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Abstract The DNA sequencing efforts of the past years to-1 Introduction
gether with rapid progress in sequencing technology have

generated a huge amount of sequence data available in pUéémmunications engineering as well as genetics have both

lic mollecular da.tabases. This rgcent development makes é&perienced a major breakthrough in the mid 20th century.
statistically feasible to apply universal concepts fronaish In 1953, the double helix structure of the DNA was de-

nons |nformat|on| t.h:(eory tq profblems n moIeF:uIar bdlolc;]g?/, ciphered by Watson and Crick. From this point on it was
e.g to use mutual information for gene mapping and phylog e that the genetic information is stored in form of two

gene‘uc CI&.‘SS'flca.t'on' Add|t|or1ally, the gerpuc infortioa _complementary directed strands composed of letters from a
in the cell is continuously SUbJe_Ct to muta‘uon_s. Ho_we\A_er, ! four symbol alphabet. Until the discovery of the molecular
has_ 0 bEf\ passed from generatlo_n to generation with h|gh fBasis of genetics, the research was concentrating on clas-
delity, raising the questl_on of e_m_stence of error pro_tmtl sical genetics, based on the rules of Mendelian inheritance
a_nd correct|or_1 m_echanlsms smylar to those used in te_dBf traits. Shannon himself was using mathematics to study
nical communication systems. Finally, better understagdi | |\ ditferent trait combinations propagated through sev-

Or: genﬁruc m;ormatlo_n p()jrct))celsazg orf1 the mc;llelcular Ie\lllel Meral generations of breeding in his Ph.D thesis completed
the cell can be acquired by looking for parallels to well s+, 4 g4 [21]. He devised a general expression for the dis-

tab“Sh?d models in communlcatlpn theory, e.g. there ex'_sttribution of several linked traits in a population after il
analogies between gene expression and frame synchronlzrga}-e generations under a random mating system, which was

tion. original at that time, but went largely unnoticed, since he
did not publish his work. After completing his Ph.D thesis,
Shannon shifted his focus towards digital communications
and cryptography. In 1948 Shannon established the theoret-
ical fundamentals of digital communication systems [22].
He introduced the concept of information based solely on
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the statistical characteristics of the information soutde
defined information in an abstract way independent of se-
mantics that does not differentiate between text, video or
audio as was generally being done when studying commu-
nication systems at that time. Using such information defini
tion, Shannon proved that a message generated by an infor-
mation source can be losslessly compressed to the entropy
of the source (source coding theorem) and that it is possible
to code the information in a way, such that one can trans-
mit it error-free at the maximum rate that the channel allows
(channel coding theorem). Ever since, communications en-
gineers have been devising algorithms to achieve the limits
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of these two theorems. The definition of information basedelix by Watson and Crick followed in 1953. The DNA con-
solely on statistical characteristics of the informationise  sists of two complementary directed strands of nucleotides
also applies to genetic data. Recent advances in DNA sé&ach nucleotide is composed of a backbone unit (sugar and
quencing technology supply enough data to apply Shannonfhosphate) and one of the four bases Adenitje Gua-
general information concept to molecular biology. Secflon nine @), Cytosine €) or Thymine (). The sugar phosphate
gives a short introduction to basic principles from molecu-backbone determines the direction of each strand which is
lar biology required for better understanding of the folow referred to as 5’ to 3’ by convention. The two strands are
ing sections. In Section 3 we show how mutual informationheld together by electrostatic interaction via weak hydro-
and compression can be used for phylogenetic classificatiogen bonds between the complementary bas&sandC-G,
Section 4 describes the application of mutual informatiorsee DNA in Fig. 1. Here, nature has implemented a simple
to gene mapping. The question whether an error correctingomplementary repetition code, which is very advantageous
code has evolved on the genome sequence level is addres§edDNA replication, that has to take place every time a cell
in Section 5. Finally, in Section 6 we model transcriptiondivides. Each of the two complementary strands is used as
initiation (one step in protein synthesis) as frame synchrotemplate for the DNA copy of one of the two daughter cells.
nization in a communication system.

The original involvement of information theorists with
molecular genetics goes back to the discovery of the genet

code. In the period between the discovery of the DNA struc:l_he rocess of copving is prone to errors leading to point-
ture in 1953 and the decipherment of the genetic code 1961- P PYIng IS b gtop

mutations, insertions, deletions and duplications. Adi
1969, when no actual DNA sequences and only very fe P g

. . ) Yo evolutionary theory a certain degree of mutation is neces
amino acid sequences were known, several different codin . ) . .
ry to allow for adaptation of different species to chaggin

schemes describing the mapping of the DNA sequence (4

) X ) nvironmental conditions. Propagation of evolutionais di
letter alphabet) to a protein (amino acid sequence from a . L o
. advantageous mutations is hindered by natural selection in
20 letter alphabet) were proposed by coding theory experts. .
L . _ i contrast to neutral and the rare advantageous mutations. As
Some of them had high information density, while others

. o .~ “suming a common ancestor, the degree of dissimilarity in
have foreseen error correction capabilities. The exparime - .
tfhe genomes of existing species can be used to reconstruct

tal discovery of the actual genetic code (the mapping rule o heir phylogenetic relationships, as shown in Section 3- Mu

the 4 = 64 DNA sequence triplets to the 20 amino acids an ational variations observed across the human populaten a

alstop sympol) was ad|sapp0|qtmentforthe coding commug, e origin of genetically influenced diseases. The main ob-
nity since it does not seem to implement any of the two. A

. . _Jective of gene mapping is to determine which of the vary-
review of the proposed codes can be found in [12]. From th|§ Ot gen bPIng . y

. AR . ing positions in the genome, also referred to as Single Nu-
point, there has been little interaction between the two-com

munities until recently. We believe that with all the newly cleotide Polymorphisms (SNPs) [1] are related to the diseas

: . . .under investigation. Section 4 describes an informatien th

available sequence data further interactions could bé- frui . . . . o
. oretical method to identify the SNPs which are statisticall
ful as our research suggests. The question why the genetic . ) : ) )
o . rélated to the investigated disease. It relies on populatio
code has evolved the way it is remains open. There seems . . : .
. L : based data from clinical studies. Since high rate of muta-
to be evidence for the optimality of the code in terms of . .
S . . . . ﬁ|on would lead to too many evolutionary disadvantageous

error minimization using metrics based on physio-chemica

. . . . ) mutations per generation cycle, it is crucial that the gemom
properties of the resulting amino acids like their hydropho copying process takes place with high fidelity. Nature has
bicity [10]. Apparently, evolution imposes additional eon y Y-

; S o .__implemented mechanisms to minimize the error suscepti-
straints on the optimization of how the genetic information,_. . . . .
; . . . ~_bility of the copying machinery. However, error protecting
is being stored, which makes the modeling rather peculiar, o ;
. 2 . measures on the sequence level similar to error correcting
This has to be accounted for by communications engineers . o
) . . “codes in communication systems are currently not known.
modeling evolution and the molecular processing of geneth : . ; .
. D o e believe that especially in case of complex multicellu-
information in the cell as a communication system.

lar (eukaryotic) organisms, which have long generation cy-
cles and a limited number of offsprings, nature might have

?C.Z Mutations

2 Biological Background developed sequence level error correcting measures to en-
sure the necessary high replication fidelity. The primany an
2.1 DNA best understood function of the genome is to carry infor-

mation for the synthesis of proteins, see Section 2.3. How-
In 1944, the desoxyribonucleic acid was identified as the priever, in complex eukaryotes like vertebrate the proportion
mary carrier of genetic information. The discovery of the ge of the genome actually coding for proteins is less than 10%,
ometric arrangement of the DNA building blocks in a doubleas opposed to simple fast evolving single cell organisms
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(prokaryotes), where almost all of the genome codes for praa terminator. During transcription initiation, the firséptin
teins. The non-coding part has been largely neglected by th@otein synthesis, the promoter sequence has to be detected
research community for a long time until comparative ge-This resembles frame synchronization in digital communi-
nomics has recently identified regions in the genomes of veation systems. Further investigation of this analogy & pr
tebrate species that do not code for proteins, but show a higdented in Section 6. In eukaryotes the mRNA produced dur-
degree of evolutionary conservation [26], labeled Coregérv ing transcription contains non-coding regions calledans:.
Non-Genic region (CNG) in Fig. 2. This implies some un- These are being spliced out (removed from the mRNA) be-
known evolutionary important function. The proportion of fore translation occurs. Only the coding exons are finally
such conserved non-coding regions in the human genonteanslated to protein. The described genome structure-is de
is comparable to that of protein coding regions. Currentlypicted in Fig. 2. The content recognition method described
our search for error protecting means on the sequence leviel Section 3 can be used to distinguish between the coding
concentrates on these regions, see Section 5. They might bgons, non-coding but transcribed introns and the nonegeni
carrying parity information to protect the coding regions. regions not taking part in gene expression.

. . Structure of a single eukaryotic gene
2.3 Protein Synthesis

Promoter Terminator
The protein coding part of the genome is converted to pro- > Exoiﬂ EX“’T |EX°“3 O
teins in a process called gene expression. It takes place in PR
two basic steps, see Fig. 1. First, during transcriptiorgtire
nomic DNA region coding for a protein is copied into mes-
senger RNA (mRNA) by the RNA polymerase molecule. CNG CNG
The resulting mMRNA corresponds to a complementary copy | B
of the template strand except that the bagg@hymine) is
substituted by (Uracil). In the second step, the ribosome Structure of eukaryotic genomes

molecule translates the mRNA into a sequence of amin@ig. 2 Genome organization of multicellular organisms.
acids - a protein. Hereby, triplets of bases are converted to

amino acids according to the mapping rule described by the

genetic code [19].

3 DNA Classification using Compression Distance

DNA 5" -ATGGGTAACCTGTAC. . .-3" Measures Based on Mutual Information
3" -TACCCATTGGACATG...-5"

The possibility of using mutual information for classifica-

tion and content recognition of genetic sequences is ebgaloi

in this section. Two different mutual information based dis

mRNA 5’ -AUGGGUAACCUGUAC...-3" tance measures are proposed, one for classification and one

for content recognition. The measure proposed for classifi-

cation is a metric. The influence of compression based en-

l Transcription

l Translation tropy estimation on the proposed measures is investigated.
Examples of successful applications in the field of genetics
Protein Met|GlyLyslLeuTyr. .. are presented.

Mutual information describes the amount of information
shared by stochastic processes. It can be used to derive dis-
tance measures quantifying the similarity of the processes
Mutual information based distance measures can be used to
compare texts written by different authors or to build phylo
genies of different species.

Fig. 1 Protein synthesis.

2.4 Genome Structure

The protein coding portion of the genome is arranged irg.1 Compression Based Entropy Approximation

genes. The genes vary in size and are randomly distributed

across the genome. The beginning of a gene is characteriz&tie definition of mutual information is based on the en-
by a promoter sequence in front of it. The end is signalled byropies of the compared sources, which will be approximated
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using compression. The idea of using compression for phy- Information theory describes the relatedness of sources
logenetic classification of whole genomes was first intro-§ andS; as the mutual information(S; Sj) shared by these
duced in [14]. Shannon’s fundamental theorem on data consources

pression states that every sou®ean be losslessly com-

pressed up to its entropy rait§(S). Thus, the compression [(S;S)) =H(S) —H(S[S) =1(S;;S). 3)

ratio achieved by an optimal compression algorithm designe ) o ) )

for a given sourcé when compressing a messaggener- Mutual information is an absolute measure of information

ated by this source is a good approximation of the source2mmon to both sources. Itc_an l?e transf_ormed to a bounded
actual entropy rate distance through normalization in two different ways: One

way, to be used for content recognition, is to normalize by
H(S) ~ lcomp(s)| (1) the maximum possible mutual information the two sources
sl can share, resulting in

where|.| denotes the size in bits or symbols. The entropy 1(S:S)
of DNA sequences is less than 2 bit due to the use of a 4cr(S,;Sj) =1~ min(H(S).H(S ) <Ll (4)
symbol alphabetd,C,G,T). o

In general a universal compressor for a whole class ofhe lower bound is reached for sources that share the max-
sources (e.g. DNA sequences, natural texts) is availabth S imum possible mutual information given their entropies. It
universal compressors gradually adjust their underly8igg can be reformulated using conditional entropies
eral statistical model describing the whole class of saitce
the individual statistics of the particular message beorgc 4 o s) = min(H(S$),H(Si1S)) (5)
pressed. For example, genomic DNA sources contain ap- ’ min(H(S),H(S)))

proximate repeats and palindromes (reverse complements

due to duplications and point mutations that occur durind‘PSing the compression based approximationsin (1) and (2)

evolution. DNAcompress uses this general property of ge'—t can be written as

nomic DNA and compresses the specific repeats occurrirﬁc lcomd(sj,s)| — [comy(s;))|
in the particular sequence being compressed. Such univefcR = lcomy(s)]

sal compressors are particularly suited to compare sources

of a given class as they should be able to compress well @r |comy(s)| < |comg(s;)|. Since the triangle inequality is
concatenation of messages generated by similar sourcesrast satisfied fordcg this measure is not a metric distance.
opposed to dissimilar ones. Consequently, the conditionathus for classification we normali2€S; S;) by the maxi-
entropyH (S1|S;) of two different source§ andS; willbe  mum entropy of both sources resulting in the following dis-
approximated as the compression ratio achieved for the metance metric
sages when the compressor’s model is trained on the mes-

: (6)

sages;. The compression size of the concatenated sequencgg, (S, S;) = 1— I(S:S) <1 (7)
|comy(sj,s)| can be used for this purpose maxH(S),H(S)))

lcomd(s;,s)| — |comy(s))| Compared talcr in (4) the two sources must not only share
H(SIS) ~ : (2)  maximum possible mutual information, but also need to have

s e o :
identical entropies in order to achiedg_= 0.
. . The advantage of the compression based approximation
3.2 Mutual Information Based Distance Measures of the derived distances is that no prior alignment of the

) ) S _ compared sequencgsands; is necessary.
The aim of unsupervised classification is to build clusters

of all sourcesS based on chosen criteria. A distance metric
d(S,Sj) quantifying the similarity of the sources is required 3 3 Ragylts
for such clustering.

Content recognition serves a different purpose. Here jfferent types of compression algorithms were tested with
setC of known content sourcesf,i € {1...|C|} is provided  respect to their classification and content recognition per
together with a sét of unknownsourceS?, j € {1...|U[}.  formance: Lempel-Ziv, Context Tree Weighting, Burrows
The goal is to find the best matching content sog@ith  Wheeler Transform, Prediction by Partial Matching (PPM)
the smallest distance = argmin(d(S©,S/)) for each un-  and DNACompress. In general PPM and DNACompress per-
known sourC(SﬁJ . The distance measure for content recogniformed best for genetic sequences. A set of properties mak-
tion on the contrary to classification does not have to satisfing a compression algorithm suitable for classification and
the axioms of a metric. content recognition was derived in [7].
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Afri-Mbuti S\s €19ng-50kb | c19in-50kb | c19ex-50kb
Afri-San c1ng-300kb|| 0.04-best 0.84 1.02
Afri-Effik Africa c1lng-13kb 0.65-best 1.01 101
Afri-SouthAfrican c1in-300kb 0.93 0.58-best 101

Eve -+ Afri-Lisongo clin-13kb 1.00 0.05-best 1.07
Afri-Bamileke clex-300kb 1.02 101 0.96-best

: clex-13kb 0.98 0.94 0.83-best
Indi-Kannada India, Aust. " -
| Aust-Aborigine Table 1 Content recognition (ng-ex-in).
Asia-Japanese
Asia-Siberianinuit ;
AmeN-Native Asia, Amer.
AmeS-Guarani of each type taken from the beginning of chromosome 1 (c1)
AmeS-Warao _ were used as unknown sequences. For each unknown se-
- . - Asia, Amer. . .

Asia-Eskimo guencej the d|stanceiCR(§C, SJ-J) to every content sequence
AmeN-Navajo Euro. A i was calculated. Using DNACompress al all unknown
Euro-Finnish uro, Amer. sequences were recognized correctly as shown in Table 1.
Asia-Chinese _ Some distances are greater than 1 due to the concatenation
Asia-Thai Asia in the compression based approximation of conditional en-
Euro-Spanish tropy in (2), leading to high compression ratios if a dissimi
Afri-Moroccan lar sequence is used for training.
Euro-English Euro The obtained results demonstrate how the derived dis-
Eﬂig:gztﬂan tance measures approximated using compression can suc-
Euro-Caucasian cessfully be applied to phylogenetics and recognition ef se

quence type. In Section 4 thig_ distance measure will be

Fig. 3 Human phylogeny based on mtDNA. L - . .
used for pairwise SNP comparison in gene mapping.

A typical classification problem in molecular genetics4 Gene Mapping and Marker Clustering using
is reconstruction of phylogenetic relationships betweién d Shannon’s Mutual Information
ferent populations (e.g. human populations, different mam
malian species) in form of a binary tree, where the noded his section discusses the application of Shannon’s inderm
represent the separation events and the root the common &2 theory to population-based gene mapping. In addition,
cestor of all the investigated populations according to thé mutual information based distance measure is used in con-
evolutionary theory. Figure 3 shows a phylogenetic tree ofunction with multidimensional scaling to build and visual
the human population constructed usilag with DNACom- ize clusters of genetic markers. The presented approaches
press and the quartet tree generation method describeld in [#7€ applied to clinical data on autoimmune Graves’ disease.
Mitochondrial DNA (mtDNA) was used for this study. It Mutual information, defined as
is about 16,000 bases long and particularly suited for phy- . p(X,Y)
logenetic studies, since it is inherited only maternallg an HX3Y) = Z ; p(xy)log, p(X)p(y)’ ®

shows high rate of mutation because it resides in mitochon- . .
. ; ) . . . whereX andY are random variables, can be interpreted
dria outside of the cell's protecting nucleus. The mignatio

. as the reduction in entropy (or uncertainty) of one random
pattern observed in the tree corresponds to the currently ac_ . . by ( . .y) .

. L variable given another. In the following, it will be used as
cepted theory of African human origin and the results pre-

sented in [27]. Interesting highlight is the close relasioip a measure of dependence between the physical manifesta-

between North American Navaho descendants and the EHP” of a trait (phenotype) and the underlying genetic make-

ropean Finnish population, indicating that North America" P (genotype). Connecting particular phenotypes with the

might have not only been populated from north eastern Asigausal genotypes is the main aim of gene mapping.

by crossing the Bering land bridge, but possibly also thioug
the Arctic. 4.1 Gene Mapping

To demonstrate the content recognition performance of
the derived measure, we present the results for contergrecoAbout 90% of deviations between the genomes of two indi-
nition of non-genic regions (ng), exons (ex) and intronk (in viduals from a population are single point mutations. Such
As content sequences the first 50,000 nucleotides (50kb) efariations in the genomes of a population occurring with a
concatenated sequences of each type were taken from thelative frequency> 1% are referred to as single nucleotide
human chromosome 19 (c19). Sequences of different sizggwlymorphisms (SNPs). It is estimated that only abo8%®
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of the human genome are SNPs. The term allele refers tiypes [6]. A detailed comparison of the proposed method
the nucleotide observed at a particular SNP locus (po$itiorwith other statistical and signal processing based methods
in an individual. At most one mutation per genome positioncan be found in [20].
is assumed to have occurred during the short human evolu-
tion. This assumption results in biallelic SNPs - exactlg tw
different alleles are observable per SNP in a population. As4.2 Marker Clustering
sume that a particular region of the genome was sequenced
across the population resulting ACCGTA in 76% of the  So far, we have used mutual information between phenotype
cases andTCGTA in 24%. The second position would thus and genotype. In this section, we use the mutual informa-
be a SNP with major allele A:=and minor allele a®. Ina  tion between SNPs to find groups or clusters of correlated
simplistic view sexually reproducing organisms posses twgenetic markers, which are likely to form evolutionary en-
homologous copies of their genome, each inherited from ontities. This is an important tool for gene mapping, as it can
of the parents. Thus, per SNP locus we observe two alleleprovide additional hints about which markers should be in-
one from each parental side. An individual will have eitherterpreted jointly. As distance measure between two SNPs
inherited two homozygous alleles from both parents (eithethe metricde (S, Sj) presented in (7) is applied. In this case
AA or aa) or two heterozygous (a different allele from eachS andS; represent SNPs. In order to avoid biased results,
parent Aa or aA). Modeled as a discrete random variablenly the data from the controls should be used to compute
each SNP locus would thus have four possible realizationshe distances between all markegs (S; Sj). Subsequently,
However, the genotyping does not allow to distinguish theclassical multidimensional scaling can be used to clustér a
parental origin of the alleles (Aa is indistinguishablenfro visualize the SNPs in two- or three- dimensional space for
aA), reducing the number of observable realizations of durther analysis [5].
SNP to three.

In a typical clinical population-based gene-mapping study
a small subset of suspect SNP markers from the overall 4.3 Results
estimated 10 million human SNP I08i,S,,...,S is geno-
typed in N individuals. Preferably, in a population-based The proposed methods were successfully tested on simu-
disease study half of the individuals (the cases) carry thated and real data sets. The clinical data set describ@8]n [
disease under investigation, the other half (the contesls) was used to generate the results presented in this section.
healthy. In such case-control studies the phenofpea The study suspects a 317 kilobases (kb) long region across
binary variable (healthy/diseased) and the genotype a séie genes CD28, CTLA4 and ICOS to be related to the Graves’
of ternary random variableS;, S, ..., S . Fig. 4 depicts a autoimmune disease. The region comprises 108 dispersed
simple channel diagram describing the information transfeSNP loci, which were genotyped in 384 cases and 652 con-
from a ternary SN to the binary phenotypR. The prob- trols. Fig. 5 shows the mutual information estimate for all

AA e 0.02 ; ; ; ; ‘
control _ NP
o 49—
aA/Aa @ & 0.015f 2
case c L ‘
2
aa @ E 0.01f f
Fig. 4 Genotype-phenotype transition diagram for a two-locus ehod ~_§
S 0.005"
=
abilities of the random variables’ realizations and the4ra o L. 1 h
sition probabilities can be derived from relative frequiesc 0 50 100 150 200 250 300 350 400

i.e. observed counts divided hy. These probability esti- )

mates exhibit a variance that depends on the sampld\size
From these probabilities, the mutual informatibis; P),
wherei = 1...L between each SNB and the phenotype
P can be estimated to investigate each SNP’s causality bott08 SNPs [6]. It should be noted that the effects measured
in absolute (through the unit bits) and relative terms [18]. are relatively weak+£0.01 bit as compared to the theoretical
The approach presented here for single SNPs and binargaximum of 1 bit). To determine the results’ significance,
phenotypes can be easily extended to the joint analysis dfie permutation-based critical values of the total studiy{al
multiple SNPs and/or higher order and continuous phenaaull hypothesis based on 5% significance level) have been

Fig. 5 Mutual information inbit btw. Graves’ disease and each SNP
in a region suspect of being related to the autoimmune diseas
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determined and plotted. Our analysis of the autoimmune diss subjected to mutations making this transmission channel
ease data set also revealed two study-wise significantly agoisy. Assuming a simple model of nucleotide mutations,
sociated regions, which are identical to the most promisingattail [3] showed that the capacity of this channel de-
regions found by the logistic regression analyses reportecreases exponentially over time. He concludes that, for any
in [25]. The multidimensional scaling clustering analy(sis- reasonable instantaneous mutation rate, genome conserva-
tion over large geological timescales can only be explained
by genome regeneration. He hypothesizes that there exists
an error correcting code implemented on the genome se-
quence level for this purpose and that genome regeneration
must occur before the capacity of the channel falls below the
error correction ability of this code [3]. Further eviderioe

this hypothesis is given by a recently published discovery
31 about the error correcting ability of the plant Arabidopsis

13 [15]. The experiment shows that mutations that are present

9
0.3F 363y 98 9350

1
4543 72 64
0.2 5p 5554 1%
56 67

a7
0.1+ 38 67

218 X R
, 25 82
;17 191528 53084 Y,

0.1

0.2

in the genomes of the parents are corrected in the genomes
of their offsprings with certain probability. Assuming an e

ror correcting code on the genome level, we need to find out
where in the genome it is implemented. This amounts to the
detection of functional elements in the genome, i.e. se¢para

ing evolutionary noise from meaningful biological informa

Fig. 6 Marker clustering in a 2-dimensional scaling; autoimmuise d  tion.
ease data.

o _ . _ 5.1 Detection of Functional DNA Sequences and
scribed in Section 4.2) of the same dataset in 2-dimensionglgnserved Non-Genic Elements

space is depicted in Fig. 6. It can be seen that the SNP loci
identified as significantly related to the Graves’ diseasd te Comprehensive identification of biologically function&l e
to cluster. The resulting cluster indicated by the ellipse i ements in the DNA represents a central and ambitious goal
Fig. 6 points to similar evolutionary histories and ages ofin modern genetics. The reliable detection and analysis of
these markers. This implies with high probability only asin functional elements are crucial steps towards a deep under-
gle causal marker among these SNP loci. standing of how complex organisms work. Early approaches
In comparison to other statistical gene-mapping methto this problem were limited to the use of information from
ods, applying the simple, yet theoretically well-defined-co one species. Today, with high quality genome sequences of
cept of mutual information to the representation of SNP-several species at hand, a comparative approach, takimg int
phenotype and SNP-SNP relationships does not require a¢count multiple sources of information, is often used to in
assumptions to be made and thus lays out a consistent franfer regions in the genome subjected to evolutionary pres-
work for a first screen in gene mapping approaches. sure. The evolutionary relationship of multiple organisms
can be described in form of a phylogenetic tree. The com-
mon ancestor is represented by the root of the tree. The pas-
sage of DNA along the organismal lineages is described by
the branches of the tree. During the process of evolution,
the passed genetic information (DNA) is subjected to muta-
The DNA is the primary carrier of genetic information. This tions that cause variations. Natural selection decidesitabo
information must be “transmitted” to various destinations the success of the transmitted DNA. Altered information
During cell replication the genomic information must bein regions whose variation will negatively influence the fit-
copied and passed on to the two daughter cells as each caktss of the organism will most likely diminish the organ-
carries a copy of the whole genome. A further example issms capability to reproduce and prevent passing its DNA to
the transmission of genetic information from genes to prothe next generation whereas mutations in regions not being
teins. The genetic transmission channels introduce naide a under selective pressure will be passed on to further gen-
one might ask whether nature has developed error protectirgrations without restrictions. Thus, those elements withi
means similar to those that we use in digital data transmishe genome carrying information for important basic func-
sion over noisy channels in order to make reliable commutions are less likely to successfully mutate during evoluti
nication possible? Consider the transmission of genetic indue to natural selection. Consequently, by identifying-con
formation over generations in evolutionary time. The DNAserved elements in the assembly of the genomes of several

5 Conserved Non-Genic Elements - Implementations of
Error Correcting Codes?
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species, we find candidates that are very likely to be funcis strongly dependent on its position along the DNA se-
tional. Nowadays, having access to the complete sequencgaence as some regions are under purifying selection and
of a number of vertebrate genomes this approach providegbus evolve more slowly than neutral regions. In terms of
a powerful tool for the systematic discovery of functionalthe phylogenetic description, we model rate heterogeneity
elements in the genome [9][17] [24]. as a site dependent scaling paramétgwherei denotes the
nucleotide position, working on the lengths of the branches
. . . of the tree.
5.2 Evolution in a Communication Theoretic Framework t =6t
In terms of communications engineering the evolution canl he thus influenced absolute evolutionary distances lead to
be regarded as a single input multiple output system. In thbigher or smaller substitution probabilities accordind3p
biological transmission system (evolution), we may thinkand more or less conserved regions. In the following, we pa-
of the common ancestor as the transmitter. Its sequence tdmeterize evolution by the s¢t containing the parameters
bases is the output of the information source. In Fig. 7, alescribed above
single input multiple output communication scenario and

A /
an evolution scenario are depicted. The divergence of IinyjI ={R.7.6t}. (10)

eages, indicated by the inner nodes of the phylogenetic treRjote that evolution is site dependent, theoretically edteh s
is equivalent to the scattering of the dispersing elect@ma j could evolve differently. However, in practice over large

netic wave on obstacles. The leaves of the tree correspoRggions of the genome constant valuesfand.7 are as-
to the receiver antennas in the SIMO system. They receivgmed.

the sequences that we are able to observe in the species to-

day. The information is transmitted over the branches of the

phylogenetic tree, equivalent to the signal paths in teris 6.4 Estimation Algorithm
communications theory. Errors (mutations), erasures@nd i

sertions occur during transmission.

A S X —— Evolution —
———————— Species 1 N I

Ancestor -

Species 2 py(yi‘xi;’(/’i)
Fig. 8 Information Transmission in Evolution.
Species 3 \T
Fig. 7 Left: Phylogenetic tree relating three species as theyvedol
from a common ancestor. Right: A single input multiple outpee- Figure 8 shows the transmission model for evolution.

nano. The single sequencgx } is transmitted over the multipath

channel evolution. At the receiver, we observe the receive
vector sequencgy;} consisting of the ancestral sequence
as we observe it today in the genomes of the considered
5.3 Modeling Evolution species. The channel is characterized by the transitidnpro
abilities py(yi|xi;¥i) conditional onx; and parameterized
Commonly, the evolution can be described by a set of paevert);. The channel is not constant for all input sequences.
rameters [28]. We abstract evolution by a phylogenetic tre®ifferent genome regions have been subjected to different
7 = {r,t'} that we specify by a topology and the respec- substitution rates because they are subjected to diffaeent
tive branch length¢’ accounting for the phylogenetic rela- ural selection pressure dependant of the biological impor-
tionships and the evolutionary distances among the speciesnce of the information they carry. From this point of view,
A continuous time stationary Markov process with state spaestimating the conservation of a particular DNA region is
Z ={A,C,G,T} describes the mutation process. A rate ma-equivalent to the estimation of how good the transmission
trix R defines this Markov process and is related to the maehannel was in this region. We will introduce a detection
trix of transition probabilities between two nodes in thgph method which, in contrast to earlier approaches [24] [17],
logenetic tree by is independent of the assumption about neutral evolution-
Plty ) — e ) ary rates and which doe_s _n_ot require a priqri tuning param-
’ eters. We propose a definition of conservation that relies on
wheret,_,, denotes the evolutionary distance between théhe Kullback-Leibler distance to the well defined maximum
nodesu andv in the tree. The rate of substitutions at a sitepossible conservation that does not allow for any mutations
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to occur [11]. From a communication theoretic viewpoint, 14 ‘ ‘ ‘ ‘ ‘ e ]
the maximum conservation is equivalent to the case of noise-
less transmission, i.e the bageis observed unchanged in
all components of the receive vectgr In this situation, the
channel shall be specified kg, (vi|x;1°) and the receive
vectory; is distributed according tp, (yi; 1°). For the com-
parison with the maximum conservation case, we estimate
the evolutionary model that maximizes the likelihood of an
ensemble of received vectors. In a sliding window over the 1\\

observed datd} = [y;_s, .., i1 5], O fixed, we determine the 4

evolutionary modeiﬁi that most likely led to the observed ol 1\7

data. Assuming statistical independence among the columns VA
of Yj: .

1.2f —

Highly Conserved

4
®

Relative Entropy

o
o
T
I

L L L L L L L L
10 20 30 40 50 60 70 80

Nucleotide Position

) i+5
wi—argpmax{ 3 Iog(m(yj:¢i>>}. (11)
i =5

- . L Fig. 9 Top: The conservation Score indicating conserved regiBoss.
We calculate the probability mass functipp(yi; i) fora o Visualization of the respective genomic data, a smedtien of

column parameterized by; and compare the estimated dis- an alignment of the genomes of human, mouse, rat, chickefuaud
tribution with the one corresponding to the maximum con-

servation process using the Kullback-Leibler distance ) )
genome, future work will concentrate on the analysis oféhes

S=9 (py(yi;ﬁi)pr(yiwo)) . (12) conserved regions with respect to our hypothesis of an error
correcting code on the genome level.

s is the score assigned to the column in the middle of the

sliding window. Note that a low score corresponds to a good

channel and thus a highly conserved region. A score of zerd Analogy between Digital Data Transmission and

is best explained (in the ML sense) by the process of maxiTranscription Initiation

mum conservation. Gaps are treated as missing data caus-

ing the algorithm to consider only the subtree of specieén digital data transmission the data is often divided into

where data is available. A comparison of the results that wéfames, whose header contains special patterns that tedica

obtained with our method is presented in the next Sectiorfh€ beginning of the message in order to maintain synchro-

Fig. 9 shows our estimation of conservation and the undefization. These patterns, the “sync words”, need to be de-

lying genomic data, and alignment of the genomes of fivdected reliably by the receiver. Similarly, during tranper

species. Mutations are highlighted by colored backgroundion initiation - the first step of gene expression - the RNA

Our distance based score signal reflects the different degrePolymerase has to recognize the promoter that indicates the

of conservation as one can observe by comparing the signBdinning of a gene, see Section 2.4. In bacteria the RNA

course with the data. Results on synthetic data suggest th@@lymerase is directed to the promoter by the so called sigma

our method exceeds the performance of established toof@ctor. This sigma factor recognizes two short (six basspai
from bioinformatics [11]. long) sequences separated by a spacer and positioned 35

and 10 basepairs (bp) before transcription start site (TSS)
Therefore they are called the -35 and -10 regions. Hence,
5.5 Conserved Non-Genic Sequences this process corresponds to a synchronization with two sync
words in digital data transmission, see Fig. 10.
Two to three years ago, when genomes from multiple se-
guences became available in high quality, the comparative Sigma factor
methods revealed an unexpected feature of the DNA. It has
been discovered that a lot of the conserved genome regions i ; B : }
are non-genic, not coding for proteins [24] [8]. These re
gions are believed to have important functions and are stih ‘ ‘ ‘ ‘ ‘
poorly understood. If an error correcting code exists on the -35 10 TSS
genome sequence level, we expect the conserved non-gerﬁgﬁ' 10 Promoter detection by the sigma factor.
regions to play a fundamental role in its implementation.
Using our algorithm to identify conserved regions in the
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6.1 Choice of the Sync Words in Binary and Quaternary  matrixD
Digital Transmission

=
Q
(]
|

The sync words in digital data transmission have to be cho-
sen such that they satisfy the following two conditions [2]:
Firstly, the probability of a random occurrence of the patte

in the data stream is to be minimized; Secondly, the strucp —
ture of the pattern should be such that the preceding symbols
cannot yield a shifted sync word, as e.g. if the (binary) pat-
ternis+1+1+4+1+1+1+1 there is a probability of &
(assuming equally probable symbols) that it is followed by
a-+1 which may lead to a shifted synchronization. While the@nd by replacing the productin (13) by the respective matrix
probability of a random occurrence does not depend on théalues:

sequence in case of independent symbols, the second con-

; (15)

Wk Wk Wk
Wik Wk Wik
WR = Wk Wik
P Wk Wk Wk
H Q Q =

dition is to be analyzed using the aperiodic autocorretatio I—[t]
function ¢s5(T) of the sync wordgss(T) describes the simi- hss(T) = z D(Sms S [1])- (16)
larity of a sequence= {s1,%,...,5 } to itself for every shift m=1

te[—(1-1);+(0-12):

i

Pss(T) = len-%m, (13) 6.3 Results

The consensus (i.e. most frequently detected) sequerees ar

TTGACA for the -35 region andATAAT for the -10 region,
V\;espectively (see e.g. [13]). Figure 11 shows the autoeorre
maxima atr — 0 and smallest possible values fof 0 [16]. Ia_ltlon function of the two sequences. CaIchann of thekpea
In general, the autocorrelation properties of a sequeree aF,ldelobe for both promoter regions according to (14) result

evaluated using the peak sidelobe (PSL) in

wheres}, denotes the complex conjugatesaf. In order to
minimize the probability of shifted synchronizations, the
tocorrelation function of the sync word should have a narro

PSL= n\w{%>}<[¢ss(r)], (14)
T

PSL35 - ¢Ss(|r| — 2) - O,

which should be as small as possible to minimize the prob-

ability of false synchronizations.

PSL 10= ¢ss(|T| = 3) =1.67.
6.2 Autocorrelation Properties &f.coli Promoter
Sequences

As mentioned before, transcription initiation correspetal 6 e
the process of synchronization used in digital data tragssmi :=X= 10 consensus TATAAT
sion, since two sync words - the promoter regions - nee: I ‘ o
to be detected by the sigma factor. In order to gain mort
insights into promoter detection, we determine the autocol
relation properties of the -35 and the -10 promoter regior
in the bacteriunEscherichia coli(E.coli) by adapting the
autocorrelation function to the quaternary alphabet of nu
cleotides. Therefore, we have to redefine the productin (12
with respect to its biological meaning, i.e. such that iesat
the effect of nucleotide matches and mismatches on the sy
chronization quality of the sequence. We rate an agreeme
of nucleotides by 1, a divergence of nucleotides by the nec
ative value—% (i.e. punishing mismatches with an overall
weight of—1). This is done by introducing a mismatch score

pss(T)

Fig. 11 Autocorrelation functions of -35 and -10 consensus promote
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To rate the autocorrelation properties of the promoter se# Conclusions
quences, we calculated the values of PSL for 444096
possible nucleotide sequences of length 6. The mean valdée newly available sequence data makes application of in-
and the standard deviation of the resulting values arellisteformation theory to molecular genetics statistically fbkes
in Table 2. Concepts like mutual information based distance measures
combined with source coding can be applied to phyloge-
netic classification. Mutual information can be used forggen

PSL ratio mapping of complex diseases. Additionally, communication

theoretic models of information transmission can be used to

mean 1.30 search for error correcting codes in the genome or to gain
std.deviation 076 better understanding of the molecular processes in the cell

Table 2 Mean and standard deviation of PSL for all possible sequence
of length 6.

It can be seen that the PSL of the -35 promoter sequencé'
is highly below average, whereas that of the -10 promoter,
sequence lies above the mean value. In fact, only 1.15 %
of all possible sequences of length 6 have a better or equal
PSL than the -35 region. Opposed to that, 79.37 % of all®
sequences have a better or equal value of PSL compared to
the -10 region. This fact suggests that nature employs a syna.
chronization in two steps: firstly, the -35 region has to be
detected out of all possible sequences with high accuracy:
to enable a reliable localization of the close-by trangmip
start site, see Fig. 12. In the second step, both regionsare d
tected simultaneously, see Fig. 10, however, due to the syn-
chronization conducted before, the sigma factor only needs
to detect the -10 region out of around 7 sequences based ofr
the shape and limited deformability of the sigma factor that
yield a variable spacing of 15 to 21 bp between the two pro-
moter regions. Therefore, the sequence of the -10 promote$-
region is less important for synchronization. This brings u
the conclusion that the two promoters might have evolved in
a way to serve different tasks: while the -35 region is indis- 9,
pensable for indicating the close-by transcription stéet s
and, thus, needs to have excellent synchronization proper-
ties, the sequence and structure of the -10 region seems g
play a more important role during later steps of transcrip-
tion initiation like DNA unwinding and opening, which re-
quire AT-richness (i.e. a high content of the nucleotides 11-
andT) [23].

12.

Sigma factor

| | [

-35 -10 TSS
Fig. 12 Pre-Synchronization during promoter detection.

13.

14.

15.

16.

like the transcription initiation.
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