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Abstract— A new method for multitask learning in a Bayesian
network context is presented for multiorganism gene network
estimation. When the input datasets are sparse, as is the case in
microarray gene expression data, it becomes difficult to separate
random correlations from actual edges in the true underlying
Bayesian network. Multitask learning takes advantage of the
similarity between related tasks, in order to construct a more
accurate model of the underlying relationships represented by the
Bayesian networks. The proposed method is tested on synthetic
data to illustrate its validity. Then it is iteratively applied on real
gene expression data to learn the genetic regulatory networks of
two organisms with homologous genes (human and yeast).

Index Terms— Bayesian networks, evolutionary information,
genetic regulatory networks, multitask learning

I. INTRODUCTION

The modeling of gene interactions as networks is becoming

increasingly widespread for gaining insight into various cel-

lular properties, such as cellular state dynamics and transcrip-

tional regulation [1]. The resulting networks provide a high

level description of the gene expression system by predicting

how genes interact with each other through regulatory actions

and translational feedback.

Bayesian genetic regulatory networks are attractive in an-

alyzing gene expression data for their ability to describe

complex stochastic processes [2]. A Bayesian network can be

regarded as a task; a more general term used in the machine

learning literature. Multitask learning is an approach that

learns a problem together with other related problems, using

a shared representation. This often leads to a better model

for the main task, because it allows the learner to use the

common information among the tasks [3]. Multitask learning

is well-suited in domains where the cost of collecting more

data is prohibitive or there is a limited training data associated

with each task as in the case of DNA microarrays [4]. DNA

microarrays measure gene expression levels, and provide data

samples that are sparse compared to the number of interacting

genes that need to be modeled [5].

In multitask learning, the tasks are usually not identical, and

hence cannot be simply treated as a single task by merging

the available datasets. Instead the tasks are assumed to be

dependent; consequently, treating them as independent tasks,

as in the single task learning, might cause loss of useful in-

formation. The motivation for assuming dependencies between

tasks in the gene network context arises from the conservation

of translational machinery across species at the expression

level [6], [7]. Learning a task requires inductive biases towards

some elements of the search space [3]. In multitask learning,

the extra tasks serve as additional inductive bias for the

learning of the main task on top of the bias provided by the

model distribution and available data [3]. This paper proposes

a new multitask learning method targeted for applications with

sparse datasets as in the case of constructing gene networks.

Results for synthetic data and real gene expression profiles are

presented to validate the proposed method.

This paper is organized as follows. Background information

on Bayesian networks and orthologous genes across organisms

is provided in Section II. The proposed method is explained in

Section III. Results are presented and discussed in Section IV.

Finally, conclusions are drawn in Section V.

II. BACKGROUND

A. Bayesian Networks

A Bayesian network is a graphical model for representing

conditional independencies between a set of random variables.

This representation consists of two components G and Θ. G
is a directed acyclic graph (DAG) whose n nodes (genes)

correspond to the random variables X1, X2, ..., Xn, while Θ
describes the conditional probability distribution of each node

Xi, given its parents1 Pa(Xi), i.e. {P (Xi|Pa(Xi)), Xi ∈ G}.

A basic assumption in Bayesian networks is the applicability

of the Markov assumption: each variable Xi is independent

of its non-descendants, given its parents in G. This property

allows the joint probability distribution P (X1, X2, ..., Xn) to

be decomposed into the following product form [2]:

P (X1, X2, ..., Xn) =
n∏

i=1

P (Xi|Pa(Xi)) (1)

Modeling a gene network as a Bayesian network is mo-

tivated by the fact that the causal relations between genes

can be described qualitatively through the presence of edges,

and quantitatively through the conditional probability distri-

butions. Biological factors, measurement inaccuracies, and

data sparsity prohibit the prediction of deterministic relations

between genes, and act as a noise source that results in the

probabilistic nature of relations. Bayesian gene networks can

also be extended to incorporate temporal order to account for

a direct causal effect of one gene on another through different

time stages.

1All nodes that have an edge directed towards Xi
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B. Genes across Organisms

Since microarray gene expression data do not contain

sufficient information for estimating accurate complex gene

networks, other biological information is being considered to

improve the estimation process. Recent studies have revealed

highly conserved proteins that exhibit similar expression pat-

terns in different organisms, and play a role in gene regulation.

Therefore, this evolutionary information can be used to refine

regulatory relationships among genes, which are estimated

from gene expression data and bias the learning process. In ge-

nomics, sequence homology implies that the given sequences

share a common ancestor. Orthology is a type of sequence

homology that results from a speciation event; i.e. a parent

species diverging into two new species. Orthologous genes

usually preserve protein expression and regulation functions

and can be used to quantify the evolutionary information

between two organisms [7].

The authors in [8] utilized evolutionary information be-

tween two organisms to estimate the individual gene net-

works. Assuming two organisms A and B with respective

gene expression data DA and DB , the networks of the two

organisms GA and GB are built simultaneously by a hill-

climbing algorithm that maximizes the posterior probability

function P (GA, GB |DA, DB ,HAB) where HAB models the

evolutionary information between A and B. As part of their

algorithm, the authors calculate P (HAB |GA, GB) based on

gene expression data of the orthologous gene pairs between

A and B in addition to two free parameters ζN and ζP

that need to be set. However, they do not give a systematic

approach for choosing ζN and ζP . Instead they choose them

empirically by comparing the obtained networks to established

biological pathways. This is a main shortcoming because such

pathways are normally not available with the exception of few

organisms.

In this work, we follow an approach similar to [8] and focus

on the structure learning problem of the Bayesian network.

This improves parameter learning indirectly since parameter

learning depends on structure learning [2]. We propose a

new score function that captures the evolutionary information

between A and B by a parameter β (see Section III) without

requiring any additional free parameters and that can be

localized2 easily for reduced computational complexity (K2

algorithm vs. hill-climbing algorithm).

III. THE PROPOSED STRUCTURE LEARNING ALGORITHM

In order to exploit multitask learning, a quantitative link be-

tween the Bayesian networks of the different tasks (organisms)

must be determined. To model this link, we propose a similar-

ity parameter β. This parameter represents the similarity of the

underlying true Bayesian networks; i.e. the Bayesian networks

that would be learned if we had complete information. Let

G1 = (V, E1) and G2 = (V, E2) be two DAGs of B1 and B2,

the underlying true Bayesian networks of organisms 1 and 2,

respectively, where V is the set of vertices (genes) and Ei is

the set of edges (regulatory relations). We define the similarity

2A local score is a function of the node Xi and its parents Pa(Xi) only

parameter β as

β � P (e ∈ E2 | e ∈ E1) = P (e /∈ E2 | e /∈ E1) (2)

where we assume that the probability of the presence of an

edge e in both networks and its absence is the same. Since ∈ is

a binary relation, we can deduce that P (e /∈ E2 | e ∈ E1) =
P (e ∈ E2 | e /∈ E1) = 1 − β. Based on the given definition,

it is difficult to obtain a numerical value for the parameter

β based on general evolutionary biological information. To

alleviate this problem, we make use of the known common

orthologous genes between the two organisms in order to

estimate the value of β. The following estimation procedure

is proposed:

Step 1 : Isolate the orthologous genes between the two

organisms.

Step 2 : Construct the Bayesian network for the orthologous

genes for each organism separately using single net-

work learning algorithms such as the K2 algorithm

discussed in Section III-A.

Step 3 : Obtain an estimate for β using the following

expression:

β =
2Nc

|E1| + |E2| (3)

where Nc is the number of common edges between

the two DAGs G1 = (V, E1) and G2 = (V, E2), and

|Ei| is the total number of edges in Gi.

A. Basic Algorithm Structure

To find the best matching graph using the single network

approach (i.e. using the data of just one organism), the scoring

functions must be proportional to P (G|D), which can be

expressed as

P (G|D) =
P (D|G)P (G)

P (D)
∝ P (D|G)P (G) (4)

where G is the DAG under evaluation, D is the available

dataset, and P (G) is assumed to be uniformly distributed if no

prior knowledge is available. Maximizing P (G|D) is equiva-

lent to maximizing P (D|G) that in turn can be decomposed

into maximizing local scores by the Markov property. This

allows the use of local search techniques which for each node

Xi search for the parent set Pa(Xi) that maximizes the local

scoring function.

The scoring function that is derived in Section III-B, can

be used with various existing structure learning algorithms

such as the K2, hill-climbing, and MCMC algorithms. In this

work, we use the basic structure of the K2 algorithm, a widely

used greedy algorithm, because it provides a better comparison

between different score functions as it does not have a random

component. Moreover, the K2 algorithm benefits from the

local decomposability of the Bayesian score (BDe) across the

parents of every node to locally search for the best DAG,

thereby minimizing the search space of the problem. This in

turn reduces the required computational complexity. For each

node, the K2 algorithm adds a parent to a node as long as this

parent causes a positive change in score (�(e)).
The following is a general description of the K2 algorithm:
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• for i = 1 to n do

– while number of parents of Xi is less than u (a

specified upper bound) and there exist �(e) > 0, add

an edge from Xj to Xi, such that the edge addition

e yields the maximum �(e).
– end while

• end for

The K2 algorithm tries to find the most probable structure

given the data. In other words, it tries to find the structure that

maximizes P (G|D), through maximizing P (D|G) since all

networks are assumed to have equal priors. This maximization

reduces to the following form:

max
G

P (D|G) =
n∏

i=1

max
πi

f(i, πi) (5)

where n is the number of nodes of G, i is a node index

corresponding to node xi of G, and πi is the set of parents of

xi. f(i, πi) evaluates the probability that the set πi is the real

set of parents of xi, denoted by Pai , given the data D. In other

words, f(i, πi) ∝ P (Pai
= πi|D). For detailed information

about the K2 algorithm refer to [5].

B. Score Function Derivation and Algorithm Explanation

In this section, we explain the proposed new algorithm that

makes use of evolutionary relations between two organisms to

estimate their genetic regulatory networks. The inputs to the

algorithm are: data samples D of given organism, input DAG

Gin of the other organism, and similarity parameter β. The

output of the algorithm is a learned improved DAG structure

Gout of given algorithm. This procedure can be iteratively

repeated between both organisms using the output DAG of

one organism as an input to the other organism.

Generalizing the Bayesian score approach (BDe), the objec-

tive is to find a structure that maximizes P (G|D, Gin) instead

of P (G|D):

P (G|D, Gin) =
P (G,D|Gin)
P (D|Gin)

(6)

Using the fact that P (D|Gin) is independent of G, we obtain

P (G,D|Gin) = P (D|G,Gin)P (G|Gin) (7)

In addition, D is independent of Gin given G, since Gin

provides only structural information, and D depends only on

the structural information of its network. Therefore,

P (G,D|Gin) = P (D|G, Gin)P (G|Gin) = P (D|G)P (G|Gin)
(8)

P (D|G) is the BDe score used in the K2 algorithm, whereas

the new factor P (G|Gin) will perform the biasing towards

the input network. The above scores are decomposed to local

scores, involving only nodes and their parents, as is done in

the K2 algorithm. The local score corresponding to P (D|G)
is represented by the f(i, πi) terms in the K2 algorithm. The

local score of P (G|Gin) is P (P (1)
ai = π|P (2)

ai = α) that is the

probability that the set of parents P
(1)
ai of xi in G is π given

that the set of parents P
(2)
ai of xi in Gin is α. To calculate

P (P (1)
ai = π|P 2

ai
= α), we resort to the definition of the

similarity parameter β. The set of parents of node xi can be

viewed as the set of edges incident to the node xi.

We define Psi to be the set of all possible parents of xi,

and we denote by Ei the set of all possible edges that are

incident to the node xi. Similarly, we extend this definition to

any set of parents of xi. That is, given π to be a set of parents

of node xi, we define Eiπ to be the set of all incident edges

corresponding to the set π. In other words, if xj ∈ π then the

edge (xj , xi) ∈ Eiπ and vice versa.

Clearly, P
(1)
ai ⊆ Psi and P

(2)
ai ⊆ Psi . To decompose

P (P (1)
ai = π|P (2)

ai = α), the probability that the node xi

has the set π as parents given that the prior (input) structure

has α as a set of parents, we rely on the corresponding edge

probabilities. In other words, we check every possible edge e
in Ei, and determine its absence or presence in the sets Eiπ

and Eiα. The following decomposition illustrates this idea:

P (P (1)
ai

= π|P (2)
ai

= α) =∏
e/∈Eiπ,Eiα

P (e /∈ Eiπ|e /∈ Eiα)

·
∏

e∈Eiπ,Eiα

P (e ∈ Eiπ|e ∈ Eiα)

·
∏

e/∈Eiπ,e∈Eiα

P (e /∈ Eiπ|e ∈ Eiα)

·
∏

e∈Eiπ,e/∈Eiα

P (e ∈ Eiπ|e /∈ Eiα)

(9)

where e ∈ Ei. Based on the definition of the similarity

parameter β, (9) reduces to

P (P (1)
ai

= π|P (2)
ai

= α) =
∏

e/∈Eiπ,Eiα

β ·
∏

e∈Eiπ,Eiα

β

·
∏

e/∈Eiπ,e∈Eiα

(1 − β) ·
∏

e∈Eiπ,e/∈Eiα

(1 − β)
(10)

To solve (10), let H = Eiπ ⊕Eiα be the set of all elements

that are not common in the two sets. Defining m = |H|, the

number of elements in H , and N = |Psi|, (10) reduces to

P (P (1)
ai

= π|P (2)
ai

= α) = (1 − β)mβN−m =
(

1 − β

β

)m

βN

(11)

Since N is common to all the structures being evaluated,

the final score expression can be expressed as

P (P (1)
ai

= π, D|P (2)
ai

= α) ∝
(

1 − β

β

)m

(12)

As a result, the following steps should be used to calculate

a new score function to replace f(i, πi) in the K2 algorithm.

Step 1 : Find m, the number of edges that are different

between the parents under consideration and the

parents of the input structure.

Step 2 : Multiply f(i, πi) by (1 − β/β)m.

IV. RESULTS AND DISCUSSION

Before applying the proposed algorithm to real gene expres-

sion data, it is first tested on synthetic data provided by the
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ALARM network. This synthetic network is considered one

of the standard benchmark networks for comparison between

Bayesian learning algorithms.

A. Synthetic Data: ALARM Network

The proposed method is applied first on two similar net-

works derived from the ALARM network. The network has

37 random variables (nodes) and 46 edges, and each random

variable has up to four possible values and a maximum of five

parents.

In order to generate similar networks that resemble biolog-

ical networks, we used a similar approach as in [9]: Starting

from a base network, we generate two similar networks

according to an input parameter Pdel. Similar networks are

generated by passing through all edges of the base network and

deleting any given edge with probability Pdel. This procedure

can be repeated to generate different networks that are similar

to the order of Pdel. Any two generated networks contain

common edges in addition to edges that are present in one and

not in the other. The proposed multitask learning algorithm is

compared to the single network K2 algorithm in terms of the

following metrics:

1) False positives: the number of edges absent in the real

underlying structure but present in the learned structure

2) False negatives: the number of edges present in the real

underlying structure but absent in the learned structure

3) Total error: the difference between the real and the

learned structures, i.e. the sum of false positives and

false negatives

Fig. 1 presents the results based on two similar networks of

equal size datasets. The y-axis represents the average number

of occurrences over multiple runs and the x-axis represents the

dataset size. The proposed method, denoted by ”New”, clearly

outperforms the single network K2 algorithm in terms of false

positives. This illustrates the fact that the new method reduces

the effect of noisy observations, i.e. the statistical deviations in

the data. However, the performance in terms of false negatives

is comparable. This is due to the fact that real edges that are

weakly supported by the data might not be identified by the

proposed method. Nevertheless, in terms of total error, the

advantage of the proposed method is evident. Finally, it can be

seen that as the dataset size increases, the error rates decrease

due to a reduction in the estimation noise.

B. Real Gene Expression Data

The proposed method is used to simultaneously estimate

two gene networks of two distinct organisms, with a Bayesian

network model utilizing the evolutionary information so that

gene expression data of one organism improves the estimation

of the gene network of the other organism. We demonstrate the

effectiveness of the proposed algorithm through the analysis

on Saccharomyces cerevisiae and Homo sapien cell cycle gene

expression data. The proposed algorithm is successful in esti-

mating gene networks that capture many known relationships

as well as some unknown relationships which are likely to be

novel.
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Fig. 1. Error rate of the proposed algorithm with ALARM network synthetic
data.

There are only a few datasets where both detailed

knowledge of the regulatory pathways and the same type

of expression data are available for two distinct organ-

isms [8]. The proposed algorithm is implemented on a

set of ten orthologous genes between yeast (S. cerevisiae)

and human (H. sapiens). The list of the chosen genes

is shown in Table I. The data for the yeast genes is

available at http://genome-www.stanford.edu/cellcycle/ [10],

and the data for the human genes at http://genome-

www.stanford.edu/Human-CellCycle/Hela/ [11].

Yeast genes Human genes
CDC28 CDK7
CDC6 CDC6
CDC7 CDC7
ORC1 ORC1L
MCM2 MCM2
MCM3 MCM3
CDC46 MCM5
MCM6 MCM6
CDC47 MCM7
CDC45 CDC45L

TABLE I

ORTHOLOGOUS GENES BETWEEN HUMAN AND YEAST.

The obtained results are compared to known relations in

the published KEGG pathways [12]. To start the analysis, we

learn the yeast gene network using the classical K2 algorithm

based only on the yeast dataset. Then, the proposed algorithm

is applied to learn the human gene network by using the

human data from [11] in addition to the obtained yeast gene

network (learned with the K2 algorithm). The results are

shown in Fig. 2. The estimated similarity factor is given by

β = 0.8. Having obtained the human gene network, we use it

to enhance the gene network of the yeast genes; i.e. the yeast

data from [10] and the learned human gene network are given

as inputs to the proposed algorithm to enhance the yeast gene

network. The results are also shown in Fig. 2.

It can be seen that in the first step, known relations that

were not detected in the yeast network by the K2 algorithm
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were detected by the proposed algorithm in the human network

(e.g. relation between CDC6 and the ORC complex). In

addition, the human gene network was successfully used to

enhance the yeast gene network. In fact, the edge between

MCM6 and CDC45, and the one between CDC47 and CDC45

were not detected by the classical K2 algorithm. However,

when the learned human network was used with our proposed

algorithm, these two edges were detected.

Finally, the results are compared to other results discussed

in the literature, namely [8] and [12]. Many of the relations

obtained using the proposed algorithm are consistent with the

KEGG pathways; other obtained relations are not listed in the

KEGG pathways but were also estimated in [8] (e.g. relation

between CDC28 and MCM2 in yeast), which suggests that

experimental effort should be done to verify these relations

biologically, since they were detected by different approaches.

Comparing the obtained results to [8], it can be seen that many

relations listed in [8] and not yet biologically verified were

not detected by the proposed algorithm (e.g. relation between

CDC6 and CDC45L in human), whereas some new relations

estimated by the proposed algorithm were not estimated in [8]

(e.g. relation between CDK7 and the MCM complex in

human).

Fig. 2. Obtained gene networks: solid black edges correspond to relations
consistent with the KEGG pathways, dashed edges correspond to newly
estimated relations, and gray edges correspond to listed relations in the KEGG
pathways that were not estimated.

V. CONCLUSIONS

We propose a new algorithm for multitask learning in the

context of Bayesian networks. The algorithm was successfully

tested and verified on synthetic data using ALARM benchmark

network. The main objective of the proposed algorithm is to

utilize evolutionary preserved gene interactions in order to

learn or refine the construction of genetic regulatory network

models across multiple organisms. The proposed algorithm

was also applied to S. cerevisiae and H. sapiens real cell cycle

gene expression data. Results demonstrate that the proposed

algorithm was able to improve the gene network estimation

accuracy compared to published KEGG pathways. In addition,

new relations were also estimated which would motivate

verification via lab based biological experiments.
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