and the related works in this area in detail.

Game theory has been used extensively to model
the wireless networks because of its ability to analyze
the interaction between a group of nodes (or players)
who behave strategically [6], [7]. Some of the earlier
works [8], [9] used a game theoretic approach to model
Intrusion Detection in wireless networks. In this paper,
we consider a simple network of mesh routers, with a
source node, destination node and an intermediate node.
The source node can use direct path to communicate with
destination or rely on an intermediate node to transmit
packets to the destination. In most of the previous works
[10], [11], we can see that the authors’ focus on increas-
ing the cooperation between the source node and the
intermediate node by using a reward based mechanism
so that the source node can use minimum energy path for
transmission. But, we believe that the source node should
also take into consideration the reliability of the path. In
this paper, we formulate the forwarding problem (direct
transmission or routed transmission) as a non cooperative
two player markov game from the perspective of security
and show the relevance of security in selecting paths.

Throughout the paper, we will interchangeably use
the terms players and nodes to denote the mesh routers
in the network. The rest of the paper is organized as
follows: Section III presents an overview of the gray



hole/selective forwarding attacks against the mesh net-
work. In section IV, we introduce to the readers the basic
concepts of game theory and the general model of the
stochastic game. Section V discusses the game model,
rewards and costs for the strategies of the players, the
transition rule and the expected utilities for each player.
In section VI, we present the numerical analysis and
the results of the game model. Finally, we conclude this
paper and discuss our future work in Section VII.

III. GRAY HOLE/SELECTIVE FORWARDING
ATTACKS

In a gray hole attack [3], [4], [5], a malicious node
refuses to forward certain packets and simply drops
them. If a malicious node drops all the packets, the
attack is then called a black hole which is easy to detect
as opposed to a gray hole attack in which the attacker
selectively drops the packets originating from a single
IP address or a range of IP addresses and forwards
the remaining packets. To launch this kind of attack,
an attacker may compromise or hijack the physically
unprotected mesh routers that belong to the network
(known as internal attacks) or attack the network from
outside by jamming the communication link between the
routers (known as external attacks). In this paper, we
consider these attacks and formulate a game in which
the sender (Player I) selects a strategy that minimizes
the loss caused by this kind of attacker (Player II).
Karlof et al. [3] first discussed the selective forwarding
attacks and suggested that multi path forwarding can be
used to counter selective forwarding attacks in the area
of sensor networks. But the main disadvantages of multi
path forwarding are overhead, poor security resilence etc.
In [4], the authors presented a multi hop acknowl-
edgement scheme for detecting gray hole attacks. In
their scheme, the intermediate nodes are responsible for
detecting the misbehavior of the nodes. If a misbehavior
is detected, it will generate an alarm packet and deliver to
source node. The two main disadvantages of this scheme
are (a) The intermediate nodes in the path suffer from
high overhead. (b) The scheme will not work if a node
is compromised during the deployment phase by the
attacker.
In [5], the authors present a Counter-Threshold based
detection algorithm to defend these attacks. The al-
gorithm uses the path throughput and packet counter
to identify the attacks. If an attacker is detected, the
algorithm invokes the second phase of the algorithm
called Query-Based. This phase uses acknowledgment
from the intermediate nodes to localize the attacker.

IV. GAME THEORY

Game theory [7] can be defined as the mathematical
model to analyze the interaction between a group of
players who behave strategically. The ability to model
individual, independent players whose strategies affect
every other players in the group makes game theory a
powerful and useful tool to analyze the performance of
wireless mesh networks. In other words, game theory is
concerned with finding the best strategies for individual
players in such dynamic, distributed and unpredictable
wireless networks [8]. A game is usually specified by
four objects:

• A set of players i ∈ N , which is a finite set
{1, 2, 3, ...n}.

• The strategy space, Ai, available to each player i.
When a player chooses an action, he can use either a
pure or a mixed strategy. If the actions of the player
are deterministic, he is said to use a pure strategy.
A mixed strategy is a probability distribution over
a player’s pure strategies.

• The payoffs, ui, associated with any strategy com-
bination (one strategy per player).

• All players are rational and each player chooses
action that yields him the greater payoff. If the game
is not deterministic, the players chooses action that
maximize his expected payoff.

We will now discuss some of the important terms in
game theory which will be used in this paper.

1) Non-Cooperative and Cooperative Game: In non-
cooperative games, the actions of the single players are
considered and in cooperative games the joint actions of
the players are considered.

2) Complete and Incomplete Information Game:
Non-cooperative games can be classified as complete
information games or incomplete information games,
based on whether the players have complete or
incomplete information about their opponents in
the game. In games with complete information the
preferences of the players are common knowledge, that
is all the players know all the utility functions. But in
a game of incomplete information the players do not
know some relevant characteristics of their opponents
which include their payoffs, strategy spaces etc.

3) Zero-sum and Non Zero-sum Game: In a (two
player) zero-sum game, the payoffs of the player I are
just the negative of the payoffs of player II; that is
u1(s1, s2) + u2(s1, s2) = 0. If the sum of the payoffs
is not equal to zero, u1(s1, s2) + u2(s1, s2) 6= 0, then it
is a non-zero sum game.



4) Definition of Stochastic Games: A markov game,
also called a stochastic game [6] is defined by a set
of state variables k ∈ K, a collection of action sets,
A1, A2, ....Ai, one for each player i, Q : K×A1× .....×
Ai → PD(K) is a transition probability function and
Ui : K × A1 × .... × Ai → < is an immediate utility
function for player i. Assume that the game is in state
kt ∈ K in time t and players select the actions at

1 ∈ A1

· · · at
i ∈ Ai. Each player i will receive an immediate

utility or reward of Ui(kt, at
1 · · · at

i) and the game will
move to next periods state kt+1 ∈ K with probability
given by the transition function Q(kt+1/kt, at

1 · · · at
i).

The readers who are interested in game theory can refer
the following references [6], [7], [13]. In this paper, we
model the interaction between the genuine (player I)
and malicious (player II) mesh nodes as a two player
non-cooperative, non zero-sum stochastic game with
incomplete information.

V. GAME MODEL

In this section we formulate a game to prevent attacks
against mesh networks. We consider gray hole attacks,
which has been reviewed in the literature [3]. Initially, we
present the network model and then discuss the game,
the players and their strategies, rewards and costs for
the strategies of the players, the transition probability
function and the expected utilities.

A. The Forwarding Game

We consider a simple network of 3 mesh routers ( a
source node S, an Intermediate node B and a destination
node D) as shown in figure 1. To transmit the packets
to destination node D, the source node S can send
packets directly to node D or rely on node B to forward
the packets to the destination. In the previous works
[10], [11], authors’ consider the energy consumption as
the important difference between direct and multihop
transmission and rely on multihop transmissions for the
purpose of preserving energy and reducing interference
to other nodes. Does the paths based on low energy
consumption, low levels of interference always provide
the best results? The answer is no, because the nodes
should be able to select the paths that are highly secure
in addition to low levels of interference, energy con-
sumption etc. We study the path selection problem from
a security perspective and formulate a game in which
the source node S selects a secure path as opposed to
minimum energy path with higher probability which is
the nash equilibrium of this forwarding game.

B. Game Formulation

1) Assumptions: We consider a simple three node
network with a malicious node as the intermediate
node. In this work, we do not account for packet delay
by considering simultaneous transmission and reception
possible. In other words, in a single slot the transmission
of packet from source S to the destination D can take
place via intermediate node B or directly by S. We
assume that node B will always accept packets from
source node S with probability of 1 because the aim of
the malicious node is to pretend as a cooperative node by
accepting the request for transmission and then launch
the attack on the accepted packet. We also assume that
the links are free from wireless errors and hence any
dropping in the network is caused by the malicious node.

2) Players: The game discussed in this work is a
two-person game and the players in this game are the
source node, S, and the intermediate (or malicious) node
B. Lets call the source node, S, as player I and the
malicious node B as player II . Table I summarizes all
the notations used in the formulation of the game.

TABLE I
TABLE OF NOTATIONS

Notations Meaning

S Source Node and Player I
B Intermediate Node (Malicious Node) and Player II
D Destination Node

(m, n) State of the system
pd Probability of forwarding to Destination directly
pb Probability of forwarding to Intermediate Node B
qf Probability of forwarding the packet by Node B
qd Probability of dropping the packet by Node B
µ Arrival Rate of Packets to Node S
Us Utility of Source Node
Ub Utility of Intermediate Node
Rd Reward from the destination
Rsb Reward from the Source for B
Csd Cost of using the path SD
Csb Cost of using the path SB
Cbd Cost of using the path BD
Π Steady state probabilities
Q State Transition Matrix
d drop buffer
α Cost of Maliciousness

3) State Space: The state of the game is defined as
(m,n), where m is the send buffer of player I and n is
the drop buffer of player II . The quantity, m can take
values 0 or 1 depending on whether the packet is present
in the sending buffer for transmission. For example, if



one packet is present in the send buffer of player I , m,
will take a value of 1. The quantity, n, can take values
0 or d, depending on if no packet is dropped or if a
packet is dropped. We denote µ as the probability that a
new packet arrives at the send buffer of player I . Hence
the four possible states of the game are: k1 = (0, 0),
k2 = (0, d), k3 = (1, 0), k4 = (1, d). Since this is a
stochastic game with incomplete information, the players
have information about their buffers and utilities only
and hence the actions of player I will depend on the
send buffer m and that of player II will depend on drop
buffer n rather than the complete state (m, n).

4) Strategy Space and Mixed Strategies: The player
I has two strategies: (a1) forward the packet directly
to destination D, (a2) forward the packet to D via
relay node B. We have strategy set of Player I as
AI = {a1, a2}. The mixed strategies corresponding to
AI are πs(a1, a2) = (pd, pb), where pd + pb = 1. pd

is the probability of sending directly to D and pb is
the probability of forwarding the packet via B. In other
words, whenever a packet arrives at the send buffer of
Player I with probability µ, the player I decides whether
to send directly to D with probability pd or send via B
with probability pb. It is not difficult to see that this
happens when the state of the system is (k3 = (1, 0)
,k4 = (1, d)). The Player II (attacker) has two strategies:
(b1) forward the accepted packet from player I , (b2)
drop the accepted packet, i.e. we have BII = {b1, b2}.
The mixed strategies corresponding to action set BII

are πb(b1, b2) = (qf , qd), where qf + qd = 1. qf is the
probability of forwarding the accepted packet from S
to D and qd is the probability of dropping the packet
maliciously. Clearly, we can see that this happens for
states (k3 = (1, 0) ,k4 = (1, d)).

5) Costs, Rewards and Utilities: When S sends the
packet through the path S −→ D, node S will receive a
reward of Rd from destination node, D. When S depends
on B for transmitting the packet, it gives a reward of Rsb

to B for accepting the packet transmission request and
receives a reward of Rd from D for successful reception
of each packet at D. The reward for S in both cases
(sending directly to D and via B to D) comes all the
way from destination. Note: Destination was assigned
to give the reward to source based on the idea that if
S does not receive a reward from destination for the
transmitted packet, it can easily identify that the packet
did not reach the destination successfully. Each packet
transmission from node i to node j incur a path cost of
Cij . The cost, Cij , depends on the energy required to
use that path, the link quality etc. Node B will receive a

Fig. 1. A simple forwarding game between two players S and B.
S is the Source Node, D is the Destination and B is the malicious
node. Cij is the cost of path between two nodes i and j. pb and
pd is the probability of forwarding to B and D. qd and qf is the
probability of dropping and forwarding.

profit of α for his malicious dropping of packets. Based
on the rewards and costs of the path mentioned above,
the nodes S and B will receive the following utilities.

Us =


Rd − Csd if S transmits directly to D;
Rd −Rsb − Csb if S transmits to D via B

and B forwards;
−Rsb − Csb if S transmits to D via B

and B drops.

The utilities are assigned in a such a way that the
utility of S will decrease when B drops maliciously
compared to the utility it receives when a packet has
successfully reached at the destination i.e, −Rsb − Csb

< Rd − Csd < Rd −Rsb − Csb.

Ub =
{

Rsb − Cbd if B forwards the packet to D;
Rsb + α if B drops the packet.

The utilities are assigned in such a way that the utility
obtained from dropping is higher than utility received
from S for forwarding the packets, i.e, Rsb − Cbd <
Rsb + α.

6) Transition Rule and Expected Utility Functions:
It is clear to understand that the state process (m,n)
is a two dimensional ergodic markov chain with finite
number of states. Lets define φ=(πs, πb) to be the joint
set of random stationary strategies which is given by φ
= (pd, pb, qf , qd). Let Π(φ) = {Πk(φ),∀k ∈ K} be the
steady state probability where its Πk(φ) factor denotes
the proportion of the time that the process will be in
state k. Define state transition matrix as Q(φ) where the
entries of the transition matrix denotes the probabilities
of transition. The transition probabilities of the markov
chain represents the probability of transition from one



Fig. 2. State Diagram

state to the next state under the joint strategy φ and it is
expressed as follows:
Case 1 : m = 1

P(m,n)(m+i,n)(φ) =



(1− µ)(pd + pbqf ) if i = −1
n = 0;

(1− µ)(pbqd) if i = −1
n = d;

(µ)(pd + pbqf ) if i = 0
n = 0;

(µ)(pbqd) if i = 0
n = d;

Case 2 : m = 0

P(m,n)(m+i,n)(φ) =


(1− µ) if i = 0

n = 0;
(µ) if i = 1

n = d;

The state diagram is shown in figure 2. We can solve
for steady state probabilities by using the global balance
equation Π(φ) = Π(φ)×Q(φ).

To further understand the ideas, we will consider an
example. Assume that the current state of the system
is (1, 0). The player I has a packet in its send buffer
and it can choose any one of the two strategies, transmit
directly to D with probability pd or transmit to player II
with probability pb. If player I transmits to D directly,
then the next state of the system will be (0,0) or (1,0). If
player I transmits to B and B drops the packet, the next
state of the system will be (0,d) or (1,d). If B forwards
the packet of source node then the next state will be (0,0)
or (1,0).

The expected utilities of the players I and II are

calculated as follows:

Us(φ) = Π(1,0)[pd(Rd − Csd)

+ pb(qf (Rd −Rsb − Csb) + qd(−Rsb − Csb))]

+ Π(1,d)[pd(Rd − Csd)

+ pb(qf (Rd −Rsb − Csb)

+ pb(qd(−Rsb − Csb))] (1)

Ub(φ) = Π(1,0)[pb(qf (Rsb − Cbd) + qd(Rsb + α))]

+ Π(1,d)[pb(qf (Rsb − Cbd))]

+ Π(1,d)(pbqd(Rsb + α)) (2)

where Π(1,0) = µ(1− µ× pbqd), Π(1,d) = µ2 × pbqd.
Note 1: when (pb > pd) and (qd > qf ), the utility of
B starts increasing and that of source node S starts de-
creasing because Π(1,d) increases with pb and qd and the
negative term pbqd(−Rsb −Csb) in Us starts increasing.
But in the case of B, the positive term (pbqd(Rsb + α))
starts increasing with pb and qd.

VI. NUMERICAL ANALYSIS

We set the values for costs and rewards as follows:
µ = 0.5,Rd = 1, Rsb = 0.5, Csd = 0.8, Csb = Cbd = 0.1,
and α = 0.3. We assume that the direct path has high cost
Csd compared to the sum of costs of relaying path (Csb

+Cbd ). In this non-cooperative game between Player I
and Player II , we are interested in finding the nash equi-
librium strategies φ∗=(π∗

s , π
∗
b ) such that for any player

i and any strategy πi, we have Us(φ∗) ≥ Us(πs, π
∗
b )

and Ub(φ∗) ≥ Us(π∗
s , πb). This condition focuses on the

requirement of nash equilibrium that each player must
be playing a best response against a conjecture. In other
words, the best response of player I when player II
plays the strategy πb is RI(πb) =argmaxπs

Us(φ) and
the the best response of player II when player I plays
the strategy πs is RII(πs) =argmaxπb

Ub(φ). Hence the
nash equilibrium of this non cooperative two-player non-
zero sum game would be φ∗=(π∗

s , π
∗
b ) which is given by

π∗
s ∈ RI(π∗

b ) and π∗
b ∈ RII(π∗

s).
Figures [3−5] depicts the utilities of Players I and II

with the value of drop probability varying from 0 to 1 for
the constant values of pd and pb. Figures [6− 9] shows
the utilities of Players I and II with value of (pd + pb)
varying from 0 to 1 for the constant value of qd. Clearly
we can see that when qd = 0 and pb = 1, the source node
S has the maximum utility of 0.20 and B has a utility
of 0.20. But, in this paper we focus on the case when
B is malicious and hence it will always drop the packet



Fig. 3. The utilities of S and B, (Us, Ub), as a function of qd for
constant value of pb = 0.25 and pd = 0.75

with certain probability. As a result B has the maximum
utility when qd = 1 and pb = 1. It can be seen from
the graphs (6− 9) that as the dropping probability (qd)
increases for different values of pb, player I’s utility is
less than the utility it receives on selecting pure strategy
of direct communication (pd =1, Us= 0.10) and as a result
player I counteracts by switching to high cost direct
communication with probability pd = 1 which is the
expected result of this game.

The intuition behind the above discussion is that
player I will initially select the minimum cost path with
higher probability (pb > pd) and player II will always
attack the path with certain probability (qd ≥ qf or
qd ≤ qf ) because ”attacking” gives it higher utility than
”forwarding”. As the Us(φ) starts decreasing, player I
will switch to high cost direct communication path with
higher probability (pd = 1) which is the desired result of
this game. Hence the necessary condition for player I to
switch to direct communication with higher probability
pd = 1 is given by Us(pb, qd > 0) < Us(pd = 1). The
main aim of this game is to find the best path in terms
of security, cost etc.

VII. CONCLUSIONS

WMNs gained significant attention because of the
numerous applications it supports, e.g., broadband home
networking, community and neighborhood networks, de-
livering video, building automation, in entertainment and
sporting venues etc. But the main challenge of these
multihop networks is the susceptibility to various secu-
rity threats. In this paper we study the gray hole attacks
in mesh networks and formulate a non cooperative, non
zero-sum two player markov game to detect these attacks

Fig. 4. The utilities of S and B, (Us, Ub), as a function of qd for
constant value of pb=pd = 0.5

Fig. 5. The utilities of S and B, (Us, Ub), as a function of qd for
constant value of pb = 1, pc=0

Fig. 6. The utilities of S and B, (Us, Ub), as a function of pb for
constant value of qd = 0, qf =1



Fig. 7. The utilities of S and B, (Us, Ub), as a function of pb for
constant value of qd = 0.25, qf =0.75

Fig. 8. The utilities of S and B, (Us, Ub), as a function of pb for
constant value of qd = 0.5, qf =0.5

Fig. 9. The utilities of S and B, (Us, Ub), as a function of pb for
constant value of qd = 1, qf =0

and find the best path in terms of security and cost. We
saw that when the dropping probability of the attacker
increases, the utility of genuine player I decreases and
counteracts to this situation by switching to a high cost
secure path with higher probability. The main aim of
this paper was to show the significant role of security in
selecting a path in addition to energy consumption and
link quality.
Our future work is to investigate the security issue in a
more complex network of mesh routers and relaxing the
assumption that any loss of packet in the network is due
to the presence of an attacker.
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