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T
he goal of gene mapping is to identify the genetic loci
that are responsible for apparent phenotypes such as
complex diseases. With the fast enhancement of geno-
typing techniques and equipment, the research focus
is moving towards population-based studies. These

studies usually concentrate on sequences of single nucleotide
polymorphisms observed within a population. The variations of
these nucleotides are believed to be responsible for the majority of
genetic differences among given individuals [1]–[3].

In this work, a review and comparison of three different gene
mapping methods is presented along with the assumptions and
imposed constraints. The first method relies on standard statis-
tical techniques and follows a probabilistic approach to deal with
the problem. The second method is based on a well-known con-
cept from information theory. The idea is to model the available
data as random variables and measure the dependence between
them using mutual information. The last method explores blind
source separation techniques by finding a suitable model that
involves mixing various sources so that independent component
analysis can be applied.

BIOLOGICAL BACKGROUND
The size of the human genome is about 3 billion base pairs
(bp). The DNA of a typical human somatic (nongerm line) cell
is arranged in 23 chromosome pairs, whereas one chromosome
in each pair is inherited from the maternal side and one from

the paternal side. The chromosome pairs 1–22 are common to
both sexes and the sex chromosome pair X-X in a female are
homologous and undergo recombination. The sex chromosome
pair X-Y in a male is nonhomologous and only recombines in a
small region.

SINGLE NUCLEOTIDE POLYMORPHISMS
In the world’s human population, about 10 million sites (that
is, one per 300 bases on average) vary with an observed minor
allele frequency of ≥1% [4]. Such varying sites in a popula-
tion are referred to as single nucleotide polymorphisms
(SNPs). The terms marker and locus refer to a SNP’s position
within the genome. An allele is in this context the term for
the specific nucleotide observed in an individual on a particu-
lar chromosome for a particular SNP locus. It is very unlikely
that more than one mutation would have occurred at the
same locus during the short human evolution, thus SNPs are
usually biallelic, which means that only two different
nucleotides (alleles) can be observed at each SNP locus
throughout the population [1], [2]. A typical DNA sequence
fragment of one individual may look as follows: 

paternal ...ATGTCCTGCATTGCTAGACTGGGTACT

GAGAGTCGTGTAC...

maternal ...ATGTCCTGCTTTGCTAGACTGGGTACAGAGAGTC

GTGTAC...
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The two lines represent the paternal and maternal chromosome
sets. The SNP marker have been highlighted. Assuming biallelic
SNPs (e.g., for a SNP with observed alleles A and T), there exist
two homozygous (AA, TT) and two heterozygous genotypes (AT,
TA) at each marker. However, the heterozygous genotypes,
where different allele has been inherited from each parental
side, cannot be easily distinguished from each other by standard
genotyping techniques. Instead it has to be determined using
statistical means and is referred
to as gametic phase estimation.

An individual’s genome is its
genotype, whereas its outward
appearance is called phenotype.
Connecting phenotype with
genotype, or determining the
DNA parts that cause a particu-
lar trait, is called gene mapping. Based on the assumption that
the difference in the observed phenotypes is of genetic origin, it
is natural for the ongoing gene mapping research to concen-
trate primarily on SNPs.

As the mutation rate is very low relative to the number of
generations since the most recent common ancestor of any two
humans, each new allele is initially associated with the other
alleles that happened to be present on the particular chromoso-
mal background on which it arose. This specific set of alleles is
referred to as a haplotype. The coinheritance of SNP alleles on
these haplotypes leads to associations between these alleles in
the population (known as linkage disequilibrium, LD) [4].
Because the likelihood of recombination between two SNPs
increases with the distance between them, on average such asso-
ciations between SNPs decline with distance. These correlations
make it possible to limit genotyping to only a few carefully cho-
sen SNPs in any particular region and to identify this region
even if the causal SNP happened not to be among the investigat-
ed SNPs. Due to linkage disequilibrium most of the information
about genetic variation represented by the 10 million common
SNPs in the population could be provided by genotyping
200,000–1 million tag SNPs across the genome.

COMPLEX DISEASES
The term complex disease (or trait) is used to describe diseases
caused by multiple genetic markers, possibly interacting in a
complex and unknown manner as opposed to Mendelian traits
which are caused by one single major genetic marker (and are
therefore also referred to as monogenic diseases). Examples of
complex diseases are Parkinson’s, schizophrenia, diabetes type 1,
and Alzheimer’s.

Trait variables are usually divided into discrete traits and
quantitative traits. The latter are traits that occur in various
grades usually measured on a linear scale. Examples of quantita-
tive traits are body height and blood concentrations. It is some-
times a question of interpretation whether a particular trait is
regarded as discrete or quantitative. Hair loss, for instance, may
be seen as a binary or dichotomous trait (affected or nonaffected)
or as a quantitative one (size of surface area affected by hair loss).

GENE-MAPPING METHODS
Gene-mapping methods are traditionally divided into two cate-
gories, pedigree-based and population-based methods [1], [2], [5].

Pedigree-based linkage studies test for cosegregation of dis-
ease and nearby marker alleles among affected and nonaffected
members of one family and are often referred to as linkage
studies. The main advantage is that family members share sim-
ilar environments and genes; however the number of individu-

als recruited is usually very
small. Thus, pedigree-based
methods are mostly limited to
coarse-map simple genetic dis-
eases. In linkage analysis, indi-
viduals are genotyped at random
markers spread across the
genome. If a disease gene is

close to one of the markers, then, within the pedigree, the
inheritance pattern at the marker will mimic the inheritance
pattern of the disease itself.

In population-based association studies, the investigated
individuals are subdivided into two groups. One group, the
cases, is affected by the disease under investigation, while the
other, the controls, is not affected. The two groups are checked
for genetic differences, which are assumed to appear close to the
true causal loci of the disease. Subsequently, an SNP set from
this area is genotyped and investigated further for the purpose
of fine-scale mapping.

Several high-throughput techniques have been developed for
genotyping SNPs in a high number of individuals. The locus
specificity is obtained by site specific hybridization of oligonu-
cleotide probes or primers. Sometimes genotyping fails at some
loci for a particular individual. In such cases, the missing values
can be estimated. Thanks to the possibility of genotyping a large
number of individuals, the focus is shifting towards population-
based association studies to fine map the complex traits. The
actual costs for one SNP could become as low as one cent [5],
making genotyping assays designed for testing a patients predis-
position to a particular disease affordable. Such assays comprise
roughly about thousand SNPs in genome regions known to be
associated with the disease.

There are several aspects that need to be taken into
account when doing an association study. It is essential that,
except for the disease status, the groups of cases and controls
should be as homogenous as possible in the sense, that the
control sample should reflect the ethnic composition of the
case sample. This prevents detecting spurious and masking
true associations [6]. Additionally, both groups should prefer-
ably have approximately equal size and the sample size
should be as large as possible.

STATISTICS-BASED METHODS
Two classes of statistical methods widely used in gene map-
ping are presented in this section. These techniques test the
null hypothesis of no association by evaluating the sample
data of a case-control study to find out which SNP or group of
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SNPs is associated with a given phenotype. The first class is
based on the evaluation of contingency tables while the sec-
ond one is based on regression analysis between genotype and
phenotype [1]–[3], [7].

CONTINGENCY-TABLES-BASED METHODS
The term contingency refers to the relationship between two
variables. By setting up a contingency table, statistical analy-
sis can be performed to deter-
mine the dependence or
independence of the variables
under study. In the context of
gene mapping, the two ran-
dom variables are the geno-
type represented by the SNPs
and the phenotype reflected by the condition of the individu-
als under investigation.

Here, the individuals’ genotypes are sorted into a table,
e.g., 2 × 3 for a case control study investigating one SNP.
Dividing the SNP’s realizations by the total number of indi-
viduals, an estimate for the joint distribution of phenotype
and genotype is obtained. Consequently, it is possible to
determine two marginal probability mass functions
(mPMFs). This classification can be easily extended to a set
of M SNPs. This requires building a contingency table for
each SNP which results in a total of M tables. In some cases,
this is not enough since this analysis only reflects single
SNP association with the phenotype while a combination of
SNP genotypes might be associated with the disease. Hence,
in these cases it is required to build contingency tables
reflecting multiple contributing loci.

After building these tables, it is necessary to test the associ-
ation between the genotype and the phenotype. Therefore, the
two marginal PMFs obtained from the contingency tables are
compared using a test variable, e.g., the χ2 or the log-likeli-
hood ratio (2 Î ) test variable. These deliver a number (test sta-
tistic) which for the case of independence has a χ2 distribution
with f degrees of freedom, where f = (number of rows
− 1)*(number of columns − 1). Then, a significance level is
chosen, e.g., 0.05, which means 95% confidence level. As a
consequence, it will be possible to reject the null hypothesis
depending on the number obtained from the independence
test and the defined significance level [1], [2].

This approach, however, suffers from two major limita-
tions. The first one relates to the number of multiple con-
tributing loci that can at most be taken into account. This
will increase the number of contingency tables reflecting
these multiple loci relationship with the phenotype, e.g., to
investigate the all possible pairs of SNPs jointly for a
sequence of 30 SNPs, a combination of two out of 30 = 435
contingency tables have to be evaluated. The second limita-
tion is that only discrete phenotypes can be treated. This is
because the contingency tables cannot be defined for contin-
uous phenotypes. To overcome such limitations, regression-
based methods can be employed.

REGRESSION-BASED METHODS
Regression analysis is usually used to fit a set of measured
points to an available response. This can be applied to the prob-
lem of gene mapping. The measured points are, in this case,
computed from the genotype while the available response is the
phenotype. The task is to find the curve that best fits the geno-
type to the phenotype measurements. The strength of the geno-
type-phenotype association relates to the measure of goodness

of the fit [1], [2], [7], [8].
Consider, for example, a sam-

ple of individuals where the allele
combinations (genotypes) can
vary among AA, AT, TA, and TT.
The genotypes AA and TT are
homozygous and hence are given

two different codes (0 and 1), while the genotypes AT and TA are
heterozygous and are given the same code (0.5). The phenotype is
assumed to be 0 for controls and 1 for cases. The linear regression
between these two variables tries to find the curve that best fits
the measured data, e.g., see the straight line of Figure 1.

The regression analysis works for both discrete and continu-
ous phenotypes. Because the phenotype is dichotomous, i.e.,
binary, in case-control studies, logistic regression (LR) is often
applied instead [9]. LR allows the prediction of a discrete out-
come from a set of variables that may be continuous, discrete, or
a mixture of both. It does not make any assumption about the
distribution of the independent variables. In contrast to the lin-
ear regression analysis, the relation between the phenotype and
the genotype in LR is not linear but logit-transformed. The LR
between phenotype and genotype of the previous example is
shown in the dotted curve of Figure 1. In this case, the regres-
sion curve asymptotically approaches the two realizations so
that the error in the results is minimized [9].

Once the regression coefficients are obtained, they are tested
for significance. This is done in a similar manner to the contin-
gency-based methods. In other words, the regression coeffi-
cients are tested for significance using a test variable, whose
distribution in the case of independence is known. Then, the
SNPs with the significant coefficients are considered to be
associated with the phenotype.

[FIG1] Regression analysis example.
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Multiple linear regression is a systematic approach to a
variable selection problem. However, it suffers from the same
problem as table-based methods: too few individuals, not suffi-
cient statistics. Hence, the SNP selection process must be sim-
plified. One way to accomplish it is by employing the stepwise
regression with the sliding
window. The assumption by
using the sliding window tech-
nique is that only the neigh-
boring SNPs can be jointly
causal [7]. The advantage of
this technique is its stability
and ability to provide the
knowledge of the relationships
and strengths among the vari-
ables, due to the stepwise elimination process. In addition, the
stepwise regression method provides a more favorable
approach than the contingency tables based methods since
they usually are less complex to evaluate.

INFORMATION-THEORY-BASED METHOD
Information theory is the science started by Claude E.
Shannon in 1948 as the mathematical theory of communica-
tions [10]. Shannon defines the entropy of a random variable
X, H(X ), as a measure for its randomness or uncertainty. The
mutual information (MI) I(X; Y ) between two random vari-
ables X and Y is then defined as the reduction of uncertainty
of one variable after observing the other:
I(X; Y ) = H(X ) − H(X |Y ) = H(Y ) − H(Y |X ) . MI turns
out to be a suitable measure of dependence between two ran-
dom variables: MI is symmetric and nonnegative and is equal
to zero only if X and Y are statistically independent. While the
concept of MI originated from problems in communications
engineering, it can be also used for gene mapping of complex
diseases [11]. The idea here is to regard the phenotype by a
random variable P and a given SNP by a random variable S.
The amount of information shared between P and S, i.e., the
mutual information I(P ; S ), yields the degree of association
between the two in bits. In case-control studies, where the
phenotype is binary, the maximum amount of information that
can be observed is one bit. The basic idea to calculate the
mutual information between the phenotype P and each SNP S
separately, yielding M different MI values, where M is the
number of SNP markers in the study. Note that complex dis-
eases, however, are usually not caused by single markers.
Rather, markers at multiple loci are suspected to jointly influ-
ence the disease. Thus, it makes sense to evaluate the MI
between combinations of markers and the phenotype. As an
example, a two-locus model of two SNPs with three possible
states each will yield 32 possible combinations.

Obviously, the number of possible combinations grows
exponentially with the number of markers combined, render-
ing this approach impractical in many cases. One idea to over-
come this limitation is to use a sliding window approach. This
approach, however, introduces a restriction as the assumption

that jointly causal markers are also genetic neighbors may not
be always justified for complex diseases.

Another approach is to use the concept of relevance chains
[11]. Here, all single markers are checked for significant MI
shared with the phenotype. In a second round, the conditional

MI between each marker and
the phenotype given the marker
found Sj in the first step
I(Si ; P |Sj) is calculated. This
procedure is repeated until no
markers bearing significant
additional mutual information
are found. Using this method,
patterns of jointly causal mark-
ers can be revealed, while the

number of calculations does not grow exponentially with the
number of markers involved.

Remarkably, MI is closely related to two other statistical
measures of association, the χ2 test and the log-likelihood ratio
or 2 Î test. The 2 Î test variable differs from the mutual informa-
tion only by a constant factor (of twice the sample size). The χ2

test, in turn, is a second-order Taylor series approximation to
the logarithmic 2 Î test, being χ2 distributed under the null
hypothesis of no association [12], [13].

SIGNAL-PROCESSING-BASED METHOD
Consider a scenario where several speakers are talking
together at the same time in a room, and several micro-
phones are placed at different positions recording their activ-
ities. The aim of blind-source separation is to extract the
signal of each speaker from the recorded mixtures. This situ-
ation is usually referred to as the cocktail party problem. One
way to extract the signals is by employing independent com-
ponent analysis (ICA) that tries to find a representation of the
mixture of signals where the original sources are as inde-
pendent as possible. The only assumptions to be made are
that the original signals are independent, which is the case in
almost every application, in addition to being non-Gaussian
distributed [14], [15].

GENE-MAPPING ALGORITHM
Given a study comprising a total of N individuals (samples)
divided among cases and controls where each individual’s
genotype is represented by a SNP genotype set of size M. As
seen in the previous sections, our aim is to locate the SNPs
associated with a given complex disease. In general, ICA tries
to extract the useful information from mixtures of data where
the prior knowledge about these mixtures is not available and
have to be estimated [16]. In a similar manner, the genetic
information of an organism regulates several unknown syner-
gistical intracellular processes that result in a certain pheno-
type. Furthermore, it is assumed that the SNPs interact in an
unknown environment to form new entities called SNP
expressions. For simplicity, an example is illustrated in Figure
2 where SNPs 1 and 4 are supposed to transform to SNP

PEDIGREE-BASED LINKAGE STUDIES
TEST FOR COSEGREGATION OF

DISEASE AND NEARBY MARKER
ALLELES AMONG AFFECTED AND
NONAFFECTED MEMBERS OF ONE
FAMILY AND ARE OFTEN REFERRED

TO AS LINKAGE STUDIES.
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expression 1 after getting multiplied by the weighting factors
a1 and a4. Similarly, SNP 7 transforms to expression 2 and
SNPs 2, 6, and 10 transforms to SNP expression 3. In addition,
assuming that the SNP expressions are the independent
sources and the transformation process is the mixing environ-
ment, the problem changes to
an ICA-based problem where
a set of SNP expressions that
are almost independent of
each other have to be esti-
mated along with some mix-
ing environment.

The ICA-based gene map-
ping problem reflected in
Figure 2 can be generalized
mathematically as

E = SA ⇒ S = EA+, (1)

where S ∈ RN×M contains the given SNP sequences of all indi-
viduals to be investigated, E ∈ RN×P is the matrix of independ-
ent SNP expressions to be determined, A ∈ RM×P is the SNP
coefficient matrix to be determined, N is the number of individ-
uals, M is the number of SNPs, P is the number of estimated
SNP expressions, and + is the pseudoinverse sign. As a direct
property of ICA, the determined SNP expressions in E are
almost independent from each other [14], [16]. Consequently,
the SNPs that affect the same expression will be taken to be
dependent, e.g., SNPs 1 and 4 in Figure 2, while the ones that
affect different expressions are (almost) independent, e.g., SNPs
1, 7, and 10 in Figure 2. Furthermore, the entries of A define the
magnitude of the contribution of each SNP to the correspon-
ding SNP expression in E.

The main task of ICA is to estimate the SNP expressions
matrix E along with the mixing matrix A+ from the SNPs
matrix S. In other words, ICA will explore the provided genotype
data in S to classify the SNPs into independent SNP expressions
in E and obtain the magnitude of contribution of each SNP to
the SNP expressions in A. To relate the SNP contribution to the
phenotype and, hence determine the associated SNPs, a regres-
sion analysis is performed between the SNP expressions and the
phenotype.

What is left to be done is to choose the regression coef-
ficients and hence SNPs that are relevant to the phenotype.
This is performed by choosing the SNP contributions
where the regression coefficients have p-values less than a
threshold, e.g., 0.05 for 95% confidence level, and disre-
garding all the others. (p-value is the lowest level of signifi-
cance at which the test statistic is significant. It is a
measure of probability that a difference between groups
during an experiment happened by chance. A p-value of 0.05
means that the experiment has less than a 5% chance it has
occurred by accident or 95% confidence level  [1] .)
Following this methodology, it is possible to locate the
associated SNPs [1], [2], [14].

To the contrary of the methods stated earlier, the analysis
between the phenotype and the genotype is done indirectly,
i.e., after transforming the SNPs into SNP expressions. The
advantage of such transformation is that it relates clusters of
SNPs represented by the expressions to the phenotype instead

of the SNPs themselves. This
will help in determining the
dependence/independence of
the SNPs causing the complex
disease as will be seen later in
the results without the restric-
tion that only neighboring
SNPs can cause a disease as in
sliding window technique [7].
However, it will be interesting
if some nonlinear techniques

can be used to map the SNPs to the expressions prior to ICA
as done in [16] in ordinary signal processing. Such a study
might better model the interactions among the SNPs.

PREPROCESSING THE DATA
The SNP genotypes are usually acquired by standard genotyp-
ing. In addition, it is known that any data acquisition process
suffers almost always from missing values due to many reasons
such as errors of the instruments or low DNA quality. Such
inconsistencies must be dealt with before processing the data.
The methods described here generally solve this problem by
omitting the missing SNP values in a given sample when
building the data statistics. This solution is not favorable in
linear algebra, since it requires not only omitting the missing
SNP values in the sample of the individual, but the whole data
set of the individual for the computations to be performed.
Another way to overcome this problem is to estimate the miss-
ing values. Several estimation algorithms have been proposed
in the literature for the task of DNA microarrays (continuous

[FIG2] Example of an individual’s SNPs transforming to SNP
expressions which are then fitted to the phenotype. In this
example, three expressions, one individual, and ten SNPs are
given. The numbers are only illustrative.
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values) [17], [18]; however, none of the methods is specifically
dedicated to missing genotype value estimation (discrete val-
ues). Theoretically, any estimation technique should work if
the final value is rounded to the nearest value used to code the
SNPs, e.g., 0, 0.5, or 1. Nevertheless, the estimation error will
differ depending on the used method [14].

Another issue that should be dealt with is the number of
SNP expressions that has to be estimated; i.e., the method
that determines that only three SNP expressions should be
estimated by ICA in the example illustrated in Figure 2. It is

known in blind source separation that choosing all the possi-
ble components, the number of SNPs in our case, will make
the solution deviate from the optimal one since the eigenval-
ues of the expressions with low magnitude will contain noise
rather than information [16]. One might choose all the
expressions that have eigenvalues larger than one [19]; nev-
ertheless, this solution is also not very practical since it does
not consider the structure of the data and reduces in many
cases too much the data’s dimension. The best methodology
that should be followed is to employ a model-order selection
technique that takes into account the structure of the data
along with the number of samples available. Such techniques
include Akaike information criterion (AIC), Bayesian infor-
mation criterion (BIC), minimum description length (MDL),
Laplace principle component analysis, and residual correla-
tion technique (RCT) [20]–[23].

RESULTS AND DISCUSSION
This section presents the results obtained using the gene
mapping algorithms described earlier when applied to two
different data sets. The first one is a simulated data set where
the locations of the causal loci are known. A haplotype popu-
lation was generated using a neutral coalescent model [24].
These haplotypes were then used to separate cases and con-
trols according to selected causal loci using the software
package SNAP [25]. The second set contains (unpublished)
clinical data of individuals with the schizophrenia disease
and of age, sex, and geographically matched control subjects.
Logistic regression test was used in the comparisons with the
mutual information and ICA based methods.

TWO LOCI SIMULATED 
MULTIPLICATIVE RISK DATA SET
The simulated data set was obtained using a double-loci full
multiplicative risk model where the two loci affect the phe-
notype without interaction. The set contains 2,000 samples
equally divided between cases and controls. The causal poly-
morphisms are located between positions 11–12 and 37–38,
respectively, and were removed from the sequence. This is
usually done to test the robustness of the algorithms since,
in real life, the causal SNPs are not known when genotyping;
however, the causal SNPs can still be determined by way of
correlation between SNPs (linkage disequilibrium). The
results of the algorithms is depicted in Figure 3. In graph (a),
the logarithm of the p-values obtained by LR are plotted
along with the significance level which was obtained in a
similar way to the contingency-based methods which were
previously described. In graph (b), the mutual information
between the SNPs and the phenotype are shown along with
the 99% significance level which was determined analytically
[11]. In graph (c), only the two components that correspond
to p-values less than 0.01 were plotted and the SNP factors
(contributions) correspond to the entries of the SNP coeffi-
cient matrix A found by ICA multiplied by the regression
coefficients. The 99% significance level was obtained in this

[FIG3] Association results of the simulated data set obtained by
(a) LR, (b) MI, and (c) ICA.
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case by the permutation test [14]. The significance levels
were plotted in each case to determine the decision border
upon which a SNP is considered to be associated or not. As a
first impression, it can be noticed that the three algorithms
have determined successfully the locations of the causal
regions. The highest peaks are at the locations 14 and 34,
respectively. One might think that the algorithms are not
accurate since the real locations are defined between 11–12
and 37–38. However, the causal SNPs were removed from the
simulated data and the peaks found correspond to the SNP
locations that are in high correlation with the skipped ones
and thus justifying this small deviation. Note that the ICA
based method was able to additionally determine the inde-
pendence of the two causal SNPs since each one belongs to a
different component (SNP expression).

SCHIZOPHRENIA DATA SET
In this set, there are 42 candidate SNPs collected from differ-
ent coding regions on different chromosomes. The set con-
tains 368 samples equally divided between cases and controls.
The causal SNPs are not known yet and need to be deter-
mined. Of all the available genotype values, 3% are missing
due to genotyping failure and are estimated for the ICA-based
gene mapping method according to [18]. The outcome of the
different algorithms is depicted in Figure 4, where the values
plotted are similar to the ones described in the previous data
set. The significance level in the case of MI is not a straight
line due to the presence of missing values in the data set [11].
As can be noticed, the highest peaks correspond in the three
results and do not contradict each other (SNPs 29 and 30),
emphasizing again the equivalence of these methods. It can
be seen that the ICA-based method contains less side peaks
than the two other techniques. This is due to the fact that ICA
seeks for clusters of SNPs, and then the regression analysis
eliminates the ones that are insignificant. In other words, the
other peaks were eliminated since they belong to insignificant
clusters. Note that the results of the different gene mapping
methods are quite similar due to the relationship between MI
and statistics [26] and between ICA and MI [16].

CONCLUSION
This work explains different methods to gene mapping. The
main issue in these methods is to explore the variation among
the genotype and relate it to the phenotype under study. The
first method is based on statistical analysis which tries to
relate the genotype and the phenotype using a probabilistic
approach. The second method uses MI to measure the dis-
tance between two random variables and, thus, determine the
association. The third method is based on signal processing
theory. It redefines the process of gene mapping to make use
of ICA to find a hidden entity called SNP expression. This enti-
ty is then related to the phenotype using regression analysis
to find the association. Results obtained show that the three
methods are able to give similar results when tested on simu-
lated and clinical data sets.
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[FIG4] Association results of the clinical data set Schizophrenia
obtained by: (a) LR, (b) MI, and (c) ICA.
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