
Mutual Information Based Distance Measures for Classification and
Content Recognition with Applications to Genetics

Zaher Dawy1,3, Joachim Hagenauer1, Pavol Hanus1, and Jakob C. Mueller2

1Munich University of Technology, Institute for Communications Engineering (LNT), Arcisstr. 21, 80290 Munich, Germany
2National Research Center for Environment and Health (GSF), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany

3American University of Beirut, Department of Electrical and Computer Engineering, Beirut, Lebanon

Email: zaher.dawy@aub.edu.lb, hagenauer@tum.de, pavol.hanus@mytum.de, jakob.mueller@gsf.de

Abstract— Possibilities of using mutual information for clas-
sification and content recognition are exploited. Two different
mutual information based distance measures are proposed, one
for classification and one for content recognition. The measure
proposed for classification is shown to be a metric. The influence
of compression based estimation methods on the proposed mea-
sures is investigated. Several examples of successful applications
in the field of genetics are presented.

I. INTRODUCTION

Mutual information describes the amount of information
shared by stochastic processes. It can thus be used to derive
distance measures quantifying the similarity of the processes.
Such distance measures are needed for classification and
content recognition. A source generating messages, e.g. a
person writing articles or nature generating genetic sequences
for individuals from a particular species, can be regarded as a
stochastic process. Mutual information based distance measure
can thus be used to compare texts written by different authors
or to build phylogenies of animal species. The calculation of
mutual information requires knowledge about the entropies
of the compared sources. Often the entropy has to be ap-
proximated based on one representative message generated
by a given source. According to Shannon’s source coding
theorem an approximate value for the entropy of a source
can be derived from the compression ratio achieved by an
ideal lossless compressor for that source. The idea of using
compression based distance measures for classification and
content recognition is not new. Different distance measures
have been proposed for this purpose [1] [2].

The main aim of this paper is to propose two universal
well-founded distance measures based on mutual information
for both classification and content recognition. An analysis
of their theoretical performance, as well as their behavior
when compression based approximations of the entropy rates
are being used, is given. The presented results focus on
applications from the field of genetics. However, the pro-
posed measures are universal and applicable to all kinds of
sources, e.g. text based sources. The problems of classification
and content recognition are formally defined in Section II.
A derivation of two mutual information distance measures
follows in Section III. In Section IV these measures are
approximated using lossless compression algorithms. Some
results are presented in Section V, conclusions in Section VI.

II. CLASSIFICATION AND CONTENT RECOGNITION

Let S be a discrete source emitting symbols Xi where
i ∈ N. The symbols Xi are modeled as random variables
with realizations in the finite alphabet X of size |X | =
L. The source’s output is a sequence of random variables
X1,X2, . . . , Xn and can be modeled as a stochastic process.
The source is characterized by the joint probability mass
function

pX1,X2,...,Xn
(X1,X2, . . . , Xn), n ∈ N. (1)

The sources entropy rate is calculated as follows:

H(S) = lim
n→∞

1
n

H(X1, . . . , Xn). (2)

An upper bound for the entropy rate can be estimated by
assuming a stationary memoryless source with a uniformly
distributed symbol alphabet. For a DNA sequence using a four
symbol alphabet the upper limit would be 2 bit, but since life
represents order a lower entropy rate can be expected for the
DNA.

Shannon’s fundamental theorem on data compression states
that every source can be losslessly compressed up to its
entropy rate H(S). Thus, the compression ratio achieved by
an optimal compression algorithm designed for a given source
S when compressing a message s generated by this source is
a good approximation of the sources actual entropy rate

H(S) ≈ |comp(s)|
|s| . (3)

It is impossible to design one optimal compression algo-
rithm for all sources. For practical reasons, universal compres-
sors are made for a class of sources. They use a compressor
model that is based on statistical properties common to all
sources in the class. The model corresponds to the way the
algorithm organizes and fills its memory. The actual content
of the compressor’s memory represents the parameters of the
compressor model. The investigated compression algorithms
work sequentially and stepwise. In each step they compress
a fragment of the message and adjust their parameters based
on the part of the message compressed so far. DNACompress
is currently the best compression algorithm for DNA class of
sources [3]. The fact that DNA sequences contain many ap-
proximate repeats is used as compressor model. The parameter
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of the model is the buffer containing the sequence searched
for the repeats.

Classification is used to build clusters of sources Si, i ∈
{1 . . . |M|} from a set M based on chosen criteria. A distance
function d(Si, Sj) quantifying the similarity of the sources
needs to be defined. The distance function has to span a
bounded metric space. Formally, a metric space M is a set
of points with an associated distance function d(Si, Sj) :
M×M �→ R

+ satisfying the following conditions [4]:

1) d(Si, Sj) = 0 iff Si = Sj (identity of indiscernibles),
2) d(Si, Sj) = d(Sj , Si) (symmetry),
3) d(Si, Sj) ≤ d(Si, Sk) + d(Sk, Sj) (triangle inequality).

The metric space is bounded if there exists some number r,
such that d(Si, Sj) ≤ r,∀Si, Sj ∈ M. In a bounded metric
space it is possible to build unambiguous clusters based on
the distances d(Si, Sj).

Content recognition serves a different purpose. Here a set
C of known content sources SC

i , i ∈ {1 . . . |C|} is provided
together with a set U of unknown sources SU

j , j ∈ {1 . . . |U|}.
The goal is to find the best matching content source SC

b

to every unknown source SU
j , which leads to the minimum

distance b = arg mini(d(SC
i , SU

j )). The distance measure for
content recognition does not have to be a metric. The quality
of content recognition can be quantified as the difference in
percent between the minimal and the actual distance

q(i, j) =
d(SC

i , SU
j ) − d(SC

b , SU
j )

d(SC
b , SU

j )
. (4)

Distance measures leading to higher values of q(i, j) are more
robust for content recognition.

III. MUTUAL INFORMATION DISTANCE MEASURES

Information theory describes the relatedness of two sources
Si and Sj as the mutual information I(Si;Sj) shared by these
sources

I(Si;Sj) = H(Si) − H(Si|Sj)
= H(Sj) − H(Sj |Si) = I(Sj ;Si). (5)

From this, one can easily show that

0 ≤ I(Si;Sj) ≤ min(H(Si),H(Sj)). (6)

Mutual information is an absolute measure of information
common to both sources. For independent sources, it converges
towards zero. However, mutual information by itself would not
be a suitable measure, because it is not a distance and it is not
bounded. We can make it a bounded distance by normalizing
it and subtracting it from one. The normalization can be done
in two different ways.

One way is to normalize by the maximum possible mutual
information the two sources can share, see (6), resulting in

dCR(Si, Sj) = 1 − I(Si;Sj)
min(H(Si),H(Sj))

. (7)

Thus,
0 ≤ dCR(Si, Sj) ≤ 1. (8)

dCL

dCR

I(Si;Sj)
H(Sj)Imax = H(Si)

1

0

d

Fig. 1. Plot of dCR and dCL depending on I(Si; Sj) assuming H(Si) <
H(Sj).

The lower bound is reached for sources that share the maxi-
mum possible mutual information given their entropies.

The other possibility is to normalize by the maximum
entropy of both sources resulting in

dCL(Si, Sj) = 1 − I(Si;Sj)
max(H(Si),H(Sj))

. (9)

Thus,

1 − min(H(Si),H(Sj))
max(H(Si),H(Sj))

≤ dCL(Si, Sj) ≤ 1. (10)

The distance measure in (9) evaluates to zero only for identical
sources Si = Sj , because only identical sources share the
maximum possible information and have identical entropies
at the same time H(Si) = H(Sj) = I(Si;Sj). This distance
additionally reflects whether the sources are identical or not.

Fig. 1 shows the behavior of dCR and dCL depending on the
mutual information I(Si;Sj), assuming H(Si) < H(Sj). The
distance measure dCL can reach zero only for sources with
identical entropies H(Si) = H(Sj). The distance measure
dCR however can reach zero even if the entropies H(Si)
and H(Sj) differ and the sources are thus not identical. This
means that dCR unlike dCL does not fulfill the identity of
indiscernibles axiom, but only the identity axiom d(Si, Si) =
0. The symmetry axiom is fulfilled by both measures, as
can be seen from the measure definitions (7) and (9). Fig. 1
additionally shows that both measures depend linearly on
the mutual information I(Si;Sj). While dCR uses the whole
spectrum of values from 0 to 1 for every entropy combination,
dCL only for sources with equal entropies. Therefore dCR can
be considered more robust which makes it at least a better
candidate for content recognition. The steeper slope of dCR

leads to higher values for q(i, j) for dCR than for dCL given
the same sources SC

i , SC
b and SU

j , see (4) and Fig. 1 .
For classification purposes however, the triangle inequality

must be fulfilled as well for the distance measure to be a metric
(necessary for forming unambiguous clusters). Unfortunately,
this is not the case for dCR. Just imagine a situation where
dCR(Si, Sk)+dCR(Sk, Sj) = 0, then d(Si, Sj) must be equal
to zero to satisfy the triangle inequality. This can however not
be guaranteed, if H(Sk) = min(H(Si),H(Sj),H(Sk)).
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The distance dCL(Si, Sj) can also be written as:

dCL(Si, Sj) =
max(H(Si|Sj),H(Sj |Si))

max(H(Si),H(Sj))
. (11)

This resembles the similarity metric based on Kolmogorov
complexity proposed in [2], proven to satisfy the triangle
inequality up to an additive constant term. By conducting a
similar proof it can be shown that the dCL measure satisfies
perfectly the triangle inequality and is thus a metric. A
prerequisite resulting from the chain rule for uncertainty is
necessary to be able to conduct the proof. By applying the
chain rule twice for three sources Si, Sj and Sk it can be
written:

H(Si|Sj) = H(Sk|Sj)+H(Si|Sj , Sk)−H(Sk|Si, Sj). (12)

Thus following inequality must be true

H(Si|Sj) ≤ H(Sk|Sj) + H(Si|Sk). (13)

In summary, it can be said that the distance function dCR

should be the better choice for content recognition as it is more
robust and dCL should be the better choice for classification
as it satisfies the triangle inequality. The presented measures
are universal and can be used with any kind of sources.

IV. THE MEASURES AND COMPRESSION ALGORITHMS

In the following we will analyze the performance of the
measures, when real-life compression algorithms are used to
estimate the entropy rates of the sources. For this purpose dCR

will like dCL in (11) be first reformulated using conditional
entropies to give

dCR(Si, Sj) =
min(H(Si|Sj),H(Sj |Si))

min(H(Si),H(Sj))
. (14)

We do this because the resulting terms are very compact and
for non-ideal approximations of entropy this is an advantage.

The following approximations will be used

H(Si|Sj) =
|comp(sj , si)| − |comp(sj)|

|si| ,

H(Si) =
|comp(si)|

|si| , (15)

where si and sj are the messages generated by the sources Si

and Sj , respectively. Because we use one compressor designed
for a class of sources, we approximate the conditional entropy
as the compression ratio achieved for si when the compressors
parameters are first trained on sj . This can be done by first
concatenating sj and si in the mentioned order and compress-
ing them together resulting in |comp(sj , si)|. The result of the
compression up to the start of si is identical to the compression
of sj by itself, |comp(sj)|, because the algorithm works se-
quentially. Therefore (|comp(sj , si)|−|comp(sj))|/|si| is the
most suitable approximation for the conditional entropy rate
H(Si|Sj). Plugged into (11) for |comp(si)| > |comp(sj)|,
this results in

dCL =
|comp(sj , si)| − |comp(sj)|

|comp(si)| . (16)

The same expression as in (16) applies to dCR except that for
|comp(si)| < |comp(sj)|. What sequence to compress first,
is decided based on the sizes of the compressed sequences,
not the compression ratios achieved for the sequences, when
the approximations in (15) are used. The distance can be seen
as the ratio of the compressed size of si (|compsj

(si)| =
|comp(sj , si)| − |comp(sj)|), when the compressors model
parameters are first tuned using sj , to the compressed size of
si (|comp(si)|), when the compressor starts using the default
parameters. The compressed size |comp(si)| has now become
the normalizing term.

The presented approximation works best for compression
algorithms that greatly suffer from a wrong initial parameter
set and perform very well with a good initial parameter set
for the given class of sources. These are not necessarily
the algorithms achieving the best compression ratios for the
investigated class of sources. An example would be the PPM
(Prediction by Partial Matching) compressor [5]. When applied
to genetic sequences, it performs quite badly with respect
to compression, however it works well for classification and
content recognition. Due to the denominator term in (16)
compressors complying with the above property and perform-
ing well when compressing the class of sources by itself are
expected to achieve the best results.

V. SIMULATION RESULTS

The performance of the presented distance measures dCR

and dCL for classification and content recognition is tested
on genetic data. The simulation results confirm that dCL

is a better choice for classification and dCR for content
recognition. Performance of different compression algorithms
with the proposed compression based entropy rate approxima-
tion is evaluated. Following algorithms were tested: Lempel-
Ziv (LZ), Context Tree Weighting (CTW), Burrows Wheeler
Transform (BWT), Prediction by Partial Matching (PPM) and
DNACompress. In general PPM and DNACompress performed
best for the classification and content recognition of genetic
sequences.

First the compression performance of the investigated al-
gorithms on data used later for classification and content
recognition is analyzed. All considered sequences are taken
from the NCBI database [6]. The upper part of Table I shows
the compression performance using mtDNA (mitochnodrial
DNA) sequences of different high level animals. The se-
quences are each about 16,000 nucleotides long and consist
mainly of coding DNA. The mtDNA is particularly suitable
for phylogenetic research as it mutates 6 to 17 times faster
than nuclear DNA and is inherited only maternally preserving
information about ancestry. It can be seen that the compression
ratios for mtDNA are relatively high and that BWT, LZ and
PPM expand the sequences instead of compressing them. CTW
and DNACompress manage to compress the mtDNA.

The lower part of Table I shows compression ratios achieved
for three major types of DNA. The first 300,000 nucleotides
of each type were cut out from the human chromosome 1
and concatenated for this purpose. Extra-gene (eg) DNA are
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Sequence BWT LZ CTW PPM DNAc

mtDNA-human 2.2106 2.4303 1.9345 2.0566 1.9306
mtDNA-horse 2.1825 2.4058 1.9280 2.0303 1.9116
mtDNA-rat 2.2037 2.4245 1.9225 2.0299 1.9171
c1eg-300kb 2.0749 2.1533 1.8841 1.8718 1.4294
c1in-300kb 2.0614 2.1569 1.8803 1.7637 1.5295
c1ex-300kb 2.1084 2.1566 1.8840 1.8992 1.8300

TABLE I

COMPRESSION RATIOS IN bit/nucleotide.

regions between genes not participating in protein synthesis.
Inside genes exons (ex) and introns (in) are found, whereas
only exons are coding regions actually translated into proteins.
Exons experience a relatively low mutation rate compared
to non-coding regions. Triplets of exon nucleotides code for
amino acids. Therefore a stronger local dependency can be
expected from an exon source, however it contains only little
redundancy and its compressibility is thus limited. Non-coding
DNA contains many approximate repeats and palindromes
and should therefore be better compressible by a suitable
compressor model. The results indicate that CTW, PPM and
DNACompress are capable of actually compressing these
sequences, whereas DNACompress achieves the best results.

For classification and content recognition the absolute com-
pression performance is secondary . It is more important that
the approximation used for conditional entropy in (15) is
very sensitive to dissimilarities. For this purpose the com-
pressors parameters must be difficult to unlearn once trained
on a dissimilar sequence to the one being compressed and
they must lead to good compression ratios when a similar
sequence is compressed. Such algorithm must consider distant
dependencies equally important to local ones, so that the
training sequence does not gradually loose its influence on the
overall compression performance. The LZ type compressors
are strongly biased in favor of local dependencies. The CTW
algorithm gives gradually decreasing importance to distant
dependencies. Finally PPM and DNACompress treat distant
repeats about equally important to local ones. Table II demon-
strates this behavior. For this purpose six different mtDNA
sequences were concatenated. One time two close sequences
of two chimpanzees s1 and s2 were put next to each other
after the other four sequences and compressed. The other
time the other four sequences were placed between them
in the concatenation. Additionally, it can be seen that PPM
and DNACompress were able to use the similar sequence to
achieve better compression (compare Table I with Table II).

Sequence BWT LZ CTW PPM DNAc

4x-s1-s2 2.0487 2.0041 1.8849 1.7430 1.5660
s1-4x-s2 2.0487 2.2126 1.8837 1.7397 1.5692

TABLE II

COMPRESSION PERFORMANCE: LOCAL VS. DISTANT DEPENDENCIES.

Compression based classification relying on mutual
information can be successfully applied e.g. to phylogenetic
research. The evolutionary model assumes a common ancestor
for all living organisms. A new species evolves when one

guinea pig

carp

platypus
echidna
rat
mouse

gibbon
orangutan
gorilla
human
chimp
pygmy chimp

cat
bear
harbor seal
gray seal
rhinoceros
horse
cow
blue whale
finback whale

opossum
wallaroo

ferungulates

rodents

primates

metatheria

prototheria

Fig. 2. Evolutionary tree based on mtDNA. Built using the distance metric
dCL, DNACompress for compression, and quartet method for tree generation.

part of the members of a species stops interbreeding with
the other. The exchange of genetic information stops and
the two new species continue developing separately. They
become different sources with independently mutating
statistics. Gradually they share less and less of the originally
identical information. Thus, by taking DNA samples of
currently existing species and measuring the amount of
shared information with the other species, we should be able
to reconstruct the phylogeny. Fig. 2 shows an evolutionary
tree constructed from distances calculated using the mutual
information distance metric dCL and DNACompress as
compression algorithm. Please note, that the length of the
branches does not correspond to the actual distances. The
used sequences are complete mtDNA reference sequences of
the organisms obtained from the NCBI database [6] using the
following accessions (V00654-cow, X61145-finback whale,
X72204-blue whale, X63726-harbor seal, X72004-gray seal,
U20753-cat, X79547-horse, X97336-rhinoceros, AJ428577-
bear, AJ222767-guinea pig, AY172335-mouse, X14848-rat,
AF347015-human, D38113-chimpanzee, D38116-pygmy
chimpanzee, D38114-gorilla, D38115-orangutan, X99256-
gibbon, Z29573-opossum, Y10524-wallaroo, X83427-
platypus, AJ303116-echidna, AY694420-carp). The chosen
tree generation method is the quartet method presented
in [7], with carp used as outgroup. It can be seen that
using dCL we are able to group marsupials=(metatheria,
prototheria), eutheria=((primates,ferungulates),rodents) and
mammals=(marsupials,eutheria) complying with the currently
accepted ordering. The origin of guinea pig is widely disputed.
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Our result reflects the hypothesis that it is a mammal that
separated at an early stage from the remaining mammals. The
detailed branches of the subtrees are biologically correct as
well. Using PPM and dCL results in a slightly different tree,
where the group (rhinoceros+horse) is misplaced. The same
happens when dCR is used in combination with PPM or
DNACompress. This verifies the expected superior behavior
of dCL for classification.

To demonstrate the content recognition performance of the
measures, we present the results for content recognition of
extra-genetic regions (eg), exons (ex) and introns (in). As
content sequences the first 50,000 nucleotides of concatenated
sequences of each type from the human chromosome 19 were
taken. Sequences of different sizes of each type taken from the
beginning of chromosome 1 were used as unknown sequences.
For each unknown sequence j the distance dCR(SC

i , SU
j )

and dCL(SC
i , SU

j ) to every content sequence i was calculated
together with the difference in percent to the best matching
content sequence q(i, j), see (4). The best matching sequence
is indicated with the string ’best’ instead of the value q(i, j).
Results obtained using DNACompress and PPM are shown in
Table III (notation: c19eg-50kb means an extra-gene sequence
from chromosome 19 with size 50 kilo bases). It can be seen
that the values of q(i, j) are higher for dCR than for dCL.
This confirms our expectation and emphasizes that dCR is
better suited for content recognition. Additionally using dCR

as distance measure both PPM and DNACompress were able
to recognize c1in-13kb correctly as an intron, unlike with dCL,
confirming our hypothesis about better robustness of dCR.
A closer look reveals that PPM failed to recognize c1ex-
13kb (sequence of 13,000 nucleotides from chromosome 1)
while DNACompress did not. This can be explained by the
superior performance of DNACompress when compressing
extra-genetic and intrinsic regions, which allows it to easily
distinguish them from exons. Looking at the very low distance
values obtained for d(c1eg-300kb,c19eg-50kb) it seems that
the two chromosomes share some part of the sequence. In
general, the content recognition of exon, intron and extra-
gene sequences worked quite well using both DNACompress
and PPM. As introns and extra-genetic regions are non-coding
regions they are not as sensitive to mutations as exons. Their
higher mutation rate lets us assume quite a different statistics
from the exons. The obtained results confirm this by indicating
that extra-genetic regions are closer to introns, see the lower
distances for eg-in combinations.

VI. CONCLUSIONS

Two universal distance measures for comparison of sources
based on the mutual information they share were presented.
One of the measures (7) has been shown to be superior for
content recognition applications. On the other hand, the second
measure (9) has been shown to be a metric, thus, superior for
classification. An analysis of the performance of both measures
was provided for entropy rate approximations using non-ideal
lossless compression algorithms. Successful applications from
genetics were presented confirming the assumed properties

DNACompress
SU

j \SC
i c19eg-50kb c19in-50kb c19ex-50kb

dCR(SC
i , SU

j ) − q(i, j)

c1eg-300kb 0.041-best 0.842-1940% 1.025-2383%
c1eg-13kb 0.651-best 1.013-55.6% 1.009-55.0%
c1in-300kb 0.933-59.5% 0.585-best 1.014-73.3%
c1in-13kb 1.000-1839% 0.052-best 1.068-1970%
c1ex-300kb 1.017-5.6% 1.006-4.5% 0.963-best
c1ex-13kb 0.985-18.7% 0.944-13.7% 0.830-best

dCL(SC
i , SU

j ) − q(i, j)

c1eg-300kb 0.786-best 0.971-23.5% 1.006-28.0%
c1eg-13kb 0.912-best 1.004-10.1% 1.003-9.9%
c1in-300kb 0.988-5.8% 0.933-best 1.007-7.8%
c1in-13kb 0.935-best 0.994-6.3% 1.012-8.2%
c1ex-300kb 1.006-1.2% 1.003-0.9% 0.994-best
c1ex-13kb 0.997-3.6% 0.986-2.6% 0.962-best

PPM
SU

j \SC
i c19eg-50 c19in-50 c19ex-50

dCR(SC
i , SU

j ) − q(i, j)

c1eg-300kb 0.067-best 0.803-1093% 1.005-1394%
c1eg-13kb 0.630-best 0.969-53.8% 1.001-58.8%
c1in-300kb 0.929-73.1% 0.536-best 1.013-88.8%
c1in-13kb 0.955-964% 0.090-best 1.021-1038%
c1ex-300kb 1.026-2.5% 1.026-2.6% 1.000-best
c1ex-13kb 0.951-best 0.967-1.7% 1.009-6.0%

dCL(SC
i , SU

j ) − q(i, j)

c1eg-300kb 0.832-best 0.971-16.7% 1.000-20.2%
c1eg-13kb 0.904-best 0.996-10.2% 1.001-10.7%
c1in-300kb 0.986-6.6% 0.926-best 1.003-8.4%
c1in-13kb 0.929-best 0.977-5.2% 1.002-7.9%
c1ex-300kb 1.001-0.0% 1.003-0.2% 1.001-best
c1ex-13kb 0.991-best 0.994-0.4% 1.001-1.0%

TABLE III

CONTENT RECOGNITION USING DNACOMPRESS AND PPM WITH dCR

AND dCL .

for each measure. Different compression algorithms were
examined with respect to their classification and content recog-
nition performance when applied to genetic data. Finally, very
similar results and trends have been obtained from applications
involving other classes of sources, namely the applications of
language recognition and authorship attribution.
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