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Abstract

The aim of genetic mapping is to locate the loci responsible for specific traits such as complex

diseases. These traits are normally caused by mutations at multiple loci of unknown locations and

interactions. In this work, we model the biological system that relates DNA polymorphisms with

complex traits as a linear mixing process. Given this model, we propose a new fine-scale genetic

mapping method based on independent component analysis. The proposed method outputs both

independent associated groups of SNPs in addition to specific associated SNPs with the phenotype.

It is applied to a clinical data set for the Schizophrenia disease with 368 individuals and 42 SNPs. It

is also applied to a simulation study to investigate in more depth its performance. The obtained results

demonstrate the novel characteristics of the proposed method compared to other genetic mapping

methods. Finally, we study the robustness of the proposed method with missing genotype values and

limited sample sizes.
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I. INTRODUCTION

One of the goals of genetic mapping is to associate single nucleotide polymorphisms (SNPs) with

the influence to given traits such as the susceptibility for complex diseases. Association studies of

complex traits are particularly challenging due to the influence and possible interaction of multiple

loci in an unknown manner, e.g. see [1], [2], [3]. With the development of high-throughput and cost-

effective genotyping techniques, the focus of genetic mapping research is shifting towards population-

based association studies [4], [5], [6]. In these studies, trait variation in the general population or

between cases and controls is tested for correlation with genetic markers such as SNPs. The identified

SNPs can be possibly causal or in linkage disequilibrium with a causal variant in the same gene region.

Currently, genome-wide genetic mapping techniques are at the forefront and the information from

the genotype data of the HapMap project is used to select uncorrelated SNP sets for efficient

genotyping. However, this will not abandon the need for fine-scale genetic mapping after a genomic

or gene region has been localized as being associated in several replication studies [7], [8], [9]. The

aim of fine-scale genetic mapping is then to test all polymorphisms within the identified region of

interest.

Standard genetic mapping methods are based on statistical techniques such as contingency table

tests and regression tests. These methods try to evaluate the association of multiple markers with

the trait/phenotype based on either single marker or multi-marker multivariate analysis. The main

drawback of independent single marker analysis of multiple markers is the multiple testing problem

which results in an inflation of false positives and the need for adjustment procedures. On the other

hand, multi-marker multivariate models suffer from the high number of degrees of freedom (model

terms). To overcome these limitations, stepwise regression procedures with forward and backward

selection can be employed [1]. The strength of this method is its ability to provide knowledge on

the relationships between neighboring SNPs. A similar conditional genetic mapping method based

on Shannon’s mutual information has been proposed in [9].
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An alternative approach for multi-marker multivariate analysis is to investigate association between

the trait and several selected subsets of SNPs [7], [8], [10], [11], [12], [13]. The subsets of SNPs are

selected from within haplotype blocks, as correlated groups, or arbitrarily. Another class of methods

try to model the interactions between SNPs according to interrelationships of genes within a biological

pathway in relation to the disease [14]. These methods introduce new parameters and require model

assumptions on the possible interactions.

Recently, there is high interest in the interdisciplinary research field of genomic signal processing

which aims at applying well known techniques from signal processing to problems in the field

of genetics. For example, singular value decomposition has been applied for the analysis of gene

expression data [15], principal component analysis has been applied for the selection of SNP sets

that capture intragenic genetic variation [16], and independent component analysis has been applied

for the analysis of gene expression data [17].

In this work, we propose a novel fine-scale genetic mapping method based on independent compo-

nent analysis (ICA) to locate SNPs that are associated with complex traits. ICA is a powerful signal

processing technique for revealing hidden factors from multivariate statistical data, e.g. see [18], [19].

The essence of the proposed method is based on finding a suitable model that involves mixing of

various sources so that ICA can be applied. To demonstrate the validity and illustrate the properties

of our new method, results are presented for one clinical data set in addition to a simulation study.

Moreover, we investigate the influence of the following implementation issues on the robustness of

the proposed method: missing values due to genotyping failures and number of available individuals

or samples.

The proposed method is formed of two stages. In the first stage, it forms independent groups of

SNPs according to a linear model and selects the SNP groups (called SNP expressions) that are

highly associated with the phenotype. In the second stage, it performs association analysis on each

of the identified SNP groups to select individual SNPs that are highly associated with the phenotype.

A potential advantage of the method is that it reduces estimation noise as regression analysis is
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performed on selected independent groups of SNPs that represent the major genetic variation in the

given data. As a result, associated SNPs that belong to different SNP groups can be assumed to have

an independent effect on the phenotype. Moreover, ICA is a well established method for determining

the contributions of individual variables to a set of independently observed mixtures and is available

in commonly used statistical packages.

The proposed method applies best for fine-scale mapping of a delimited genomic region which

could be a linkage region, a gene region of interest, or a linkage disequilibrium block. Given all

polymorphisms of such a genomic region, the method will describe the complete genetic architecture

of the association between these polymorphisms and the trait. Fine-scale results are necessary to

compile a list of potential causal variants, which can then be tested experimentally for their function.

This paper is organized as follows. In Section II, we formulate the problem in such a way that

ICA can be applied. Section III presents the different steps of the proposed method. Section IV

presents the results obtained by testing the proposed method on simulated and clinical data sets. In

Section V, the effects of missing genotype values and sample size on performance are investigated.

Finally, conclusions are drawn in Section VI.

II. PROBLEM MODELLING

Given a study comprising a total of N individuals divided among cases and controls where for

each individual a SNP sequence of length M is provided. The aim of this work is to design a new

genetic mapping method based on ICA to determine the SNPs that are highly associated with a given

trait/phenotype. To apply ICA, the genetic mapping problem need to be properly modelled. Therefore,

we assume that SNPs interact in a linear unknown environment to form a set of independent SNP

expressions or groups that might influence the given trait. SNPs in a single SNP expression could

be in linkage disequilibrium or could belong to genes that are in a common pathway. The problem

model can be mathematically expressed as follows:

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



5

⎛
⎜⎜⎜⎜⎜⎜⎝

e11 . . . eP1

...
. . .

e1N eP N

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
E∈RN×P

=

⎛
⎜⎜⎜⎜⎜⎜⎝

s11 . . . sM1

...
. . .

s1N sMN

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
S∈RN×M

⎛
⎜⎜⎜⎜⎜⎜⎝

a11 . . . aP1

...
. . .

a1M aP M

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
A∈RM×P

, (1)

where S contains the given SNP sequences of all individuals, E is the matrix of independent SNP

expressions, A is the SNP coefficients matrix that models the linear mixing environment, and P is the

number of SNP expressions to be estimated. Each column of E contains the individuals’ contribution

to one expression and A contains the magnitude of the contribution of the different SNPs to the

expressions.

However, the given input data is the matrix S. Therefore, it is more convenient to mathematically

express the problem model given in (1) as follows:

S = EA+ = ED, (2)

where + is the pseudoinverse sign and D ∈ R
P×M is the pseudoinverse of A. The problem transforms

to estimating the SNP expressions matrix E along with the mixing matrix D from the SNP matrix S.

The reason the model was not derived initially as in (2) is the biological relevance; normally, the

SNPs determine the SNP expressions and not vice versa. The SNP expressions can be considered

as independent sources or hidden factors in the SNPs’ sequences. Once D is estimated, the SNP

coefficients matrix A can be obtained by performing the pseudo-inverse operation.

III. METHOD DESCRIPTION

The proposed genetic mapping method is composed of two main stages. In the first stage, the SNPs

are clustered into independent groups and each group is tested for association with the phenotype.

In the second stage, association analysis is performed on the SNPs in each of the groups that are

highly associated with the phenotype. The proposed method is composed of several steps as shown

in Figure 1.
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Fig. 1. Steps of the proposed genetic mapping method.

The central step in the method is performing ICA. Basically, the ICA algorithm can be applied

directly on the input SNP matrix S to estimate the SNP expressions which would be by default

equal to the number of variables M . However, in order to reduce the computational complexity

and to reduce the estimation noise, it is common practice to perform data centering followed by

whitening and dimension reduction before applying ICA. Centering is performed by removing the

mean of the data and whitening is performed by normalizing the variance of the data. Whitening and

dimension reduction are performed can be performed by applying the principal component analysis

algorithm [18]. In order to perform dimension reduction, there is a need to estimate the optimal

number of components P . The number of components need to be carefully selected as it determines

the number of SNP expressions to be estimated in order to represent the genetic variation in the given

data.

In practice, the input matrix S might contain missing values due to genotyping failures. A simple

solution to this problem is to omit missing value samples from the analysis. However since our

method requires matrix operations, all the samples of individuals with missing values need to be

omitted from the data. Therefore, this solution is not favorable since the amount of available data

is normally scarce in clinical data sets. Alternative solutions have been proposed in the literature to

estimate the missing values [20], [21], [22], [23]. The influence of missing values on the proposed

method is dealt with in depth in Section V. In the sequel, we assume that the matrix S is given as

input to the method without any missing values. The following sections explain the different steps of

the proposed method.
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A. Number of Expressions Estimator

The first step is to calculate the number of components P that should be estimated by the ICA

algorithm. Selecting all components of the data will increase the noise since the eigenvalues with

low power comprise noise more than useful information [18]. One possibility would be to choose all

components that have eigenvalues larger than one [24]. This possibility is not favorable since it does

not consider the structure of the data and it results in over reduction of the data’s dimension in many

cases.

In the proposed method, we use a new estimator for the number of components by using residual

based statistical fit [25]. The idea is based on minimizing the difference between the given data and

its approximation after dimension reduction. Statistical fit has also been used in other applications

which include regression tests and factor analysis [26].

Given the SNP matrix S, the singular value decomposition (SVD) of its covariance matrix CS ∈

R
M×M can be expressed as:

CS = UΣUT , (3)

where U ∈ R
M×M is an orthogonal matrix and Σ ∈ R

M×M is a diagonal matrix containing the singular

values. Let C̃S ∈ R
M×M be the obtained covariance matrix by selecting the m significant singular

values of (3):

C̃S = ŨΣ̃ŨT

=
(
ŨΣ̃1/2

)(
ŨΣ̃1/2

)
T

= LLT , (4)

where the matrices Ũ, Σ̃, and L are of dimensions (M × m), (m × m), and (M × m), respectively.

Let rjk be the correlation between SNP j and SNP k, j �= k, and r̃jk be a correlation term after

dimension reduction which can be expressed as follows:

r̃jk =
m∑

i=1

ljilki, (5)
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where lji is an entry in L. The obtained covariance matrix C̃S is considered a good estimate of CS if

the standard deviation of the distribution of rjk − r̃jk (the residual correlations) is less than or equal

to the standard deviation of a distribution with zero correlation, i.e. σr=0 = N−1/2 where N is the

total number of samples [25]. Consequently, the smallest singular value is set to zero at each step in

Σ̃ until a dimension m is found where the standard deviation of the residual correlations is greater

than N−1/2. Hence, the number of SNP expressions P that has to be estimated by ICA is equal to

m + 1.

B. Application of ICA

The number of expressions P to be estimated is given to the PCA algorithm which performs

whitening and dimension reduction. PCA is a linear transformation that transforms a given data

consisting of a large number of interrelated variables to a new coordinate system. The greatest

variance, i.e. the first principal component, is projected on the first basis, the second principal

component on the second basis, and so on. The output of the PCA algorithm T ∈ R
N×P after

whitening and dimension reduction can be expressed as:

T = SŨΣ̃−1/2, (6)

where Σ̃ ∈ R
P×P is a diagonal matrix containing the P most important eigenvalues and Ũ ∈ R

M×P

is the matrix containing the P most important eigenvectors. The reduced dimension matrix T is then

given to the ICA algorithm to estimate the SNP expressions matrix E and the pseudoinverse matrix

D of the SNP coefficients matrix A. A fundamental assumption for ICA to function properly is that

the expressions follow a non-Gaussian distribution [18]. ICA works by trying to maximize the non-

Gaussianity of each of the components. The kurtosis and the negentropy are two commonly used

measures of non-Gaussianity.
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C. SNP Expressions Significance Analysis

The obtained SNP expressions do not relate yet to the phenotype under study. Therefore, the next

step is to perform a significance analysis between the SNP expressions and the phenotype. In the

proposed method, regression analysis is used to measure the distance of each SNP expression to the

phenotype. Logistic regression can be applied for case-control studies and linear regression can be

applied for quantitative trait loci studies.

The inputs to the regression analysis are the phenotype vector t ∈ R
N×1 and the SNP expressions

matrix E ∈ R
P×N , and the output is the regression vector k ∈ R

P×1. The SNP coefficients matrix

A contains the contribution of the SNPs to each of the estimated SNP expressions. To obtain the

contribution of each SNP to the SNP expressions taking into account the phenotype, each term of k

should be multiplied by the corresponding column of the SNP coefficients matrix as follows:

W =
(

a1 · k1 . . . aP · kP

)
, (7)

where matrix W ∈ R
M×P is the weighted SNP coefficient matrix, {a1, . . . ,aP} are the columns of

matrix A, and {k1, . . . , kP} are the calculated regression coefficients.

This shows that the more a SNP expression is related to the phenotype, the larger is the magnitude of

its regression coefficient and, thus, the larger is the corresponding SNPs contribution to the phenotype.

The next step is to choose the columns of the matrix W that are most relevant to the phenotype.

This is done by choosing the columns in which the regression coefficients have p-values less than

a threshold for a given significance level. This threshold p-value will be denoted as components p-

value in the sequel. Each of the chosen columns of W contains the weighted SNPs contribution to

the phenotype. Thus, the entries of each of the columns determine how much each SNP has an effect

on the phenotype. These entries will be denoted as SNP factors in the results presented in Section IV.

D. SNPs Significance Analysis

The final step in the method is to find out the significant SNPs in each of the selected associated

SNP expressions (selected columns of W). This is performed using permutation test with a sufficient
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number of rounds [27]. In each round, the permutation test can be implemented either by permuting

the given SNP genotype data and performing all the steps of the method or by permuting the phenotype

vector and performing only the steps of the method after ICA. The latter option is selected since it

requires less computations.

The significance level associated with every SNP is determined in a permutation test where the

case/control labels in the phenotype vector t are permuted. In each round of the permutation test,

regression analysis is performed between the permuted phenotype vector and the SNP expressions

matrix E to compute a new weighted SNP coefficients matrix W using (7). Then, the maximal SNP

factor among all SNP expressions is selected. After running a large number of rounds, a frequency

histogram is constructed and used to calculate a threshold SNP factor based on a target p-value that

corresponds to a given significance level. This target p-value will be denoted as SNPs p-value in the

sequel. The selected maximal SNP factors are global as just one value is taken out of each round.

Therefore, we have adjusted for multiple testing by the permutation test procedure.

IV. RESULTS AND ANALYSIS

This section presents the results of the proposed method applied to a case-control simulation study

in addition to a real clinical data set. For the case-control simulation, a haplotype population was

generated by a coalescent approach allowing for random mutations and recombinations (recombination

parameter 4Ner = 100 for 100 kb) [28]. Haplotypes were characterized by a sequence of SNP alleles.

SNPs with a minor allele frequency of less than 0.05 were excluded and two loci with minor allele

frequencies between 0.1 and 0.3 were chosen as the causal variants. A two-locus multiplicative

association model with allelic relative risk of 1.5 and a phenocopy rate of 0.01 was specified [29].

A genotyping error, i.e. a misspecified allele, of rate 0.002 was allowed. After removing the causal

SNPs (at positions between 11 and 12 and between 37 and 38), case-control pairs with a given

number of SNPs per individual were drawn. We used the explained simulation procedure to generate

two simulated data sets. The first data set is denoted as sim2loci and is composed of 2,000 samples

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



11

divided equally among cases and controls with 50 SNPs per sample. Similarly, the second data set

is composed of 10,000 samples divided equally among case and controls with 50 SNPs per sample.

On the other hand, the real data set contains (unpublished) clinical data of individuals with the

Schizophrenia disease and of age, sex, and geographically matched control subjects. The data set is

composed of 184 cases and 184 controls with 42 SNPs per individual.

The SNPs input data is coded as follows. For a binary phenotype, cases are given the code 1 while

controls are given the code 0. For a genotype with example allele combinations from the set {AA,

AT, TA, TT}, the coding scheme is presented in Table I. The genotypes AA and TT are homozygous

and hence are given two different codes. However, we assume that the haplotype phase is unknown

and, thus, the heterozygous genotypes AT and TA are given the same code. Note that the proposed

method extends automatically to data sets where the haplotype phase has been estimated. Moreover,

we assume that missing values due to genotyping failures are either removed or estimated. In the

simulated data sets, there are no missing values. In the real clinical data set, around 3% of the data

are missing values which are estimated using the BPCA algorithm as described in Section V. Using

simulated data sets for the evaluation of the proposed method has several advantages. First, the exact

number and position of the causal SNPs are known. Besides, the data sets are homogeneous, so

that spurious associations among badly matched case-control samples will not present a problem.

Moreover, the controlled introduction of missing values in the simulated data sets can help in testing

the performance of missing value estimation algorithms (see Section V).

TABLE I

GENOTYPE CODING FORMAT.

Genotype Code

AA 1

TT 2

AT and TA 3

Genotyping failure 0
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The obtained results with the proposed method are compared with two other standard genetic

mapping methods: a single marker logistic regression method [30] and a stepwise multiple logistic

regression method [1].

A. The sim2loci Data Set

The sim2loci data set is based on a full multiplicative risk model where the two loci affect the

phenotype without interaction. The causal polymorphisms are located between positions 11-12 and

37-38, respectively and were removed from the data. This is usually done to test the robustness of

the methods since in real life the causal SNPs are not known during genotyping; however, the causal

SNPs can still be determined by way of correlation between SNPs (linkage disequilibrium).

The number of expressions estimator resulted in P = 15 components which contain 68% of the

variance of the total data. Applying dimension reduction with P = 15 followed by ICA, Figure 2

presents the 15 estimated SNP expressions in addition to the p-values of the regression coefficients of

the estimated expressions (components). Two SNP expressions (9 and 10) are selected as significant

with component p-values less than 0.01 and, thus, are plotted in Figure 3 along with the outcome of

the single marker logistic regression and stepwise multiple regression methods.

For the three methods, the SNPs significance level for 99% confidence is also plotted in order to

determine the decision border upon which a SNP is selected as associated or not. It can be noticed

that the three methods have successfully determined the locations of the causal regions. The highest

peaks in all three methods are at locations 14 and 34. One might think that the methods are not

accurate since the real locations are defined between 11-12 and 37-38. However, the causal SNPs

were removed from the simulated data and the peaks found correspond to the SNP locations that are

in high correlation with the skipped ones. Note that the proposed method performed better than single

marker logistic regression and similar to stepwise regression. Moreover, it was able to additionally

determine the independent effects of the two causal regions since each one belongs to a different

component (SNP expression). This demonstrates a novel feature of the proposed method.
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Fig. 2. Results for the sim2loci data set. Left: Plot of all 15 estimated components. Right: Plot of the p-values

(logarithm transformed) of the regression coefficients of the components.
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Fig. 3. Results for the sim2loci data set. Upper left: Plot of the p-values (logarithm transformed) of ordinary

logistic regression. Upper right: Plot of the SNP factors of the highly associated components of the proposed

method. Bottom: Plot of the p-values (logarithm transformed) of stepwise regression.

B. Simulation Study

In order to further test the proposed method, we used the second simulated data set composed of

10,000 samples with 50 SNPs per sample. From this large data set, 100 data sets were chosen at
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random where each contains 1,000 samples equally divided between cases and controls. The proposed

method in addition to single marker logistic regression and stepwise multiple logistic regression were

applied on the 100 generated data sets to locate the associated SNPs with the phenotype.

For fair comparison and multiple testing adjustment, permutation testing was applied on each data

set for all three methods in order to determine the thresholds of global significance (p-value thresholds

for regression methods and SNP factor threshold for proposed method) based on a given significance

level. For each data set, 1000 permutation rounds were performed by permuting the phenotype vector

in order to build frequency histograms for SNPs with maximum association. In the simulated data

set, there are two regions of phenotype-associated SNPs; these are SNP region 11-15 and SNP region

34-38. SNPs outside these regions are considered as unassociated with the phenotype.

For each method, the analysis done consisted of counting the number of times where exactly the two

associated SNPs were found to be significant, the two associated SNPs were found to be significant

along with false positives (FPs), exactly one of the associated SNPs was found to be significant,

and only one of the associated SNPs was found to be significant along with false positives. Table II

presents the outcome of this study for 95% and 99% SNPs significance levels. These significance

levels correspond to SNPs p-values of 0.05 and 0.01, respectively.

TABLE II

PERFORMANCE RESULTS OF SIMULATION STUDY.

SNPs p-value=0.05 SNPs p-value=0.01

Method Exactly 2 2 + FPs Exactly 1 1 + FPs Exactly 2 2 + FPs Exactly 1 1 + FPs

Proposed method 61 7 25 7 25 0 72 3

Logistic regression 15 5 69 11 8 1 83 8

Stepwise regression 55 9 28 8 42 3 50 5

A false negative SNP is a SNP that belongs to the associated regions, but is detected by the method

to be unassociated. A false positive SNP is a SNP that does not belong to the associated regions, but

is detected by the method to be associated. Table III presents the false positive and false negative
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results of the three methods. Table III can be derived from Table II as follows: the number of false

positives is the sum of the second and fourth columns and the number of false negatives is the sum

of the third and fourth columns.

TABLE III

FALSE POSITIVES AND FALSE NEGATIVES OF SIMULATION STUDY.

SNPs p-value=0.05 SNPs p-value=0.01

Method False positives False negatives False positives False negatives

Proposed method 14 32 3 75

Logistic regression 16 80 9 91

Stepwise regression 17 36 8 55

For 95% SNPs significance level, the proposed method detected exactly the two associated SNPs

61% of the time while the other two methods detected exactly two associated SNPs 55% and 15%

of the time. However, for 99% SNPs significance level, the proposed method was able to detect only

25% of the time exactly the two associated SNPs which resulted in a high rate of false negatives.

In general, the performance of the proposed method is relatively comparable with stepwise multiple

logistic regression while the performance of single marker logistic regression is worse.

In Table IV, we investigate the effect of the choice of the components p-value on selecting the

highly associated SNP expressions with the phenotype (see Section III-C). These results demonstrate

the importance of proper selection of the components p-value parameter on the performance of the

proposed method.

TABLE IV

EFFECT OF COMPONENTS P-VALUE ON FALSE POSITIVE RESULTS.

SNPs p-value=0.05

Components p-value Exactly 2 2 + FPs Exactly 1 1 + FPs

0.05 61 7 25 7

0.01 53 4 35 8

0.001 36 0 60 4
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C. Schizophrenia Data Set

The Schizophrenia data set is composed of 42 candidate SNPs collected from different coding

regions and different chromosomes. The causal SNPs are not known yet for this data set. The outcome

of the proposed method is depicted in the left plot of Figure 4 for 12 components and a retaining

variance of 63%, while the right plot presents the p-values of the regression coefficients of the 12

components. As can be noticed, the second component has the highest p-value equal to 0.0005 while

the second highest p-value is only 0.0873. Figure 5 shows the final results of the three methods

with the significance level for 99% confidence. In the proposed method, the significant SNPs have

the locations 29 and 30. These two peaks do not contradict with the ones in the regression based

methods. However, the output of the logistic regression method seems to have more significant peaks

(e.g. at positions 10 and 16). It can also be seen that the proposed method contains less side peaks

than the two other methods. This is due to the fact that in the first stage of the proposed method,

ICA forms first independent groups of SNPs and then SNP expressions regression analysis eliminates

those groups that are insignificant. In other words, the other peaks were probably eliminated since

they belong to insignificant groups.
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Fig. 4. Results for the Schizophrenia data set. Left: Plot of all the components. Right: Plot of the p-values

(logarithm transformed) of the regression coefficients of the components.
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Fig. 5. Results for the Schizophrenia data set. Upper left: Plot of the p-values (logarithm transformed) of

ordinary logistic regression. Upper right: Plot of the p-values (logarithm transformed) of stepwise regression.

Bottom: Plot of the SNP factors of the highly associated components of the proposed method (component 2).

V. IMPLEMENTATION ISSUES

In this section, we investigate the effects of missing values and sample size on the performance of

the proposed method in addition to some comments on its computational complexity.

A. Missing Values

In the given SNP matrix, the values of some SNPs may be missing due to genotyping failures.

To overcome this problem, the missing values should be either estimated or their samples skipped.

The latter option is not favorable since the amount of available data in clinical data sets is normally

scarce. Several solutions have been proposed in the literature to estimate the missing values [20],

[21], [22]. The method that we adopt is Bayesian PCA (BPCA) because it gives lower estimation
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error rates when compared to the other methods, does not require any assumption of an underlying

model, and converges almost always to one solution [23].

In order to apply BPCA, the SNP matrix is divided into two matrices: one matrix contains all

samples without missing values and the other matrix contains all samples with missing values. BPCA

starts by performing PCA to both matrices after replacing the missing values with the SNP-wise

averages to determine the principal basis. The next step is to estimate the posterior distribution of the

missing values. This requires an iterative solution which is efficiently performed using the variational

Bayes algorithm. Finally, the missing values are filled according to the estimated distribution, see [23]

for more details on the derivation. Note that BPCA was originally designed for microarray data, so it

outputs continuous values. Hence, we modify the algorithm by quantizing the outputs to the nearest

integer since the SNPs belong to a finite set of values.

In order to evaluate the performance of BPCA, artificial missing entries are introduced in the

sim2loci data set. These entries are chosen by selecting a specific percentage and removing them

randomly from the SNP matrix. The percentage of the introduced missing values is fixed and the

experiment is repeated a large number of times in order to obtain average results. Then, the error

rate of the missing value estimation is obtained by evaluating the Mean Bit Error Rate (mBER)

for the used percentage value. The mBER is calculated by taking the ratio of the mean number of

error estimates to that of the total estimates. The mBER approaches its minimum value 0 when the

estimation is error free. In the other extreme case, i.e. when the estimation is too poor due to large

amount of noise, mBER approaches 1.

We compare BPCA to two other methods. In the first method, the missing values are replaced by

the SNP-wise averages and then rounded to the nearest integer. The other method consists of filling

the missing values according to an estimated SNP-wise empirical probability distribution. Inserting

5% missing values in the data set sim2loci, we obtained the following mBER results: 0.68 for the

empirical probability method, 0.4 for the averaging method, and 0.22 for the used BPCA method.

The mBER of BPCA is the lowest due to the fact that BPCA tries to find the distribution that best

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



19

fits the whole data. Moreover, the outcome of the averaging method is shown to be better than that

of the SNP-wise empirical probability distribution. In the latter case, the missing values are filled

arbitrarily according to the estimated probabilities and this introduces in some cases more errors in

the results.

In order to test the impact of missing value estimation on the performance of the proposed genetic

mapping method, the following study was performed. A percentage of missing values was introduced

in the SNP matrix of the sim2loci data set, and then the proposed method was applied for the following

two cases: removing all individuals with missing values versus estimating the missing values using

BPCA. Table V presents the obtained results. It is formed of the following columns: the percentage

of introduced missing values, the number of samples left after removing all individuals with missing

values, genetic mapping outcome if samples with missing values are removed, the missing value

estimation error with BPCA (number of errors out of total number of introduced missing values),

and genetic mapping outcome if missing values are estimated. Note that since the proposed method

requires matrix operations, we cannot omit only missing value entries but we have to omit all the

individuals (samples) with missing values, i.e. remove the whole row from the SNP matrix.

TABLE V

GENETIC MAPPING RESULTS WITH MISSING VALUES.

% missing values remaining samples genetic mapping results estimation error genetic mapping results

0.5 1558 both SNPs 41 out of 500 both SNPs

1 1207 both SNPs 79 out of 1000 both SNPs

1.5 954 only one SNP 118 out of 1500 both SNPs

2 727 only one SNP 160 out of 2000 both SNPs

2.5 563 none 211 out of 2500 both SNPs

It can be seen that missing value estimation is very beneficial and helps in improving the accuracy

of the proposed genetic mapping method. Moreover, it is seen that the percentage of missing value

estimation errors is nearly constant as the percentage of missing values increases. This is due to the
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fact that BPCA tries to find the distribution that best fits the whole data. Running more simulations,

we found out that starting from around 40% missing values, the proposed method was not always

able to correctly find both associated SNPs even after missing value estimation.

B. Sample Size

The second implementation issue that we considered is the effect of the the available sample size

(number of individuals) on the performance of the proposed method. The given sample size affects

the performance of the number of expressions estimator, the performance of the ICA algorithm, and

the regression analysis to select the associated SNP expressions. The effect of the sample size will

be investigated by running experiments with variable sample sizes.

The dependency of the number of components on the sample size is first investigated. The number

of SNP expressions for the sim2loci data set is computed for different sample sizes (see Figure 6). As

the number of samples increases, the number of components also increases with an envelope inversely

proportional to σr=0 (see Section III-A). This is also verified in the figure by the stair-case plot of

N 1/2. Note that the stair-case shape of the output is expected because the number of components is

limited to the set of integer numbers. As N tends to infinity, σr=0 tends to zero and, hence, dimension

reduction will not be necessary anymore. This is justified from the fact that as the number of samples

increases, the statistical analysis of the data improves eliminating the need of reducing the dimension.

For example, the number of components to be estimated is 15 for 2000 samples, whereas it is 2 for

200 samples and 50 when the number of samples tends to infinity. Note also that the number of

components to be estimated depends on the data itself since the covariance matrix of the data is

involved in the computations as shown in (4). Thus, for a specific number of samples, the number of

components to be estimated will differ from one data set to another.

The variation in the number of components and in the sample size will certainly affect the output of

the ICA algorithm. To test this effect, the outcome of the method is tested on the sim2loci data set for

different sample sizes. For comparison purposes, the same test is conducted on the stepwise multiple

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



21

Fig. 6. Sample size effect on the number of expressions (components) estimator.

logistic regression method. Figure 7 and Figure 8 present the outcome of the two methods for 1,000

samples and 200 samples, respectively (note that original data set size is 2,000 samples). Compared

to Figure 3, it can be seen that with 1,000 samples both methods are able to pinpoint the correct

causal regions. However, when the number of samples is reduced to 200, the stepwise regression

method performs worse due to the presence of other significant peaks. The proposed method has

performed better in this case because the reduction of the number of samples is compensated by a

decrease in the number of SNP expressions to be estimated. With 200 samples, only two components

were estimated compared to 15 components with 2,000 samples. This study demonstrates yet another

advantage of the proposed method as it proves that the proposed method is more robust to estimation

noise when the number of available samples is limited.

Finally, we consider the effect of sample size on the SNP expressions regression analysis. When

the number of samples decreases, the fitting will not be as representative as before because the sum

of the square errors also known as Mean Square Error (MSE) is inversely proportional to the sample

size N . The MSE can be calculated as:

MSE =
1
N

N∑
n=1

ε2
n, (8)
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Fig. 7. Results of sim2loci data set with 1,000 samples. Left: Outcome of the proposed method. Right: Outcome

of the stepwise regression method.
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Fig. 8. Results of sim2loci data set with 200 samples. Left: Outcome of the proposed method. Right: Outcome

of the stepwise regression method.

where ε is the residual error, i.e. the difference between the real and fitted values. The MSE was

calculated for the Schizophrenia data set with 368 samples and with 184 samples (half sample size).

The obtained MSE values were 1.07 · 10−4 and 2.5 · 10−3, respectively. This shows the effect of the

sample size on the accuracy of the regression analysis.

C. Computational Complexity

The computational complexity of the proposed method can be divided into two main parts. The

first part is the ICA block with dimension reduction and SNP expressions estimation. Several low

complexity implementations have been proposed for ICA to speed its execution time, see [31] for

a detailed complexity analysis of ICA with comparisons between different implementations. In our
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method, running the ICA block on a Pentium IV PC with 1.5 GHz requires around 10 sec. for the

Schizophrenia data set. On the other hand, the second part is regression analysis (SNP expressions

regression analysis and SNPs regression analysis with permutation test). The computational complexity

of this part is comparable to ordinary genetic mapping methods based on regression analysis with

permutation testing. Moreover, it depends on the number of rounds of the permutation test.

The proposed method is implemented in Matlab language. The ICA computations with dimension

reduction are performed using the FastICA package [32]. Note that FastICA packages are freely

available on the web for R and Matlab languages. The regression analysis to select associated SNP

expressions is performed using the function robustfit in Matlab. The single marker logistic regression

method is implemented with the help of the function glmfit in Matlab. The stepwise multiple logistic

regression method is implemented with the help of the function stepwisefit in Matlab. Finally, missing

value estimation using BPCA is performed using the Matlab toolbox provided by [23].

VI. CONCLUSIONS

In this work, we propose a novel method for fine-scale genetic mapping based on Independent

Component Analysis (ICA). ICA is a well established algorithm that is available in commonly used

statistical packages and is proven to be successful for a wide spectrum of applications [18] . The

proposed method is composed of two stages. In the first stage, it forms independent groups of SNPs

according to a linear model and selects the SNP groups that are highly associated with the phenotype.

In the second stage, it performs association analysis on each of the identified SNP groups to select

individual SNPs that are highly associated with the phenotype. Therefore, the method assumes that

SNPs get mixed in an unknown linear environment to produce independent SNP expressions which

affect a given phenotype.

The proposed method is tested on a real clinical data set for the Schizophrenia disease in addition to

several simulated data sets. The obtained results are compared with a single marker logistic regression

method and a stepwise multiple logistic regression method. It is shown that the proposed method
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performs better than logistic regression and comparably to stepwise regression. These comparisons

prove the validity of the method in terms of accuracy of results and demonstrate its novel character-

istics. The proposed method reduces estimation noise as regression analysis is performed on selected

independent groups of SNPs that represent the major genetic variation in the given data. As a result,

associated SNPs that belong to different SNP groups can be assumed to have an independent effect

on the phenotype. Moreover, it accounts for correlations between markers and is robust for data sets

with limited number of samples. As a summary, the proposed method is shown to be a successful

alternative to other multi-locus genetic mapping methods with its own advantages and disadvantages.

The proposed method can be extended to include prior knowledge about the phenotype in the

implementation of the ICA algorithm. This prior knowledge would then shape the ICA solution.

Such an extension is useful for situations in which multiple genes influence the phenotype but the

effect of each individual gene is weak or in situations where SNPs interact indirectly through a gene

network to influence the phenotype. Another possible extension is to apply stepwise regression with

forward and backward selection in order to pick the expressions that are highly associated with the

phenotype.

Genotyping errors have an effect on all genetic mapping and linkage disequilibrium methods and

thus will also affect our proposed method, e.g. see [33]. Spurious association signals due to cryptic

population substructures are also a general problem of population-based genetic mapping methods.

We do not try to tackle this problem in this work and, thus, assume homogeneous samples.
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APPENDIX

In this section, the various steps of the proposed method are demonstrated by applying it on a

simple example. The input data is composed of N = 5 individuals where for each individual a SNP

sequence of size M = 3 is given. The SNP matrix is given by:

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 3

2 2 2

3 2 3

2 2 2

2 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The covariance matrix of S and its singular value decomposition (SVD) can be expressed as:

CS =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 −0.25 0

−0.25 0.5 0.5

0 0.5 0.7

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

−0.25 0.89 −0.38

0.65 0.14 −075

0.72 −0.43 0.54

⎞
⎟⎟⎟⎟⎟⎟⎠

.

⎛
⎜⎜⎜⎜⎜⎜⎝

1.15 0 0

0 0.54 0

0 0 0.01

⎞
⎟⎟⎟⎟⎟⎟⎠

.

⎛
⎜⎜⎜⎜⎜⎜⎝

−0.25 0.89 −0.38

0.65 0.14 −075

0.72 −0.43 0.54

⎞
⎟⎟⎟⎟⎟⎟⎠

Taking out the lowest singular value, the obtained covariance matrix can be expressed as:

C̃S =

⎛
⎜⎜⎜⎜⎜⎜⎝

−0.25 0.89

0.65 0.14

0.72 −0.43

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

1.15 0

0 0.54

⎞
⎟⎟⎠

⎛
⎜⎜⎝

−0.25 0.65 0.72

0.89 0.14 −0.43

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0.498 −0.25 0.002

−0.25 0.49 0.5

0.002 0.5 0.697

⎞
⎟⎟⎟⎟⎟⎟⎠
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The standard deviation of the distribution of the elements of CS − C̃S is equal to 0.0035 which is

certainly less than
(
1/
√

5
)

= 0.448. Hence, the data can be represented by two dimensions instead

of three. This dimension number will be given to the ICA algorithm which will perform dimension

reduction using PCA and then estimate the SNP expressions matrix E along with the SNP coefficients

matrix A which are given by:

E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−4.72 −1.07

−3.48 −2.52

−4.66 −4.23

−3.47 −2.53

−1.98 −2.62

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, A =

⎛
⎜⎜⎜⎜⎜⎜⎝

−0.25 −1.36

−0.55 0.44

−0.94 −0.34

⎞
⎟⎟⎟⎟⎟⎟⎠

Assume that the phenotype vector t = (0 0 0 1 1)T where T is matrix transpose operation. The

obtained regression coefficients are -0.211 and 0.06. According to Equation (7), the weighted SNP

coefficient matrix is given by:

W =

⎛
⎜⎜⎜⎜⎜⎜⎝

−0.0156 0.286

−0.035 −0.0932

−0.059 0.073

⎞
⎟⎟⎟⎟⎟⎟⎠

The elements of W give the contribution of each SNP to the phenotype for both components (SNP

expressions). For this simple example, it can be easily noticed from the magnitude of the regression

coefficients that the effect of the first component is negligible compared to the second one (0.06 versus

0.211). Therefore, the second component is selected as associated with the phenotype. Moreover, the

entry of the first SNP in the second component has the highest magnitude (SNP factor equal to 0.286)

among the three SNPs. Therefore, the first SNP would most probably be selected as the associated

SNP with the given phenotype.
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