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Abstract The DNA sequencing efforts of the past years to-
gether with rapid progress in sequencing technology have
generated a huge amount of sequence data available in pub-
lic molecular databases. This recent development makes it
statistically feasible to apply universal concepts from Shan-
non’s information theory to problems in molecular biology,
e.g to use mutual information for gene mapping and phylo-
genetic classification. Additionally, the genetic information
in the cell is continuously subject to mutations. However, it
has to be passed from generation to generation with high fi-
delity, raising the question of existence of error protection
and correction mechanisms similar to those used in tech-
nical communication systems. Finally, better understanding
of genetic information processing on the molecular level in
the cell can be acquired by looking for parallels to well es-
tablished models in communication theory, e.g. there exist
analogies between gene expression and frame synchroniza-
tion.
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1 Introduction

Communications engineering as well as genetics have both
experienced a major breakthrough in the mid 20th century.
In 1953, the double helix structure of the DNA was de-
ciphered by Watson and Crick. From this point on it was
clear that the genetic information is stored in form of two
complementary directed strands composed of letters from a
four symbol alphabet. Until the discovery of the molecular
basis of genetics, the research was concentrating on clas-
sical genetics, based on the rules of Mendelian inheritance
of traits. Shannon himself was using mathematics to study
how different trait combinations propagated through sev-
eral generations of breeding in his Ph.D thesis completed
in 1940 [21]. He devised a general expression for the dis-
tribution of several linked traits in a population after multi-
ple generations under a random mating system, which was
original at that time, but went largely unnoticed, since he
did not publish his work. After completing his Ph.D thesis,
Shannon shifted his focus towards digital communications
and cryptography. In 1948 Shannon established the theoret-
ical fundamentals of digital communication systems [22].
He introduced the concept of information based solely on
the statistical characteristics of the information source. He
defined information in an abstract way independent of se-
mantics that does not differentiate between text, video or
audio as was generally being done when studying commu-
nication systems at that time. Using such information defini-
tion, Shannon proved that a message generated by an infor-
mation source can be losslessly compressed to the entropy
of the source (source coding theorem) and that it is possible
to code the information in a way, such that one can trans-
mit it error-free at the maximum rate that the channel allows
(channel coding theorem). Ever since, communications en-
gineers have been devising algorithms to achieve the limits
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of these two theorems. The definition of information based
solely on statistical characteristics of the information source
also applies to genetic data. Recent advances in DNA se-
quencing technology supply enough data to apply Shannon’s
general information concept to molecular biology. Section2
gives a short introduction to basic principles from molecu-
lar biology required for better understanding of the follow-
ing sections. In Section 3 we show how mutual information
and compression can be used for phylogenetic classification.
Section 4 describes the application of mutual information
to gene mapping. The question whether an error correcting
code has evolved on the genome sequence level is addressed
in Section 5. Finally, in Section 6 we model transcription
initiation (one step in protein synthesis) as frame synchro-
nization in a communication system.

The original involvement of information theorists with
molecular genetics goes back to the discovery of the genetic
code. In the period between the discovery of the DNA struc-
ture in 1953 and the decipherment of the genetic code 1961-
1969, when no actual DNA sequences and only very few
amino acid sequences were known, several different coding
schemes describing the mapping of the DNA sequence (4
letter alphabet) to a protein (amino acid sequence from a
20 letter alphabet) were proposed by coding theory experts.
Some of them had high information density, while others
have foreseen error correction capabilities. The experimen-
tal discovery of the actual genetic code (the mapping rule of
the 43 = 64 DNA sequence triplets to the 20 amino acids and
a stop symbol) was a disappointment for the coding commu-
nity since it does not seem to implement any of the two. A
review of the proposed codes can be found in [12]. From this
point, there has been little interaction between the two com-
munities until recently. We believe that with all the newly
available sequence data further interactions could be fruit-
ful as our research suggests. The question why the genetic
code has evolved the way it is remains open. There seems
to be evidence for the optimality of the code in terms of
error minimization using metrics based on physio-chemical
properties of the resulting amino acids like their hydropho-
bicity [10]. Apparently, evolution imposes additional con-
straints on the optimization of how the genetic information
is being stored, which makes the modeling rather peculiar.
This has to be accounted for by communications engineers
modeling evolution and the molecular processing of genetic
information in the cell as a communication system.

2 Biological Background

2.1 DNA

In 1944, the desoxyribonucleic acid was identified as the pri-
mary carrier of genetic information. The discovery of the ge-
ometric arrangement of the DNA building blocks in a double

helix by Watson and Crick followed in 1953. The DNA con-
sists of two complementary directed strands of nucleotides.
Each nucleotide is composed of a backbone unit (sugar and
phosphate) and one of the four bases Adenine (A), Gua-
nine (G), Cytosine (C) or Thymine (T). The sugar phosphate
backbone determines the direction of each strand which is
referred to as 5’ to 3’ by convention. The two strands are
held together by electrostatic interaction via weak hydro-
gen bonds between the complementary basesA-T andC-G,
see DNA in Fig. 1. Here, nature has implemented a simple
complementary repetition code, which is very advantageous
for DNA replication, that has to take place every time a cell
divides. Each of the two complementary strands is used as
template for the DNA copy of one of the two daughter cells.

2.2 Mutations

The process of copying is prone to errors leading to point-
mutations, insertions, deletions and duplications. According
to evolutionary theory a certain degree of mutation is neces-
sary to allow for adaptation of different species to changing
environmental conditions. Propagation of evolutionary dis-
advantageous mutations is hindered by natural selection in
contrast to neutral and the rare advantageous mutations. As-
suming a common ancestor, the degree of dissimilarity in
the genomes of existing species can be used to reconstruct
their phylogenetic relationships, as shown in Section 3. Mu-
tational variations observed across the human population are
the origin of genetically influenced diseases. The main ob-
jective of gene mapping is to determine which of the vary-
ing positions in the genome, also referred to as Single Nu-
cleotide Polymorphisms (SNPs) [1] are related to the disease
under investigation. Section 4 describes an information the-
oretical method to identify the SNPs which are statistically
related to the investigated disease. It relies on population
based data from clinical studies. Since high rate of muta-
tion would lead to too many evolutionary disadvantageous
mutations per generation cycle, it is crucial that the genome
copying process takes place with high fidelity. Nature has
implemented mechanisms to minimize the error suscepti-
bility of the copying machinery. However, error protecting
measures on the sequence level similar to error correcting
codes in communication systems are currently not known.
We believe that especially in case of complex multicellu-
lar (eukaryotic) organisms, which have long generation cy-
cles and a limited number of offsprings, nature might have
developed sequence level error correcting measures to en-
sure the necessary high replication fidelity. The primary and
best understood function of the genome is to carry infor-
mation for the synthesis of proteins, see Section 2.3. How-
ever, in complex eukaryotes like vertebrate the proportion
of the genome actually coding for proteins is less than 10%,
as opposed to simple fast evolving single cell organisms
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(prokaryotes), where almost all of the genome codes for pro-
teins. The non-coding part has been largely neglected by the
research community for a long time until comparative ge-
nomics has recently identified regions in the genomes of ver-
tebrate species that do not code for proteins, but show a high
degree of evolutionary conservation [26], labeled Conserved
Non-Genic region (CNG) in Fig. 2. This implies some un-
known evolutionary important function. The proportion of
such conserved non-coding regions in the human genome
is comparable to that of protein coding regions. Currently,
our search for error protecting means on the sequence level
concentrates on these regions, see Section 5. They might be
carrying parity information to protect the coding regions.

2.3 Protein Synthesis

The protein coding part of the genome is converted to pro-
teins in a process called gene expression. It takes place in
two basic steps, see Fig. 1. First, during transcription thege-
nomic DNA region coding for a protein is copied into mes-
senger RNA (mRNA) by the RNA polymerase molecule.
The resulting mRNA corresponds to a complementary copy
of the template strand except that the baseT (Thymine) is
substituted byU (Uracil). In the second step, the ribosome
molecule translates the mRNA into a sequence of amino
acids - a protein. Hereby, triplets of bases are converted to
amino acids according to the mapping rule described by the
genetic code [19].

Fig. 1 Protein synthesis.

2.4 Genome Structure

The protein coding portion of the genome is arranged in
genes. The genes vary in size and are randomly distributed
across the genome. The beginning of a gene is characterized
by a promoter sequence in front of it. The end is signalled by

a terminator. During transcription initiation, the first step in
protein synthesis, the promoter sequence has to be detected.
This resembles frame synchronization in digital communi-
cation systems. Further investigation of this analogy is pre-
sented in Section 6. In eukaryotes the mRNA produced dur-
ing transcription contains non-coding regions called introns.
These are being spliced out (removed from the mRNA) be-
fore translation occurs. Only the coding exons are finally
translated to protein. The described genome structure is de-
picted in Fig. 2. The content recognition method described
in Section 3 can be used to distinguish between the coding
exons, non-coding but transcribed introns and the non-genic
regions not taking part in gene expression.

Fig. 2 Genome organization of multicellular organisms.

3 DNA Classification using Compression Distance
Measures Based on Mutual Information

The possibility of using mutual information for classifica-
tion and content recognition of genetic sequences is exploited
in this section. Two different mutual information based dis-
tance measures are proposed, one for classification and one
for content recognition. The measure proposed for classifi-
cation is a metric. The influence of compression based en-
tropy estimation on the proposed measures is investigated.
Examples of successful applications in the field of genetics
are presented.

Mutual information describes the amount of information
shared by stochastic processes. It can be used to derive dis-
tance measures quantifying the similarity of the processes.
Mutual information based distance measures can be used to
compare texts written by different authors or to build phylo-
genies of different species.

3.1 Compression Based Entropy Approximation

The definition of mutual information is based on the en-
tropies of the compared sources, which will be approximated
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using compression. The idea of using compression for phy-
logenetic classification of whole genomes was first intro-
duced in [14]. Shannon’s fundamental theorem on data com-
pression states that every sourceS can be losslessly com-
pressed up to its entropy rateH(S). Thus, the compression
ratio achieved by an optimal compression algorithm designed
for a given sourceS when compressing a messages gener-
ated by this source is a good approximation of the sources
actual entropy rate

H(S) ≈
|comp(s)|

|s|
, (1)

where|.| denotes the size in bits or symbols. The entropy
of DNA sequences is less than 2 bit due to the use of a 4
symbol alphabet (A,C,G,T).

In general a universal compressor for a whole class of
sources (e.g. DNA sequences, natural texts) is available. Such
universal compressors gradually adjust their underlying gen-
eral statistical model describing the whole class of sources to
the individual statistics of the particular message being com-
pressed. For example, genomic DNA sources contain ap-
proximate repeats and palindromes (reverse complements)
due to duplications and point mutations that occur during
evolution. DNAcompress uses this general property of ge-
nomic DNA and compresses the specific repeats occurring
in the particular sequence being compressed. Such univer-
sal compressors are particularly suited to compare sources
of a given class as they should be able to compress well a
concatenation of messages generated by similar sources as
opposed to dissimilar ones. Consequently, the conditional
entropyH(Si |Sj) of two different sourcesSi andSj will be
approximated as the compression ratio achieved for the mes-
sagesi when the compressor’s model is trained on the mes-
sagesj . The compression size of the concatenated sequences
|comp(sj ,si)| can be used for this purpose

H(Si |Sj) ≈
|comp(sj ,si)|− |comp(sj)|

|si |
. (2)

3.2 Mutual Information Based Distance Measures

The aim of unsupervised classification is to build clusters
of all sourcesSi based on chosen criteria. A distance metric
d(Si ,Sj) quantifying the similarity of the sources is required
for such clustering.

Content recognition serves a different purpose. Here a
setC of known content sourcesSC

i , i ∈ {1. . . |C|} is provided
together with a setU of unknown sourcesSU

j , j ∈ {1. . . |U |}.

The goal is to find the best matching content sourceSC
b with

the smallest distanceb = argmini(d(SC
i ,SU

j )) for each un-
known sourceSU

j . The distance measure for content recogni-
tion on the contrary to classification does not have to satisfy
the axioms of a metric.

Information theory describes the relatedness of sources
Si andSj as the mutual informationI(Si;Sj) shared by these
sources

I(Si;Sj) = H(Si)−H(Si|Sj) = I(Sj ;Si). (3)

Mutual information is an absolute measure of information
common to both sources. It can be transformed to a bounded
distance through normalization in two different ways: One
way, to be used for content recognition, is to normalize by
the maximum possible mutual information the two sources
can share, resulting in

dCR(Si ,Sj) = 1−
I(Si ;Sj)

min(H(Si),H(Sj))
≤ 1. (4)

The lower bound is reached for sources that share the max-
imum possible mutual information given their entropies. It
can be reformulated using conditional entropies

dCR(Si ,Sj) =
min(H(Si |Sj),H(Sj |Si))

min(H(Si),H(Sj))
. (5)

Using the compression based approximations in (1) and (2)
it can be written as

dCR =
|comp(sj ,si)|− |comp(sj )|

|comp(si)|
, (6)

for |comp(si)| < |comp(sj )|. Since the triangle inequality is
not satisfied fordCR this measure is not a metric distance.
Thus for classification we normalizeI(Si;Sj) by the maxi-
mum entropy of both sources resulting in the following dis-
tance metric

dCL(Si ,Sj) = 1−
I(Si ;Sj)

max(H(Si),H(Sj))
≤ 1. (7)

Compared todCR in (4) the two sources must not only share
maximum possible mutual information, but also need to have
identical entropies in order to achievedCL = 0.

The advantage of the compression based approximation
of the derived distances is that no prior alignment of the
compared sequencessi andsj is necessary.

3.3 Results

Different types of compression algorithms were tested with
respect to their classification and content recognition per-
formance: Lempel-Ziv, Context Tree Weighting, Burrows
Wheeler Transform, Prediction by Partial Matching (PPM)
and DNACompress. In general PPM and DNACompress per-
formed best for genetic sequences. A set of properties mak-
ing a compression algorithm suitable for classification and
content recognition was derived in [7].
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Fig. 3 Human phylogeny based on mtDNA.

A typical classification problem in molecular genetics
is reconstruction of phylogenetic relationships between dif-
ferent populations (e.g. human populations, different mam-
malian species) in form of a binary tree, where the nodes
represent the separation events and the root the common an-
cestor of all the investigated populations according to the
evolutionary theory. Figure 3 shows a phylogenetic tree of
the human population constructed usingdCL with DNACom-
press and the quartet tree generation method described in [4].
Mitochondrial DNA (mtDNA) was used for this study. It
is about 16,000 bases long and particularly suited for phy-
logenetic studies, since it is inherited only maternally and
shows high rate of mutation because it resides in mitochon-
dria outside of the cell’s protecting nucleus. The migration
pattern observed in the tree corresponds to the currently ac-
cepted theory of African human origin and the results pre-
sented in [27]. Interesting highlight is the close relationship
between North American Navaho descendants and the Eu-
ropean Finnish population, indicating that North America
might have not only been populated from north eastern Asia
by crossing the Bering land bridge, but possibly also through
the Arctic.

To demonstrate the content recognition performance of
the derived measure, we present the results for content recog-
nition of non-genic regions (ng), exons (ex) and introns (in).
As content sequences the first 50,000 nucleotides (50kb) of
concatenated sequences of each type were taken from the
human chromosome 19 (c19). Sequences of different sizes

SU
j \SC

i c19ng-50kb c19in-50kb c19ex-50kb
c1ng-300kb 0.04-best 0.84 1.02
c1ng-13kb 0.65-best 1.01 1.01
c1in-300kb 0.93 0.58-best 1.01
c1in-13kb 1.00 0.05-best 1.07
c1ex-300kb 1.02 1.01 0.96-best
c1ex-13kb 0.98 0.94 0.83-best

Table 1 Content recognition (ng-ex-in).

of each type taken from the beginning of chromosome 1 (c1)
were used as unknown sequences. For each unknown se-
quencej the distancedCR(SC

i ,SU
j ) to every content sequence

i was calculated. Using DNACompress anddCR all unknown
sequences were recognized correctly as shown in Table 1.
Some distances are greater than 1 due to the concatenation
in the compression based approximation of conditional en-
tropy in (2), leading to high compression ratios if a dissimi-
lar sequence is used for training.

The obtained results demonstrate how the derived dis-
tance measures approximated using compression can suc-
cessfully be applied to phylogenetics and recognition of se-
quence type. In Section 4 thedCL distance measure will be
used for pairwise SNP comparison in gene mapping.

4 Gene Mapping and Marker Clustering using
Shannon’s Mutual Information

This section discusses the application of Shannon’s informa-
tion theory to population-based gene mapping. In addition,
a mutual information based distance measure is used in con-
junction with multidimensional scaling to build and visual-
ize clusters of genetic markers. The presented approaches
are applied to clinical data on autoimmune Graves’ disease.

Mutual information, defined as

I(X;Y) = ∑
x

∑
y

p(x,y) log2
p(x,y)

p(x)p(y)
, (8)

whereX and Y are random variables, can be interpreted
as the reduction in entropy (or uncertainty) of one random
variable given another. In the following, it will be used as
a measure of dependence between the physical manifesta-
tion of a trait (phenotype) and the underlying genetic make-
up (genotype). Connecting particular phenotypes with the
causal genotypes is the main aim of gene mapping.

4.1 Gene Mapping

About 90% of deviations between the genomes of two indi-
viduals from a population are single point mutations. Such
variations in the genomes of a population occurring with a
relative frequency≥ 1% are referred to as single nucleotide
polymorphisms (SNPs). It is estimated that only about 0.3%
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of the human genome are SNPs. The term allele refers to
the nucleotide observed at a particular SNP locus (position)
in an individual. At most one mutation per genome position
is assumed to have occurred during the short human evolu-
tion. This assumption results in biallelic SNPs - exactly two
different alleles are observable per SNP in a population. As-
sume that a particular region of the genome was sequenced
across the population resulting inACCGTA in 76% of the
cases andATCGTA in 24%. The second position would thus
be a SNP with major allele A=C and minor allele a=T. In a
simplistic view sexually reproducing organisms posses two
homologous copies of their genome, each inherited from one
of the parents. Thus, per SNP locus we observe two alleles,
one from each parental side. An individual will have either
inherited two homozygous alleles from both parents (either
AA or aa) or two heterozygous (a different allele from each
parent Aa or aA). Modeled as a discrete random variable
each SNP locus would thus have four possible realizations.
However, the genotyping does not allow to distinguish the
parental origin of the alleles (Aa is indistinguishable from
aA), reducing the number of observable realizations of a
SNP to three.

In a typical clinical population-based gene-mappingstudy
a small subset ofL suspect SNP markers from the overall
estimated 10 million human SNP lociS1,S2, . . . ,SL is geno-
typed in N individuals. Preferably, in a population-based
disease study half of the individuals (the cases) carry the
disease under investigation, the other half (the controls)are
healthy. In such case-control studies the phenotypeP is a
binary variable (healthy/diseased) and the genotype a set
of ternary random variablesS1,S2, . . . ,SL. Fig. 4 depicts a
simple channel diagram describing the information transfer
from a ternary SNPSi to the binary phenotypeP. The prob-

case

control
AA

aA/Aa

aa

Fig. 4 Genotype-phenotype transition diagram for a two-locus model.

abilities of the random variables’ realizations and the tran-
sition probabilities can be derived from relative frequencies,
i.e. observed counts divided byN. These probability esti-
mates exhibit a variance that depends on the sample sizeN.
From these probabilities, the mutual informationI(Si ;P),
where i = 1. . .L between each SNPSi and the phenotype
P can be estimated to investigate each SNP’s causality both
in absolute (through the unit bits) and relative terms [18].

The approach presented here for single SNPs and binary
phenotypes can be easily extended to the joint analysis of
multiple SNPs and/or higher order and continuous pheno-

types [6]. A detailed comparison of the proposed method
with other statistical and signal processing based methods
can be found in [20].

4.2 Marker Clustering

So far, we have used mutual information between phenotype
and genotype. In this section, we use the mutual informa-
tion between SNPs to find groups or clusters of correlated
genetic markers, which are likely to form evolutionary en-
tities. This is an important tool for gene mapping, as it can
provide additional hints about which markers should be in-
terpreted jointly. As distance measure between two SNPs
the metricdCL(Si ,Sj) presented in (7) is applied. In this case
Si andSj represent SNPs. In order to avoid biased results,
only the data from the controls should be used to compute
the distances between all markersdCL(Si ;Sj). Subsequently,
classical multidimensional scaling can be used to cluster and
visualize the SNPs in two- or three- dimensional space for
further analysis [5].

4.3 Results

The proposed methods were successfully tested on simu-
lated and real data sets. The clinical data set described in [25]
was used to generate the results presented in this section.
The study suspects a 317 kilobases (kb) long region across
the genes CD28, CTLA4 and ICOS to be related to the Graves’
autoimmune disease. The region comprises 108 dispersed
SNP loci, which were genotyped in 384 cases and 652 con-
trols. Fig. 5 shows the mutual information estimate for all

0 50 100 150 200 250 300 350 400
0

0.005

0.01

0.015

0.02

(kb)

M
ut

ua
l I

nf
or

m
at

io
n 

I(
S

i;P
)

24
49

57
58

Fig. 5 Mutual information inbit btw. Graves’ disease and each SNP
in a region suspect of being related to the autoimmune disease.

108 SNPs [6]. It should be noted that the effects measured
are relatively weak (≈0.01 bit as compared to the theoretical
maximum of 1 bit). To determine the results’ significance,
the permutation-based critical values of the total study (global
null hypothesis based on 5% significance level) have been



“AdET” — 2007/3/2 — 20:39 — page 10007 — #7

determined and plotted. Our analysis of the autoimmune dis-
ease data set also revealed two study-wise significantly as-
sociated regions, which are identical to the most promising
regions found by the logistic regression analyses reported
in [25]. The multidimensional scaling clustering analysis(de-
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Fig. 6 Marker clustering in a 2-dimensional scaling; autoimmune dis-
ease data.

scribed in Section 4.2) of the same dataset in 2-dimensional
space is depicted in Fig. 6. It can be seen that the SNP loci
identified as significantly related to the Graves’ disease tend
to cluster. The resulting cluster indicated by the ellipse in
Fig. 6 points to similar evolutionary histories and ages of
these markers. This implies with high probability only a sin-
gle causal marker among these SNP loci.

In comparison to other statistical gene-mapping meth-
ods, applying the simple, yet theoretically well-defined con-
cept of mutual information to the representation of SNP-
phenotype and SNP-SNP relationships does not require any
assumptions to be made and thus lays out a consistent frame-
work for a first screen in gene mapping approaches.

5 Conserved Non-Genic Elements - Implementations of
Error Correcting Codes?

The DNA is the primary carrier of genetic information. This
information must be “transmitted” to various destinations.
During cell replication the genomic information must be
copied and passed on to the two daughter cells as each cell
carries a copy of the whole genome. A further example is
the transmission of genetic information from genes to pro-
teins. The genetic transmission channels introduce noise and
one might ask whether nature has developed error protecting
means similar to those that we use in digital data transmis-
sion over noisy channels in order to make reliable commu-
nication possible? Consider the transmission of genetic in-
formation over generations in evolutionary time. The DNA

is subjected to mutations making this transmission channel
noisy. Assuming a simple model of nucleotide mutations,
Battail [3] showed that the capacity of this channel de-
creases exponentially over time. He concludes that, for any
reasonable instantaneous mutation rate, genome conserva-
tion over large geological timescales can only be explained
by genome regeneration. He hypothesizes that there exists
an error correcting code implemented on the genome se-
quence level for this purpose and that genome regeneration
must occur before the capacity of the channel falls below the
error correction ability of this code [3]. Further evidencefor
this hypothesis is given by a recently published discovery
about the error correcting ability of the plant Arabidopsis
[15]. The experiment shows that mutations that are present
in the genomes of the parents are corrected in the genomes
of their offsprings with certain probability. Assuming an er-
ror correcting code on the genome level, we need to find out
where in the genome it is implemented. This amounts to the
detection of functional elements in the genome, i.e. separat-
ing evolutionary noise from meaningful biological informa-
tion.

5.1 Detection of Functional DNA Sequences and
Conserved Non-Genic Elements

Comprehensive identification of biologically functional el-
ements in the DNA represents a central and ambitious goal
in modern genetics. The reliable detection and analysis of
functional elements are crucial steps towards a deep under-
standing of how complex organisms work. Early approaches
to this problem were limited to the use of information from
one species. Today, with high quality genome sequences of
several species at hand, a comparative approach, taking into
account multiple sources of information, is often used to in-
fer regions in the genome subjected to evolutionary pres-
sure. The evolutionary relationship of multiple organisms
can be described in form of a phylogenetic tree. The com-
mon ancestor is represented by the root of the tree. The pas-
sage of DNA along the organismal lineages is described by
the branches of the tree. During the process of evolution,
the passed genetic information (DNA) is subjected to muta-
tions that cause variations. Natural selection decides about
the success of the transmitted DNA. Altered information
in regions whose variation will negatively influence the fit-
ness of the organism will most likely diminish the organ-
isms capability to reproduce and prevent passing its DNA to
the next generation whereas mutations in regions not being
under selective pressure will be passed on to further gen-
erations without restrictions. Thus, those elements within
the genome carrying information for important basic func-
tions are less likely to successfully mutate during evolution
due to natural selection. Consequently, by identifying con-
served elements in the assembly of the genomes of several
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species, we find candidates that are very likely to be func-
tional. Nowadays, having access to the complete sequences
of a number of vertebrate genomes this approach provides
a powerful tool for the systematic discovery of functional
elements in the genome [9] [17] [24].

5.2 Evolution in a Communication Theoretic Framework

In terms of communications engineering the evolution can
be regarded as a single input multiple output system. In the
biological transmission system (evolution), we may think
of the common ancestor as the transmitter. Its sequence of
bases is the output of the information source. In Fig. 7, a
single input multiple output communication scenario and
an evolution scenario are depicted. The divergence of lin-
eages, indicated by the inner nodes of the phylogenetic tree,
is equivalent to the scattering of the dispersing electromag-
netic wave on obstacles. The leaves of the tree correspond
to the receiver antennas in the SIMO system. They receive
the sequences that we are able to observe in the species to-
day. The information is transmitted over the branches of the
phylogenetic tree, equivalent to the signal paths in terms of
communications theory. Errors (mutations), erasures and in-
sertions occur during transmission.

Ancestor

Species 1

Species 2

Species 3

Fig. 7 Left: Phylogenetic tree relating three species as they evolved
from a common ancestor. Right: A single input multiple output sce-
nario.

5.3 Modeling Evolution

Commonly, the evolution can be described by a set of pa-
rameters [28]. We abstract evolution by a phylogenetic tree
T = {τ ,t′} that we specify by a topologyτ and the respec-
tive branch lengthst′ accounting for the phylogenetic rela-
tionships and the evolutionary distances among the species.
A continuous time stationary Markov process with state space
X = {A,C,G,T} describes the mutation process. A rate ma-
trix R defines this Markov process and is related to the ma-
trix of transition probabilities between two nodes in the phy-
logenetic tree by

P (tu→v) = eRtu→v, (9)

wheretu→v denotes the evolutionary distance between the
nodesu andv in the tree. The rate of substitutions at a site

is strongly dependent on its position along the DNA se-
quence as some regions are under purifying selection and
thus evolve more slowly than neutral regions. In terms of
the phylogenetic description, we model rate heterogeneity
as a site dependent scaling parameterθi , wherei denotes the
nucleotide position, working on the lengths of the branches
of the tree.

ti = θit
′
.

The thus influenced absolute evolutionary distances lead to
higher or smaller substitution probabilities according to(9)
and more or less conserved regions. In the following, we pa-
rameterize evolution by the setψi containing the parameters
described above

ψi = {R,τ ,θit
′}. (10)

Note that evolution is site dependent, theoretically each site
i could evolve differently. However, in practice over large
regions of the genome constant values forR andT are as-
sumed.

5.4 Estimation Algorithm

Evolution

py(yi |xi ;ψi)

xi yi

Fig. 8 Information Transmission in Evolution.

Figure 8 shows the transmission model for evolution.
The single sequence{xi} is transmitted over the multipath
channel evolution. At the receiver, we observe the receive
vector sequence{yi} consisting of the ancestral sequence
as we observe it today in the genomes of the considered
species. The channel is characterized by the transition prob-
abilities py(yi |xi ;ψi) conditional onxi and parameterized
overψi . The channel is not constant for all input sequences.
Different genome regions have been subjected to different
substitution rates because they are subjected to differentnat-
ural selection pressure dependant of the biological impor-
tance of the information they carry. From this point of view,
estimating the conservation of a particular DNA region is
equivalent to the estimation of how good the transmission
channel was in this region. We will introduce a detection
method which, in contrast to earlier approaches [24] [17],
is independent of the assumption about neutral evolution-
ary rates and which does not require a priori tuning param-
eters. We propose a definition of conservation that relies on
the Kullback-Leibler distance to the well defined maximum
possible conservation that does not allow for any mutations
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to occur [11]. From a communication theoretic viewpoint,
the maximum conservation is equivalent to the case of noise-
less transmission, i.e the basexi is observed unchanged in
all components of the receive vectoryi . In this situation, the
channel shall be specified bypy(yi |xi ;ψ0) and the receive
vectoryi is distributed according topy(yi ;ψ0). For the com-
parison with the maximum conservation case, we estimate
the evolutionary model that maximizes the likelihood of an
ensemble of received vectors. In a sliding window over the
observed dataYi = [yi−δ , ..,yi+δ ], δ fixed, we determine the
evolutionary modelψ̂i that most likely led to the observed
data. Assuming statistical independence among the columns
of Yi :

ψ̂i = argmax
ψi

{

i+δ

∑
j=i−δ

log(py(y j ;ψi))

}

. (11)

We calculate the probability mass functionpy(yi ;ψ̂i) for a
column parameterized bŷψi and compare the estimated dis-
tribution with the one corresponding to the maximum con-
servation process using the Kullback-Leibler distance

si = D
(

py(yi ;ψ̂i)||py(yi ;ψ
0)

)

. (12)

si is the score assigned to the column in the middle of the
sliding window. Note that a low score corresponds to a good
channel and thus a highly conserved region. A score of zero
is best explained (in the ML sense) by the process of maxi-
mum conservation. Gaps are treated as missing data caus-
ing the algorithm to consider only the subtree of species
where data is available. A comparison of the results that we
obtained with our method is presented in the next Section.
Fig. 9 shows our estimation of conservation and the under-
lying genomic data, and alignment of the genomes of five
species. Mutations are highlighted by colored background.
Our distance based score signal reflects the different degrees
of conservation as one can observe by comparing the signal
course with the data. Results on synthetic data suggest that
our method exceeds the performance of established tools
from bioinformatics [11].

5.5 Conserved Non-Genic Sequences

Two to three years ago, when genomes from multiple se-
quences became available in high quality, the comparative
methods revealed an unexpected feature of the DNA. It has
been discovered that a lot of the conserved genome regions
are non-genic, not coding for proteins [24] [8]. These re-
gions are believed to have important functions and are still
poorly understood. If an error correcting code exists on the
genome sequence level, we expect the conserved non-genic
regions to play a fundamental role in its implementation.
Using our algorithm to identify conserved regions in the

10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
el

at
iv

e 
E

nt
ro

py

Nucleotide Position

 

 
Conservation Score

Highly Conserved

Human
Rat

Mouse

Chicken

Fugu

G G T G T G G G G G G C C T C A G G T G T G A C C G C T G T G A G C C T G G C T T C T G G A A C T T T C G A G G C A T C G T C A C C G A T G G C C G G A G T G G C T G T A C A C G T G A G T G A C

G G T G T A G G A G G C C T C A G G T G T G A T C G C T G T G A A C C T G G C T T C T G G A A C T T C C G T G G C A T C G T C A C C G A T G G A C A T A G T G G T T G C A C T C G T G A G T A A T

G G T G T A G G A G G C C T C A G G T G T G A T C G C T G T G A G C C T G G C T T C T G G A A C T T C C G T G G C A T T G T C A C C G A T G G A C A T A G T G G T T G C A C T C G T G A G T A A T

G G T G T T G G G G G G C T C A A G T G T G A C C G C T G T G A G C C T G G C T T C T G G A A C T T C C G T G G C A T C G T C A C C G A C A G C A A G A G C G G C T G C A C G C G T G A G T G C T

G G T G T T G G G G G A C A G A A G T G C G A C C G C T G T G A G C C G G G C T T C T G G A A C T T C C G T G G A A T C G T G A C A G A A A A C A T G A G C G G A T G C A C G C G T A A G C C A C

A G G T G T G

A G G T G T G

A G G T G T G

A A G T G T G

A A G T G C G

Fig. 9 Top: The conservation Score indicating conserved regions.Bot-
tom: Visualization of the respective genomic data, a small section of
an alignment of the genomes of human, mouse, rat, chicken andfugu.

genome, future work will concentrate on the analysis of these
conserved regions with respect to our hypothesis of an error
correcting code on the genome level.

6 Analogy between Digital Data Transmission and
Transcription Initiation

In digital data transmission the data is often divided into
frames, whose header contains special patterns that indicate
the beginning of the message in order to maintain synchro-
nization. These patterns, the “sync words”, need to be de-
tected reliably by the receiver. Similarly, during transcrip-
tion initiation - the first step of gene expression - the RNA
polymerase has to recognize the promoter that indicates the
beginning of a gene, see Section 2.4. In bacteria the RNA
polymerase is directed to the promoter by the so called sigma
factor. This sigma factor recognizes two short (six basepairs
long) sequences separated by a spacer and positioned 35
and 10 basepairs (bp) before transcription start site (TSS).
Therefore they are called the -35 and -10 regions. Hence,
this process corresponds to a synchronization with two sync
words in digital data transmission, see Fig. 10.

TSS-35 -10

Sigma factor

Fig. 10 Promoter detection by the sigma factor.
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6.1 Choice of the Sync Words in Binary and Quaternary
Digital Transmission

The sync words in digital data transmission have to be cho-
sen such that they satisfy the following two conditions [2]:
Firstly, the probability of a random occurrence of the pattern
in the data stream is to be minimized; Secondly, the struc-
ture of the pattern should be such that the preceding symbols
cannot yield a shifted sync word, as e.g. if the (binary) pat-
tern is+1+ 1+ 1+ 1+ 1+ 1 there is a probability of 0.5
(assuming equally probable symbols) that it is followed by
a+1 which may lead to a shifted synchronization. While the
probability of a random occurrence does not depend on the
sequence in case of independent symbols, the second con-
dition is to be analyzed using the aperiodic autocorrelation
functionϕss(τ) of the sync word.ϕss(τ) describes the simi-
larity of a sequences= {s1,s2, ...,sl} to itself for every shift
τ ∈ [−(l −1);+(l −1)]:

ϕss(τ) =
l−|τ|

∑
m=1

sm ·s∗m+|τ|, (13)

wheres∗m denotes the complex conjugate ofsm. In order to
minimize the probability of shifted synchronizations, theau-
tocorrelation function of the sync word should have a narrow
maxima atτ = 0 and smallest possible values forτ 6= 0 [16].
In general, the autocorrelation properties of a sequence are
evaluated using the peak sidelobe (PSL)

PSL= max
τ\{0}

[ϕss(τ)], (14)

which should be as small as possible to minimize the prob-
ability of false synchronizations.

6.2 Autocorrelation Properties ofE.coli Promoter
Sequences

As mentioned before, transcription initiation corresponds to
the process of synchronization used in digital data transmis-
sion, since two sync words - the promoter regions - need
to be detected by the sigma factor. In order to gain more
insights into promoter detection, we determine the autocor-
relation properties of the -35 and the -10 promoter region
in the bacteriumEscherichia coli(E.coli) by adapting the
autocorrelation function to the quaternary alphabet of nu-
cleotides. Therefore, we have to redefine the product in (13)
with respect to its biological meaning, i.e. such that it rates
the effect of nucleotide matches and mismatches on the syn-
chronization quality of the sequence. We rate an agreement
of nucleotides by 1, a divergence of nucleotides by the neg-
ative value− 1

3 (i.e. punishing mismatches with an overall
weight of−1). This is done by introducing a mismatch score

matrixD

A C G T

D =













1 − 1
3 − 1

3 − 1
3

− 1
3 1 − 1

3 − 1
3

− 1
3 − 1

3 1 − 1
3

− 1
3 − 1

3 − 1
3 1













A

C

G

T

, (15)

and by replacing the product in (13) by the respective matrix
values:

ϕss(τ) =
l−|τ|

∑
m=1

D(sm,sm+|τ|). (16)

6.3 Results

The consensus (i.e. most frequently detected) sequences are
TTGACA for the -35 region andTATAAT for the -10 region,
respectively (see e.g. [13]). Figure 11 shows the autocorre-
lation function of the two sequences. Calculation of the peak
sidelobe for both promoter regions according to (14) results
in

PSL−35 = ϕss(|τ| = 2) = 0,

PSL−10 = ϕss(|τ| = 3) = 1.67.
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Fig. 11 Autocorrelation functions of -35 and -10 consensus promoter.
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To rate the autocorrelation properties of the promoter se-
quences, we calculated the values of PSL for all 46 = 4096
possible nucleotide sequences of length 6. The mean value
and the standard deviation of the resulting values are listed
in Table 2.

PSL ratio

mean 1.30

std.deviation 0.76

Table 2 Mean and standard deviation of PSL for all possible sequences
of length 6.

It can be seen that the PSL of the -35 promoter sequence
is highly below average, whereas that of the -10 promoter
sequence lies above the mean value. In fact, only 1.15 %
of all possible sequences of length 6 have a better or equal
PSL than the -35 region. Opposed to that, 79.37 % of all
sequences have a better or equal value of PSL compared to
the -10 region. This fact suggests that nature employs a syn-
chronization in two steps: firstly, the -35 region has to be
detected out of all possible sequences with high accuracy
to enable a reliable localization of the close-by transcription
start site, see Fig. 12. In the second step, both regions are de-
tected simultaneously, see Fig. 10, however, due to the syn-
chronization conducted before, the sigma factor only needs
to detect the -10 region out of around 7 sequences based on
the shape and limited deformability of the sigma factor that
yield a variable spacing of 15 to 21 bp between the two pro-
moter regions. Therefore, the sequence of the -10 promoter
region is less important for synchronization. This brings up
the conclusion that the two promoters might have evolved in
a way to serve different tasks: while the -35 region is indis-
pensable for indicating the close-by transcription start site
and, thus, needs to have excellent synchronization proper-
ties, the sequence and structure of the -10 region seems to
play a more important role during later steps of transcrip-
tion initiation like DNA unwinding and opening, which re-
quire AT-richness (i.e. a high content of the nucleotidesA

andT) [23].

TSS-35 -10

Sigma factor

Fig. 12 Pre-Synchronization during promoter detection.

7 Conclusions

The newly available sequence data makes application of in-
formation theory to molecular genetics statistically feasible.
Concepts like mutual information based distance measures
combined with source coding can be applied to phyloge-
netic classification. Mutual information can be used for gene
mapping of complex diseases. Additionally, communication
theoretic models of information transmission can be used to
search for error correcting codes in the genome or to gain
better understanding of the molecular processes in the cell
like the transcription initiation.

References

1. The international hapmap project. Nature426(6968), 789–96
(2003). 1476-4687 (Electronic) Journal Article Multicenter Study

2. Barker, R.: Group Synchronization of Binary Digital Systems.
Communication Theory, W. Jackson, Ed. London, U.K.: Butter-
worths pp. 273–287 (1953)

3. Battail, G.: Introduction to Biosemiotics: InformationTheory
and error-correcting codes in genetics and biological evolution.
Springer (2006)

4. Cilibrasi, R., Vitani, P.: Clustering by Compression. Information
Theory, IEEE Transactions on51(4), 1523–1545 (2005)

5. Cox, T., Cox, M.: Multidimensional scaling. Chapman & Hall,
London (1994)

6. Dawy, Z., Goebel, B., Hagenauer, J., Andreoli, C., Meitinger, T.,
Mueller, J.C.: Gene mapping and marker clustering using shan-
non’s mutual information. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics3(1), 47–56 (2006)

7. Dawy, Z., Hagenauer, J., Hanus, P., Mueller, J.C.: Mutualinforma-
tion based distance measures for classification and contentrecog-
nition with applications to genetics. In: Proc. of the ICC 2005
(2005)

8. Dermitzakis, E.T., Reymond, A., Antonarakis, S.E.: Conserved
non-genic sequences - an unexpected feature of mammalian
genomes. Nature Reviews Genetics6, 151–157 (2005). URL
http://dx.doi.org/10.1038/nrg1527

9. Dermitzakis, E.T., Reymond, A., Scamuffa, N., Ucla, C., Kirk-
ness, E., Rossier, C., Antonarakis, S.E.: Evolutionary discrimina-
tion of mammalian conserved non-genic sequences (cngs). Sci-
ence302, 1033–1035 (2003)

10. Freeland, S., Wu, T., Keulmann, N.: The case for an error min-
imizing standard genetic code. Orig Life Evol Biosph33(4-5),
457–77 (2003)

11. Hanus, P., Dingel, J., Hagenauer, J., Mueller, J.: An alternative
method for detecting conserved regions in multiple species. Ger-
man Conference on Bioinformatics, Hamburg p. 64 (2005)

12. Hayes, B.: The Invention of the Genetic Code. American Scientist
86(1), 8–14 (1998)

13. Lewin, B.: Genes VIII. Pearson Prentice Hall Upper Saddle River,
NJ (2004)

14. Li, M., Badger, J.H., Chen, X., Kwong, S., Kearney, P., Zhang,
H.: An information-based sequence distance and its application to
whole mitochondrial genome phylogeny . Bioinformatics17(2),
149–154 (2001). DOI 10.1093/bioinformatics/17.2.149

15. Lolle, S.J., Victor, J.L., Young, J.M., Pruitt, R.E.: Genome-wide
non-mendelian inheritance of extra-genomic information in ara-
bidopsis. Nature434(7032), 505–509 (2005)

16. Lueke, H.: Korrelationssignale. Springer-Verlag, Berlin (1992)



“AdET” — 2007/3/2 — 20:39 — page 10012 — #12

17. Margulies, E.H., Blanchette, M., Program, N.C.S., Haussler, D.,
Green, E.D.: Identification and characterization of multi-species
conserved sequences. Genome Res.13(12), 2507–2518 (2003).
URL http://www.genome.org/cgi/content/abstract/13/12/2507

18. Mueller, J., Bresch, E., Dawy, Z., Bettecken, T., Meitinger, T., Ha-
genauer, J.: Shannon’s mutual information applied to population-
based gene mapping. Am. J. Hum. Genet.73(5 (suppl.)), 610
(2003)

19. Nirenberg, M.W., Matthaei, J.H.: The dependence of cell-free pro-
tein synthesis in e. coli upon naturally occurring or synthetic
polyribonucleotides. Proc Natl Acad Sci U S A47, 1588–602
(1961). 0027-8424 (Print) Journal Article

20. Sarkis, M., Goebel, B., Dawy, Z., Hagenauer, J., Hanus, P.,
Mueller, J.C.: Gene mapping of complex diseases - a comparison
of methods from statistics informnation theory, and signalprocess-
ing. IEEE Signal Processing Magazine24(1), 83–90 (2007)

21. Shannon, C.E.: An algebra for theoretical genetics. Ph.D. the-
sis, Massachusetts Institute of Technology, Dept. of Mathematics
(1940)

22. Shannon, C.E.: A mathematical theory of communication.Bell
Systems Technical Journal27, 379–423 (1948)

23. Shomer, B., Yagil, G.: Long W tracts are over-represented in the
Escherichia coliand Haemophilus influenzagenomes. Nucleic
Acids Research27(22), 4491–4500 (1999)

24. Siepel, A., Bejerano, G., Pedersen, J.S., Hinrichs, A.S.,
Hou, M., Rosenbloom, K., Clawson, H., Spieth, J., Hillier,
L.W., Richards, S., Weinstock, G.M., Wilson, R.K., Gibbs,
R.A., Kent, W.J., Miller, W., Haussler, D.: Evolutionarily
conserved elements in vertebrate, insect, worm, and yeast
genomes. Genome Res.15(8), 1034–1050 (2005). URL
http://www.genome.org/cgi/content/abstract/15/8/1034

25. Ueda, H., Howson, J., Esposito, L., Heward, J., Snook, H., Cham-
berlain, G., Rainbow, D., Hunter, K., Smith, A., Genova, G.D.,
Herr, M., Dahlmand, I., Payne, F., Smyth, D., Lowe, C., Twells,
R., Howlett, S., Healy, B., Nutland, S., Rance, H., Everett,V.,
Smink, L., Lam, A., Cordell, H., Walker, N., Bordin, C., Hulme,
J., Motzo, C., Cucca, F., Hess, J., Metzker, M., Rogers, J., Gre-
gory, S., Allahabadia, A., Nithiyananthan, R., Tuomilehto-Wolf,
E., Tuomilehto, J., Bingley, P., Gillespie, K., Undlien, D., Ronnin-
gen, K., Guja, C., Ionescu-Tirgoviste, C., Savage, D., Maxwell,
A., Carson, D., Patterson, C., Franklyn, J., Clayton, D., Peterson,
L., Wicker, L., Todd, J., Gough, S.: Association of the T-cell reg-
ulatory gene CTLA4 with susceptibility to autoimmune disease.
Nature423(6939), 506–511 (2003)

26. Ureta-Vidal, A., Ettwiller, L., Birney, E.: Comparative genomics:
genome-wide analysis in metazoan eukaryotes. Nat Rev Genet
4(4), 251–62 (2003). 1471-0056 (Print) Journal Article Review

27. Wallace, D.C., Lott, M.T., Kogelnik, A.M., Brown, M.D.,
Navathe, S.B.: MITOMAP: A human mitochondrial genome
database (1999). URL http://www.dhgp.de/

28. Whelan, S., Li, P., Goldman, N.: Molecular phylogenetics: state-
of-the-art methods for looking into the past. Trends in Genetics
17(5), 262–272 (2001)


