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SUMMARY

This paper gives a brief overview of several applications from the emerging interdisciplinary field of genomic
coding theory that aims at applying concepts and techniques from the field of coding theory to problems
from the field of molecular biology. This is motivated by the high precision and robustness found in genomic
processes in addition to the increase in the availability of genomic data for a wide range of species. The
considered applications include source coding for DNA classification, channel coding for modelling gene
expression with emphasis on the process of translation, existence of error correcting codes in the DNA
and channel coding structure in the genetic code. Example results are presented that demonstrate the
relevance of the proposed approaches and open questions are formulated to suggest future research work.
Copyright© 2007 John Wiley & Sons, Ltd.

1. INTRODUCTION

Motivated by the redundant structure of the genetic code,
the existence of large evolutionary conserved non-coding
regions among species, and the existence of special
sequences in coding regions, several researchers are trying
to apply coding theory models to understand the structure
of the DNA and the operation of various genetic processes.

Yockey [1] proposed one of the first models for gene ex-
pression using encoding/decoding concepts from commu-
nication theory. Liebovitchet al. [2] developed the first effi-
cient method to scan through DNA sequences to determine
whether some linear block code structure is present. Years
later, Rosen [3] developed a method for the detection of
linear block codes that accounts for possible insertions and
deletions in the DNA sequences. However, neither work was
able to support the existence of such simple error correcting
codes in the DNA. Battail [4] argued about the existence
of nested error correcting codes in the DNA supported by
several biological observations such as the size of the human
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genome being far larger than the size needed to specify every
characteristic of any given individual. On other fronts, Mac
Donaill [5] proposed a parity check code interpretation of
nucleotide composition, and Mayet al. [6] proposed the use
of block and convolutional codes to model the process of
translation initiation in prokaryotic organisms.

This paper is organised as follows. Section 2 presents
some biological background on gene expression in addition
to some analogies that motivate this work. Section 3 presents
recent research contributions and open problems in the field
of genomic coding theory. Finally, conclusions are drawn
in Section 4.

2. WHY CODING THEORY?

2.1. From DNA to proteins

Gene expression is the process through which information
contained in the DNA is transformed into proteins. Gene
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Figure 1. Communication theory model for gene expression.

expression is composed of two main steps: transcription
and translation. In transcription, the double stranded DNA
molecule is used to synthesise a new single stranded
molecule called messenger RNA (mRNA). The RNA
polymerase binds to a specific region in the DNA in order
to separate the two strands. Once they are separated, one
of the strands serves as a template for the creation of
the mRNA. The resulting mRNA is consequently spliced
to remove the introns (non-coding regions) which results
in a sequence of pure exons called mature mRNA. The
mature mRNA travels in the cell until the ribosome
binds to it at a specific region in order to start the
process of translation. Once the ribosome binds properly
(translation initiation), it starts processing triplets of bases
(also called codons) of the mature mRNA to produce
amino acids. The ribosome serves as a platform for the
transfer RNA (tRNA) molecule which holds the amino
acids. A tRNA molecule connects using its anti-codon
end with codons found in the mature mRNA until a
sequence of amino acids is chained. The formed chain
then folds to finally produce a protein. Note that the
gene expression processes differ between eukaryotes and
prokaryotes. Prokaryotes are simple organisms that do not
have a nucleus such as bacteria (e.g. E. Coli) whereas
eukaryotes are organisms that have their DNA in the nucleus
(e.g. humans).

2.2. Analogies and modelling

There are several analogies between data transmission
in communication systems and DNA processing in gene

expression. The DNA can be modelled as an encoded
information source that is decoded (processed) in several
steps to produce proteins. During these decoding steps,
the processed DNA is subjected to genetic noise which
results in several types of mutations. Transcription initiation
corresponds to a process of frame synchronisation where
the RNA polymerase detects the promoter sequences
(biological sync words). Translation initiation also
corresponds to a process of frame synchronisation to detect
the translation initiation signals (e.g. for prokaryotes this
includes the Shine-Dalgarno (SD) sequence and the start
codon). This is followed by a decoding process to map
codons to amino acids. Figure 1 shows a model for gene
expression based on building blocks from communication
theory. In this model, we assume that mutations can also
occur in the involved proteins, that is RNA polymerase,
ribosome and tRNA. Other similar models for gene
expression are summarised in Reference [6].

On a larger scale, evolution can be modelled as a single
input multiple output (SIMO) antenna system. Given an
evolutionary scenario of multiple species that evolved from
a common ancestor, the ancestor can be modelled as
the transmitter and its sequence of bases as the output
of the information source. This information is transmitted
over the branches of the evolutionary tree (phylogenetic
tree), where the leaves of the tree correspond to the receive
antennas of the SIMO system. The antennas receive the
sequences that one can observe in different species with
errors (mutations) occurring during the transmission pro-
cess. These analogies motivate the use of coding theory for
genetics.
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3. GENOMIC CODING THEORY

3.1. Source coding for DNA classification

Special source coding algorithms have been developed to
compress genomic sequences by taking into account their
structural properties, for example, DNACompress [7]. In
Reference [8], we make use of source coding algorithms to
approximate a mutual information-based distance measure
for the classification of DNA sequences. The mutual
information I(Si; Sj) between two given sourcesSi and
Sj can be transformed into a bounded distance measure
through normalisation by their maximum possible mutual
information. The resulting measure can then be expressed
as

d(Si, Sj) = 1 − I(Si; Sj)

min(H(Si), H(Sj))
(1)

where H(Si) is the entropy of the sourceSi. The
compression achieved on a sequence generated by a given
source is used to approximate its entropy. Moreover,
the compression achieved on the concatenation of two
sequences generated by the two compared sources is used
to approximate their conditional entropy [9].

To demonstrate the performance of the given distance
measure, we present results for differentiating between
non-genic regions (ng), exons (ex) and introns (in). As
content sequences, the first 50 000 nucleotides (50 kb)
of each type are selected from human chromosome 19
(c19). As unknown sequences, groups of nucleotides of
different sizes of each type are selected from human
chromosome 1 (c1). For each unknown sequencei, the
distanced(SUi , SCj ) to every content sequencej is calculated.
The unknown sequence is then classified as the type
of the content sequence yielding the smallest distance.
Using DNACompress with the given distance measure,
all unknown sequences were correctly recognised (see
Table 1).

Table 1. DNA classification using source coding.

SUi \SCj c19ng-50kb c19in-50kb c19ex-50kb

c1ng-300kb 0.041-best 0.842 1.025
c1ng-13kb 0.651-best 1.013 1.009
c1in-300kb 0.933 0.585-best 1.014
c1in-13kb 1.000 0.052-best 1.068
c1ex-300kb 1.017 1.006 0.963-best
c1ex-13kb 0.985 0.944 0.830-best

3.2. Channel coding for modelling gene expression

Concepts from coding theory can be used to develop
biologically-motivated models for the processes of
transcription and translation. This allows the analysis of
various interactions that take place in gene expression using
efficient computer simulations saving laboratory sources
and time spent on experiments. Moreover, it might help in
discovering new facts that allow further understanding of
these processes. The work of May [6] established the first
concrete ideas for modelling gene expression interactions
based on algorithms inspired from coding theory.

The process of translation in prokaryotes is triggered by
the detection of a biological sync word known as the SD
sequence which is located around 10 bases before the
translation start codonAUG. It has been stated that the
last 13 bases of the 16SrRNA subunit of the ribosome,
that binds to the mRNA, play an important role in the
detection of the SD sequence [10]. In Reference [11],
we model this detection/recognition system by designing
a one dimensional codebook consisting of the nine sub-
sequences with lengthN = 5 of the last 13 bases of the
16SrRNA molecule, that is, we obtain nine codewords
ci = [si, . . . , si+4], i ∈ [1; 9] where s = [s1, . . . , s13]
denotes the sequence of the last 13 bases. A sliding window
is applied on a given noisy mRNA sequence to select
sub-sequences of lengthN and compare them with all
codewords in the proposed codebook. The codeword that
results in the minimum Hamming distance is selected and
the obtained minimum metric value is recorded. For the
analysis, we apply the algorithm to 1500E.coli translated
sequences annotated in the NCBI database [12]. In addition,
we apply the algorithm on a set ofE.coli sequences that
contain a start codon but are not translated. Average results
for both classes of sequences are plotted in Figure 2.

The x-axis represents the position in the aligned
sequences. It can be seen that the proposed algorithm is
able to identify the SD (peak at position 40) and the start
codon (peak at position 51) in the translated sequences
and, thus, is capable of differentiating between translated
and untranslated sequences. Moreover, these results support
the arguments for the importance of the 16SrRNA in the
translation process.

To make biological use of the developed algorithm, it
was applied to test the effect of single point mutations in
the ribosome on protein synthesis. To do this, we have
introduced point mutations in all positions of the last 13
bases of the 16SrRNA and executed the algorithm on the
E.coli data set. The obtained results are summarised in
Table 2 by quantising into five levels the influence of these
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Figure 2. Detection of translation signals.

Table 2. Effect of mutations in the 16SrRNA on translation.

Position 1 2 3 4 5 6 7 8 9 10 11 12 13

SD – – – ↓ ⇓ ⇓ ↓ – – – – – –
Start – – ⇓ ↑ ↓ ↓ ↓ – ⇓ ↓ ↓ ↓ ↑

mutations on detecting the SD and start codon signals. The
levels are: – represents no influence,⇓ a strong negative
influence,↓ a weak influence,↑ a weak positive influence
and⇑ a strong positive influence.

For example, results show that a mutation in position 5
has a strong negative influence on the recognition of the SD
signal, whereas a mutation in position 8 has no influence
since perhaps its role is just to introduce spacing at the
moment of decoding the mRNA sequence. The obtained
results showed complete agreement with some published
experimental results on the effects of various mutations
[11].

This work can be extended in several directions:
(i) Designing similar models for the process of transcription
in prokaryotes. (ii) Designing similar models for gene
expression in eukaryotes including translation, transcription

and splicing. (iii) Applying the developed models to
genomes of different organisms. (iv) Using the developed
models to obtain new biological findings on gene
expression.

3.3. Error correcting codes in the DNA

In contrast to prokaryotes, there seems to be possible
redundancy (non-coding DNA) in the genomes of
eukaryotes. In humans, for example, protein coding regions
comprise only approximately 2% of the whole genome. In
fact, it has been observed that the complexity of an organism
and its ratio of non-coding to coding DNA is positively
correlated [13]. Furthermore, it has been shown that there
are several conserved non-coding sequences among species
which is a strong indicator of their important functionality
[14]. These facts raise the following intriguing questions:
(i) Why are higher organisms equipped with so much non-
coding DNA (maybe redundancy)? (ii) Can evolution be
modelled as an encoder which adds redundancy to the
genomic information? (iii) Can one prove the existence of
some form of error correcting codes in the structure of the
DNA?
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From a coding theory point of view, there is a need to
find methods for the detection of a coding structure in a
received noisy data sequence whose encoder and decoder
are completely unknown. As evolution had a lot of time
to optimise its information transmission system, it might
be a very complex code. Earlier work has concentrated
on gene sequences (i.e. coding DNA) or on prokaryotic
organisms with relatively small genomes [2, 3]. However,
as the genes are already constrained by the structure of the
genetic code, it is unlikely that there are enough degrees
of freedom to form an error correcting code. Moreover,
simple organisms like prokaryotes have short life cycles
and benefit from fast adaptation to a changing environment.
That is why they have significant higher mutation rates and
smaller genomes than more complex organisms such as
eukaryotes. Therefore, it is unlikely that an error correcting
code can be found in their genome. As a result of these
observations, we believe that if an error correcting code
would exist in the DNA, then it is most appropriate to search
for it in the conserved non-coding regions of eukaryotic
organisms.

In Reference [15], we introduce a novel Kullback–
Leibler based method that can identify functional
redundancy in the DNA. Evolution is commonly described
by a set of parametersψ, representing the phylogeny and
a model of mutations [16]. We assume an ancestor input
sequencex[n] is transmitted over an evolution channel
to output at the receiver the vectory[n]. The channel
is characterised by the transition probabilitiespy(y|x;ψ)
conditional onx and parameterised overψ. The channel
varies overn as different DNA regions have been subjected
to different substitution rates according to the significance
of the biological importance of the information they carry.
From this point of view, estimating the conservation of a
particular DNA region amounts to the estimation of how
good the transmission channel was in this region.

From a communication theoretic viewpoint, the
maximum conservation is equivalent to the case of
noiseless transmission, that is, the transmitted basex[n]
is observed unchanged in all components of the receive
vectory[n]. In this situation, the channel shall be specified
by py(y|x;ψ0) and the receive vectory[n] is distributed
according to py(y;ψ0). For the comparison with the
maximum conservation case, we calculate the maximum
likelihood estimateψ̂ of the evolutionary model that most
likely generated an ensemble of receive vectorsY [n] in a
sliding window over the observed data. Then, we calculate
the probability mass functionpy(y; ψ̂) for a column
parameterised bŷψ and compare the estimated distribution
with the one corresponding to the maximum conservation

process using the Kullback–Leibler distance

s[n] = D
(
py(y; ψ̂)

∥∥ py(y;ψ0)
)

(2)

The scores[n] is associated to the column in the middle
of the sliding window. Note that a low score corresponds
to a good channel and thus a highly conserved region.
Figure 3 presents results for the estimation of conservation
in addition to the underlying genomic data. Bases are
encoded with a unique colour and maximal conserved
columns are marked in black. The proposed distance based
score signal reflects the different degrees of conservation
and, in contrast to earlier methods, does not rely on an
accurate model of neutral evolution [14, 17, 18].

This work can be extended in several directions:
(i) Expanding the coding theoretic analysis of the conserved
non-coding sequences. (ii) Developing methods for the
blind detection of error coding structure and applying
them to conserved non-coding regions. (iii) Investigating
dependencies between coding and non-coding sequences
using phylogenetic and information theoretic methods.

3.4. Channel coding structure in the genetic code

The discovery of the mapping of codons to amino acids
(known as the genetic code) was a major advance in the field
of molecular biology [19]. The genetic code has 64 codons
that uniquely map to 20 amino acids which is a redundant
mapping. There are many research efforts trying to study the
evolution of the genetic code and its optimality properties.
The approach used to test optimality is based on generating
other mappings of codons to amino acids and trying to
compare them with the natural genetic code using physio-
chemical metrics such as polarity and hydrophobicity [20].

One can easily show that codons which code for one
amino acid are more closely related to one another (in
sequence) than they are related to codons that code for
other amino acids. In other words, codons that code for one
amino acid differ in several cases by just one nucleotide.
Thus, single nucleotide mutations (especially in the third
location) will often not change the resulting amino acid
rather than lead to an error. Investigating protein substitution
matrices, another interesting observation is that the smaller
the number of codons per amino acid, the higher the
self substitution score for that amino acid. A higher self
substitution score implies that the amino acid was more
often conserved in its location within evolutionary related
protein sequences.

Based on the given observations and analysis, the
following open research questions can be raised: (i) Can one
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Figure 3. Top, conservation score indicating conserved regions; Bottom, visualisation of the respective genomic data.

justify the structure of the genetic code using channel coding
theory? (ii) Can one prove the optimality of the genetic code
using channel coding theory? (iii) Is there a relationship
between the number of possible codons that result in a given
amino acid and the importance of the amino acid? (iv) Is
there a relationship between the redundant structure of the
genetic code and DNA repair mechanisms?

4. CONCLUSIONS

In this work, we present recent advances in the emerging
interdisciplinary field of genomic coding theory. Genomic
coding theory deals with applying concepts and techniques
from the field of coding theory to problems from the
field of molecular biology. The presented applications
include source coding for DNA classification and content
recognition, channel coding for modelling gene expression
processes, existence of error correcting codes in the DNA
and channel coding structure in the genetic code.

The following are some practical benefits of this research
work: recognition of coding regions in organisms with

similar characteristics, gene discovery within a given
organism, improving the process of protein synthesis in
genetic engineered proteins, etc. As a summary, this work
will help in stimulating the interdisciplinary research efforts
to apply techniques from the field of communication theory
to other problems from the field of genetics.
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