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ABSTRACT
Identifying the causal genetic markers responsible for com-

plex diseases is a main aim in human genetics. In the con-

text of complex diseases, which are believed to have multi-

ple causal loci of largely unknown effect and position, there

is a need to develop advanced methods for gene mapping.

In this work, we propose a novel algorithm based on inde-

pendent component analysis for gene mapping. To apply

the algorithm, we model the intra-cellular interactions as a

mixing process of multiple sources. Results prove the supe-

riority of the proposed algorithm over conventional statisti-

cal based methods, and demonstrate yet another successful

application of a well known signal processing technique to

an important problem in the field of human genetics.

1. INTRODUCTION

Gene mapping tries to identify the causal genetic markers

that are responsible for apparent phenotypes such as com-

plex diseases [1, 2]. With the development of rapid and cost-

effective genotyping methods, the focus of research is shift-

ing towards population-based case-control studies. These

studies usually investigate sequences of Single Nucleotide

Polymorphisms (SNPs) which are the predominant form of

polymorphisms in the human genome. A number of stan-

dard statistical methods, e.g. Chi-squared or Haplotype Trend

Regression (HTR) tests, are normally employed for gene

mapping purposes [3, 4]. These methods do not follow an

analytical approach to model the problem and are mainly

based on a single SNP analysis which does not reveal pos-

sible interactions among the SNPs.

Recently, there has been an elevated interest in the inter-

disciplinary field of genomic signal processing which aims

at applying signal processing techniques to problems in the

field of human genetics, e.g. see [5, 6, 7]. In this direction

of research, we propose a novel algorithm based on Inde-

pendent Component Analysis (ICA) to locate SNPs that are

causal loci for complex diseases. ICA is a well known sig-

nal processing technique, e.g. see [8, 9]. The essence of the

algorithm is based on finding a suitable model that involves

mixing of various sources so that ICA can be applied. The

proposed algorithm is shown to perform better than conven-

tionally used techniques and to be robust against missing

values that occur due to genotyping failures.

Section 2 presents how the data was modeled to use

ICA. Section 3 shows the different steps required to perform

the proposed algorithm. Section 4 illustrates the results ob-

tained by testing the algorithm on simulated and clinical

data sets. Finally, Section 5 draws some conclusions.

2. PROBLEM MODEL
Given a study comprising a total of N individuals (samples)

divided among cases (sick) and controls (healthy) where for

each individual a SNP sequence of length M is provided.

We assume that the SNPs have been transformed by un-

known means to form some SNP expressions which will

later affect a given phenotype (or disease), see Fig. 1. These

expressions may be independent gene expressions or pro-

teins in any living organism. Consequently, assuming that

the expressions are independent sources and the transforma-

tion process is a mixing environment, the problem changes

to an ICA based problem where a set of SNP expressions

that are almost independent of each other have to be esti-

mated along with some mixing environment.

Fig. 1. SNPs transforming to SNP expressions.

Let S ∈ R
N×M contain the SNP sequences of all indi-

viduals. The general form of the problem is expressed as:

E = SA, (1)

where E ∈ R
N×P is the matrix of independent SNP expres-

sions, A ∈ R
M×P is the mixing matrix, and P is the num-
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ber of SNP expressions. Each column of E corresponds to

the independent expression to be determined while each row

presents the group of expressions that a person has. Simi-

larly, matrix A or the SNP coefficient matrix determines the

magnitude of contribution of each SNP to the correspond-

ing expression. Each column of A contains the dependent

SNPs’ contribution to one of the expressions; therefore, the

SNPs that contribute to one single expression are dependent

while the ones that affect different expressions are almost

independent. This verity will help determining if the SNPs

are dependent or not for a multiple loci disease.

However, we are given the genotype data and not the

SNP expressions. Hence, (1) should be rewritten as:

S = EA+ = ED (2)

where D, the demixing matrix, is the pseudo-inverse of A.

The reason the problem was not derived directly as in (2) is

the biological process itself. Usually, the SNPs determine

the expressions and not vice versa. Consequently, ICA has

to estimate D and E from the SNP matrix S. This model

will use the provided genotype data to classify the SNPs

into independent SNP expressions and then map the results

to the phenotype to locate the causal SNPs. The specific

steps of the proposed algorithm are detailed in Section 3.

Note that the only assumption made is on the distribu-

tion of the SNP expressions. The independent components

to be estimated by ICA must be non-Gaussian distributed

for the algorithm to work [8]. Moreover, the model is as-

sumed to be linear. This is motivated by recent results ob-

tained for microarray data analysis where the authors vali-

date the accuracy of a linear model for ICA [10, 11].

3. THE GENE MAPPING ALGORITHM
The proposed gene mapping algorithm is composed of sev-

eral steps, in addition to ICA, as shown in Fig. 2.

Fig. 2. Flow chart of the proposed gene mapping algorithm.

3.1. Missing Values Estimator
During genotyping, the nucleotides for some SNP locations

are normally missing due to genotyping failures. To over-

come this restriction, these values have either to be esti-

mated or the samples that contain missing elements must

be skipped. The second solution is not favorable since the

amount of available data in clinical data sets is scarce and

does not accommodate the elimination of extra samples.

Several solutions have been proposed in the literature to

estimate the missing values [12]. The method that we adopt

is Bayesian PCA (BPCA) because it gives lower estimation

error-rates when compared to other methods, Moreover, it

does not require any assumption of an underlying model and

converges almost always to one solution [13].

BPCA starts by performing PCA while filling the miss-

ing values by the SNP-wise row average. Then, the distri-

bution that best fits the missing values is determined using

the variational Bayes algorithm. Consequently, these values

are filled according to the found distribution. BPCA was

originally designed for microarray data so its results have

continuous values. Hence, we quantize its outcome as SNPs

belong to a finite set of values, e.g. ternary or quaternary.

3.2. Optimal Number of Components Estimator
The second critical issue that should be dealt with is the

number of SNP expressions (components) that has to be es-

timated by ICA. Choosing all the components of the data

will increase the noise since the eigenvalues with low power

comprise noise more than information [8]. Another pro-

posal would be to choose all components that have eigen-

values larger than one [14]. This solution is also not very

practical since it does not consider the structure of the data

and reduces most of the time too much the data’s dimension.

The methodology followed in this work is based on sta-

tistical fit. The idea is similar to the one introduced by [15]

in factor analysis. This method is adapted to fit in the con-

text of PCA. What has to be done here is to compute the co-

variance matrix CS of the SNP matrix S, perform Singular

Value Decomposition (SVD) on it, set the smallest eigen-

value to zero, compute the approximate covariance matrix

C̃S , and finally calculate the error difference between the

two matrices. This process is repeated until a dimension

m is found where the standard deviation of the error be-

comes greater than the standard deviation of a distribution

with zero correlation, i.e. σr=0 = N−1/2. Consequently, the

number of SNP expressions P that has to be estimated by

ICA is nothing but (m−1). This dimension should be given

to PCA (step 3) for sphering and dimension reduction of the

data. Then, the new transformed data should be handed to

ICA (step 4) to determine the SNP expressions.

3.3. SNP Expressions Significance Measure
The obtained SNP expressions do not relate to the complex

disease under study unless their relative importance to the

phenotype is measured. Linear least squares regression is

used in this work to measure the distance of each SNP ex-

pression to the phenotype. The larger the regression coef-

ficients, the more important are the SNP expressions to the

phenotype. Nevertheless, the aim of the algorithm is to find
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out the contribution of each SNP; thus, each term of the re-

gression coefficients must be multiplied by the correspond-

ing column of the SNP coefficient matrix A as follows:

W =
(

a1 · k1 . . . aP · kP

)
, (3)

where matrix W ∈ R
P×M is the weighted SNP coeffi-

cient matrix, {a1, . . . ,aP} are the columns of matrix A, and

{k1, . . . , kP} are the regression coefficients.

What is left to be done is to choose the columns of ma-

trix W that are most relevant to the phenotype. This can

be simply done by choosing the columns in which the re-

gression coefficients have p-values less than 0.01 for 99%

confidence level and disregarding all the others.

3.4. SNPs Significance Measure
In the final step of this algorithm, the significant SNPs that

are most probably causing the disease have to be located

from the relevant columns of W. A common solution in ge-

netics is the permutation test that was proposed by [16].

This test requires at each step the permuting of either the

phenotype or the genotype data and then applying the gene

mapping algorithm. This is done to destroy any relationship

between the genotype and the phenotype of the marker loci

in the results to obtain a distribution that should be similar to

the one when there is no link between the genotype and the

phenotype. The procedure is repeated tens of thousands of

times. Then, the results are mapped into non-overlapping

intervals allowing to build the required statistics at each

SNP location. Hence, the border line that determines the

significance of each SNP is nothing but the probability of

(1 − α), where α is the significance level to be chosen. A

typical value of α is 0.01 for 99% confidence level.

4. RESULTS AND ANALYSIS

This section presents the results of the proposed algorithm

applied to three data sets. The first two are simulated data

sets where the locations of the causal loci are known. They

were generated using the SNAP software [17]. The third

set contains (unpublished) clinical data of individuals with

the Schizophrenia disease. In the displayed results, the ICA

computations are performed using the FastICA algorithm [9].

4.1. Single Locus Multiplicative Data Set
The set sim1locus simulates a single locus multiplicative

disease where the causal SNP is located between locations

23-24. Among the 62 candidate SNPs, the causal locus was

removed from the simulation to test if the algorithm can de-

tect the dependency of this SNP on the neighboring ones.

Fig. 3 presents the results of our algorithm where the op-

timal number of components is found to be 17 and the re-

maining variance is 73% of the total. Every SNP location is

plotted versus its contribution, SNP factor, for each of the

components. By considering the p-values of the regression

coefficients, only component number 12 has a p-value less

than 0.01 (right plot). For 99% confidence level, i.e. the bor-

der line in the right plot, only SNP position 23 is selected as

significant which reflects the correctness of the algorithm.

Fig. 3. Outcome of the proposed algorithm for the simulated data

set sim1locus. Left: Plot of all the components (17 components,

73% variance). Right: Plot of the most relevant component.

4.2. Two Loci Multiplicative Data Set
The simulated set sim2loci imitates a double-loci multiplica-

tive disease where the loci affect the phenotype indepen-

dently. The causal polymorphisms are located between po-

sitions 11-12 and 37-38, respectively. The final outcome of

the blind algorithm is illustrated in Fig. 4. As can be seen,

two independent components were detected to be signifi-

cant where each one has a different color. For 99% confi-

dence level, the significant SNPs are 14 and 34, respectively.

One might think that ICA has not performed correctly in

this set since the estimated loci are not the exact locations;

nonetheless, the causal polymorphisms have been removed.

Thus, ICA has determined the SNPs that are in correlation

with the removed ones and, as a consequence, the causal

loci will be determined by dependency. This verity can

also be shown in the output of the Haplotype Trend Regres-

sion (HTR) test in the right plot of Fig. 4 because these lo-

cations are also the most significant ones there. However,

HTR was unsuccessful in capturing the independence of the

two loci. This demonstrates the superiority of the proposed

algorithm. Note that in HTR each SNP is plotted vs. the

logarithm of the p-value found in least squares regression.

Fig. 4. Results for the simulated data sim2loci. Left: Outcome

of the proposed algorithm (most relevant two components). Right:

Outcome of HTR.

4.3. Schizophrenia Data Set
In this set, there are 42 candidate SNPs where the causal

SNPs are not known yet and need to be determined. From

all the genotype values, 3% are missing due to genotyping
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failure and were estimated by BPCA. The final outcome of

the blind algorithm is depicted in Fig. 5. For 99% confi-

dence level the most suspicious SNPs have the locations 29

and 30. These two peaks do not contradict with the ones in

the HTR result. However, the latter seems to have more sig-

nificant peaks in its outcome than that of the proposed algo-

rithm. Nevertheless, these peaks are removed from the final

result with ICA because they belong to different compo-

nents which have p-values more than 0.01. This once more

demonstrates the superiority of the proposed algorithm.

Fig. 5. Results for the Schizophrenia disease. Left: Outcome of

the proposed algorithm. Right: Outcome of HTR.

5. CONCLUSION
This paper exploited the use of BSS techniques in gene

mapping of complex diseases. The main advantage of this

model is that it mimics to some extent the biological process.

The SNPs get mixed in an unknown environment to pro-

duce a signal, the SNP expression, which will later cause

the phenotype. Another advantage, is the revealment of the

dependent and independent polymorphisms. This is due to

the famous property of ICA that tries to find components

that are as much possible as independent from each other.

In addition, the algorithm is able to estimate the missing

values eliminating the need to neglect some samples and it

determines the number of components automatically taking

into account the structure of the data. The only assumption

that has to be made in this model is the distribution of the

SNP expressions. They are supposed to be non-Gaussian

distributed for the ICA algorithm to work.

The blind algorithm proved to be more accurate than the

HTR since the latter cannot determine if the SNPs are de-

pendent or not and consequently the contribution of the SNP

clusters, or SNPs belonging to one component, to the phe-

notype. This property along with the fact that ICA is an un-

supervised technique will help in eliminating SNPs that are

considered to be significant by statistical methods through

considering the p-values of the regression coefficients.

Other ICA algorithms can be used to include the prior

knowledge (phenotype) in order to constraint the ICA solu-

tion. This might eliminate the need for the regression analy-

sis and enhance the performance of the blind algorithm.
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