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Abstract— Linkage disequilibrium has gained a lot of attention
recently since it can be effectively utilized in various problems
in the field of statistical genetics, for example gene mapping and
evolutionary inference. In this work, we propose and analyze a
new algorithm for linkage disequilibrium based on independent
component analysis (ICA). The results comply with results
obtained using other published methods. However, the proposed
algorithm is able in some cases to discover new patterns due to
the inherent properties of ICA and is more robust compared to
other techniques since it estimates the missing values.

I. INTRODUCTION

Two genetic markers are said to be in linkage disequilib-
rium (LD) if their alleles are dependent. LD increases the
fine mapping ability of complex diseases since the single
nucleotide polymorphisms (SNPs) that were skipped in geno-
typing could be located by dependency. However, the ability
to detect these associations depends on several factors such
as the properties and the locations of the SNPs [1]. Various
methods have been developed to measure LD in genomic data.
Some are limited to single marker analysis [2], [3] while
others like [4], [5] investigate the dependency among groups
of polymorphisms. The latter class of techniques is capable of
better capturing the genetical variations among individuals.

In this direction, we propose a novel algorithm that is
capable of detecting the intragenic dependencies based on
independent component analysis (ICA). ICA is a well-known
signal processing technique that tries to extract the components
that are nearly independent of each other from a mixture of
signals, e.g. see [6], [7]. Hence, this property will be employed
to capture the dependencies among different groups of SNPs.
In other words, ICA will be used to identify the dependent
genes by considering them as one component.

Section II presents how the data was modeled to use
ICA. Section III shows the different steps of the proposed
algorithm. Section IV illustrates the results obtained by testing
the algorithm. Finally, Section V draws some conclusions.

II. PROBLEM MODEL

Given a study comprising a population of N individuals
where for each individual a bi-allelic SNP sequence of length
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Fig. 1. An example of SNPs transforming to SNP expressions.

M is provided. We assume that the SNPs have been trans-
formed by some unknown means to form some independent
SNP expressions, e.g. see Fig. 1.

Assuming that the expressions are independent sources
and the transformation process is a mixing environment, the
problem can be translated into an ICA based problem where
a set of SNP expressions that are almost independent of
each other have to be estimated along with some mixing
environment. Consequently, the SNPs that contribute to one
expression will be dependent while the others are independent.
The expressions that have to be estimated by ICA must be non-
Gaussian distributed for the algorithm to work. In addition,
the model is assumed to be linear. This is motivated by
recent results in microarray data analysis [8], [9] and in gene
mapping [10].

III. THE GENE CLUSTERING ALGORITHM

The proposed clustering algorithm is demonstrated in Fig. 2.
Besides ICA, it is composed of three additional steps. First, the
missing values due to genotyping errors should be estimated.
This is performed by using Bayesian principal component
analysis (BPCA) since it gives lower error rates when com-
pared to other techniques and it does not require any model
assumption [11]. Next, the number of components (clusters) to
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Fig. 2.



be determined by ICA should be computed. The methodology
used is similar to the one implemented by [12] in factor analy-
sis. However, this method has been adapted to be compatible
with PCA [10]. What has to be done is to compute the SNP
covariance matrix, perform its singular value decomposition
(SVD), and calculate its approximate covariance matrix by
removing one or more singular values. The optimal dimension
is found by taking the minimal dimension where the standard
deviation of the error difference between the two matrices is
less than that of the standard deviation of a distribution with
zero correlation, i.e. 0,_, = N~/2. The dimension found is
then passed to the third step which is PCA for whitening
and dimension reduction. Finally, the new transformed data is
processed with ICA. The plot of the obtained demixing matrix
will reflect the clusters of SNPs.

IV. RESULTS AND ANALYSIS

We have tested the algorithm on various data sets. We
present results for two clinical data sets. In the ICA block, we
used the FastICA algorithm [7]. The first study was performed
on the data set of the T-lymphocyte regulatory genes used
in [13]. It contains a sequence of 108 SNPs genotyped from
1036 individuals. Among all the genotype values, 2.87% are
missing which we estimate using BPCA. The optimal number
of clusters is found to be 9 and the total variance is 74%
of the total one. Due to space limitations, Fig. 3 illustrates
the plot of only one of the obtained clusters where every
SNP location in kilo-base pairs (kbp) is plotted versus its
contribution (SNP factor). Compared to Fig. 1 in [13], it is
shown that the proposed algorithm detects successfully the
LD block. The presence of other clusters in the final result
suggests that there are other clusters in the data. This outcome
could not be achieved by the other algorithm.
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Fig. 3. Outcome of the proposed algorithm: Plot of the component
relative to Fig. 1 in [13].

The second tested data set is described in [14]. It comprises
a sequence of 103 bi-allelic SNPs collected from 387 individu-
als where 10% of the total genotypes are missing. The authors
categorized the data into 11 major blocks. The proposed
clustering algorithm was capable of detecting a subset of these
blocks. However, some of the obtained clusters captured more
than one block. This is due to the fact that ICA tries to find
similarities among any combination of SNPs, a job that is not
performed by the other techniques. Fig. 4 shows the plots of
the third block (SNPs 16 to 24) and seventh block (SNPs 46 to
76) where each SNP position is plotted versus its contribution.
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Fig. 4. Outcome of the proposed algorithm for the data set from [14].
Left: Plot of component relative to block 3 in [14]. Right: Plot of the
component relative to block 7 [14].

V. CONCLUSIONS

This paper exploited the use of ICA in gene clustering. ICA
was selected due to its capability of finding components that
are as much as possible independent while PCA alone finds
the components that are only uncorrelated but not necessarily
independent [6]. Nevertheless, PCA was necessary to reduce
the dimension of the data. The proposed algorithm estimates
the missing values eliminating the need to neglect samples
and determines the number of clusters automatically taking
into account the structure of the data. Results obtained comply
with other techniques with the capability of detecting more LD
combinations in some cases.
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