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Abstract—Finding the causal genetic regions underlying complex traits is one of the main aims in human genetics. In the context of

complex diseases, which are believed to be controlled by multiple contributing loci of largely unknown effect and position, it is

especially important to develop general yet sensitive methods for gene mapping. We discuss the use of Shannon’s information theory

for population-based gene mapping of discrete and quantitative traits and for marker clustering. Various measures of mutual

information were employed in order to develop a comprehensive framework for gene mapping analyses. An algorithm aimed at finding

so-called relevance chains of causal markers is proposed. Moreover, entropy measures are used in conjunction with multidimensional

scaling to visualize clusters of genetic markers. The relevance chain algorithm successfully detected the two causal regions in a

simulated scenario. The approach has also been applied to a published clinical study on autoimmune (Graves’) disease. Results were

consistent with those of standard statistical methods, but identified an additional locus of interest in the promotor region of the

associated gene CTLA4. The developed software is freely available at http://www.lnt.ei.tum.de/download/InfoGeneMap/.

Index Terms—Complex traits, genotype-phenotype association, information theory, relevance chains, SNPs.
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1 INTRODUCTION

ONE of the main aims of current genetics research is to
discover functional connections between genotype and

phenotype. Identifying the causal genetic variants and their
functional patterns may greatly facilitate the (preventive)
diagnosis and biochemical understanding of genetic dis-
eases. This so-called gene mapping is especially important in
the context of common complex disorders such as neuro-
degenerative or cardiovascular diseases. Complex diseases
are believed to be caused by multiple contributing genetic
loci with varying effect strengths and epistatic or interacting
effects between markers. Moreover, the effect strength of a
single causal factor can be quite small and the risk of
developing the disease may also depend on environmental
factors. These properties make the gene mapping of
complex diseases a particularly difficult task [1].

With the development of rapid and cost-effective

genotyping methods, the focus of research is shifting

toward population-based case-control studies [2]. These

studies usually investigate sequences of single nucleotide

polymorphisms (SNPs), which are the predominant form of
polymorphisms in the human genome. Standard statistical
methods have proven quite successful in identifying
susceptibility regions for several traits ([1], [3], [4]) and
citations therein). However, some of the traditional associa-
tion testing methods, such as the allelic tests or trend tests,
implicitly or explicitly make certain assumptions (e.g.,
Hardy-Weinberg equilibrium (HWE), multiplicative effects
of alleles on the trait’s penetrance, etc.), which may limit
their usefulness to specific models of complex traits. To
begin with a screen for potential genotype-phenotype
associations in large data sets without assuming a specific
risk model, it will be necessary to come up with general
methods that systematically analyze the full genetic
information provided by DNA variation with respect to
the complex disease under investigation.

This notion of gene mapping as the task of analyzing
genetic information has led to the idea of applying the
methods of information theory. Information theory was
established in 1948 by Shannon as a mathematical theory
of communication [5]. While it is most commonly encoun-
tered in the context of communications engineering,
information theory provides a general framework for the
quantitative analysis of information, with applications in
many fields of research, e.g., physics, statistics, economics,
and engineering, to name but a few [6]. The basic concepts
of information theory have been applied to various
problems in molecular biology recently, mainly in the
context of data mining. Examples include the use of mutual
information to extract clusters of genes from RNA expres-
sion data [7] and of relative entropy (or Kullback-Leibler
distance) to analyze patterns of gene expression [8]. In [9], a
multilocus linkage disequilibrium measure is derived from
Shannon’s entropy; [10] uses entropy to select markers of
interest for association studies. Grosse et al. propose a
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successful application of mutual information to distinguish
coding and noncoding DNA [11]. In [12], a very short
introduction to the calculation of mutual information scores
between SNPs and some partition (e.g., case-control groups)
is presented.

In many examples found in the literature, information
theoretic measures such as entropy, relative entropy, and
mutual information are used to derive auxiliary measures
seemingly appropriate to the problem at hand. The more
advanced properties and theorems of information theory are,
however, rarely exploited. As these properties are usually not
inherited to derived methods and measures, the assessment
of results often needs to be performed empirically.

In this paper, we apply information theoretic concepts to
two classes of problems: 1) the gene mapping of complex
diseases in population-based case-control studies and the
mapping of quantitative traits and 2) the clustering of
genetic markers in terms of their variability patterns. Both
problems are interconnected in the context of complex traits
because a trait-associated cluster of markers delineates the
genomic region in which the true causal variant has to be
searched for. Groups of genetic markers with similar
variability patterns are suspected to have the same
evolutionary history and will be jointly interpreted. In
recognition of the complex genetic properties of the traits
under investigation, the main premise of our work was to
develop a general method for the analysis of directly
measured marker genotypes. We successfully tested our
method on both simulated data sets and clinical studies.

The paper is organized as follows: Section 2 briefly
reviews some basic principles from information theory.
Section 3 works out methods for one-locus and multiple-loci
gene mapping using Shannon’s mutual information. More-
over, it presents a relevance chains algorithm and an
extension to data sets with continuous phenotypes. The use
of information theory is extended to the problem of marker
clustering in Section 4. The different proposed methods are
then tested on simulated and clinical data sets and results
are presented in Section 5. Finally, conclusions are drawn in
Section 6.

2 INFORMATION THEORY

This section gives some important definitions of basic
concepts from information theory. A more exhaustive
treatment of the topic can be found in [6].

At the heart of information theory is the concept of
entropy. This term was coined following the notion of
entropy in physics and characterizes the quantity of a
random process’s uncertainty. The entropy of a random
variable X with realizations x is defined as (for notes on the
notation used, see Appendix A)

HðXÞ ¼ �
X
x

pðxÞ log2 pðxÞ: ð1Þ

Most commonly, the base 2 logarithm is used, leading to a
result in unit bits. However, other bases may be used as
well, e.g., the natural logarithm, where the unit is nats. The
conditional entropy of a random variable X given another
random variable Y is

HðXjY Þ ¼ �
X
x

X
y

pðx; yÞ log2 pðxjyÞ: ð2Þ

In other words, conditional entropyHðXjY Þ is the entropy of
X that remains when Y is observed. With these definitions,
the concept of mutual information (MI), defined as

IðX;Y Þ ¼ HðXÞ �HðXjY Þ

¼
X
x

X
y

pðx; yÞ log2

pðx; yÞ
pðxÞpðyÞ ;

ð3Þ

can be understood as the reduction in entropy (or
uncertainty) of one random variable given another. Mutual
information has applications to many fields of science; it is,
for instance, used to calculate the channel capacity in
communications engineering. In this paper, it will be used
as a measure of dependence between phenotype and
genotype. This is motivated by the property

IðX;Y Þ ¼ IðY ;XÞ � 0; ð4Þ

with equality if and only if X and Y are statistically
independent. Other definitions required for the following
sections are those of joint and conditional mutual information,
given as

IðX;Y ;ZÞ ¼ HðX;Y Þ �HðX;Y jZÞ

¼
X
x

X
y

X
z

pðx; y; zÞ log2

pðx; y; zÞ
pðx; yÞpðzÞ ;

ð5Þ

and

IðX;Y jZÞ ¼ HðXjZÞ �HðXjY ; ZÞ

¼
X
x

X
y

X
z

pðx; y; zÞ log2

pðx; yjzÞ
pðxjzÞpðyjzÞ :

ð6Þ

These are connected by the chain rule of mutual information,

IðX;Y ;ZÞ ¼ IðX;ZÞ þ IðY ;ZjXÞ: ð7Þ

For later sections, it is important to note that the random
variables in (5) and (6) may be vector random variables
combining two or more single variables.

3 ONE-LOCUS AND MULTIPLE-LOCI GENE

MAPPING

Given a case-control study comprised of N individuals and
an SNP sequence of length L, we conceive the phenotype as
well as the individual SNPs as random variables P and
S1; S2; . . . ; SL, respectively. Usually, P will be a binary
variable (case or control) and each Si will be a ternary
variable (two homozygous and one heterozygous combina-
tions of two alleles in a diploid organism). The probabilities
of the random variables’ states can be derived from relative
frequencies, i.e., observed counts divided by N . These
probability estimates exhibit a variance that depends on the
sample size N . This issue will be addressed in the context of
significance evaluation.

To investigate each SNP’s causality, we calculate the
mutual information between the SNP and the phenotype,
IðSi;P Þ; i ¼ 1 . . .L [13]. In a case-control study with an
equal number of cases and controls, HðP Þ ¼ 1 bit and,
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therefore, 0 bit � IðS;P Þ � 1 bit. If a higher number of

jointly analyzed markers is suspected, the model can be

extended to this case by forming a vector random variable S

combining a number of SNPs, S ¼ ðSi; Sj; . . .Þ. In the

instance of the two-locus case, every combination S ¼
ðSi; SjÞ is tested for its mutual information IðS;P Þ with the

phenotype, where S is now a random variable with 32 ¼ 9

possible realizations.1 Fig. 1 depicts the transition diagram

for this case. For each possible zygous state of two SNPs

with respective alleles a/A and b/B, the lines correspond to

the probabilities of disease onset. From these probabilities,

the mutual information between the combination of two

SNPs and the phenotype can be calculated.
Analogously, the phenotype can be extended from

binary to higher order random variables. This can be

helpful for association studies investigating the additional

effect of random variables, e.g., for studies categorizing the

individuals into cases/controls and smokers/nonsmokers.
The mutual information between genotype and pheno-

type is a measure for the association of a genetic marker or a

combination of markers with the phenotype, both in

absolute (through the unit bits) and relative terms. How-

ever, due to the finite sample size, it is necessary to verify

the result in terms of statistical significance. One can show

that the mutual information between independent random

variables when estimated from relative frequencies follows

in a very good approximation of a Gamma distribution with

parameters a ¼ ðjXj � 1ÞðjY j � 1Þ=2 and b ¼ 1=ðN ln 2Þ (see

[14] and Appendix B). In short,

IðX;Y Þ � �
1

2
ðjXj � 1ÞðjY j � 1Þ; 1

N ln 2

� �
; ð8Þ

where N is the sample size and jXj and jY j denote the

numbers of realizations of the random variables X and Y .

For example, to determine the significance of IðSi;P Þ in a

case-control study comprised of N individuals on a

significance level �, we check the condition

IðSi;P Þ � �1��
1

2
ð2� 1Þð3� 1Þ; 1

N ln 2

� �
; ð9Þ

where �1��ða; bÞ denotes the ð1� �Þ-quantile of the Gamma
distribution. Since the genotyping failure rate (number of
missing values) varies slightly between the individual
markers, the critical values need to be calculated for each
marker or marker combination separately.

There is a close relationship between mutual information
and the standard tests of independence, the �2 and log-
likelihood ratio tests (see Appendix B). This is not very
surprising, considering that the log-likelihood ratio test was
proposed in an information theoretic context [15]. Using
mutual information, a scaled result in bits is readily
obtained, with the advantage that test variables are
comparable without prior conversion to their correspond-
ing p-values. The main advantage, however, is that
information theory offers a well-defined framework to
construct comprehensive gene mapping algorithms, allow-
ing for different types of variables (any type of genetic
markers, qualitative and quantitative phenotypes, com-
bined or uncombined markers, and genotype or haplotype
probabilities).

3.1 Relevance Chains

In analyzing complex diseases, neither the number and
position of susceptibility loci nor their independence in
contributing to the disease are known. There may be loci
that only modify the effect of main contributing loci.
Standard statistical concepts such as stepwise tests of
regression models have been applied to unify the procedure
for evaluating the additional effects of polymorphisms [16].
Our approach uses the concept of conditional mutual
information to determine relevance chains of significantly
contributing primary, secondary, and so on variants. Each
chain’s first element is a single SNP that has significant
mutual information with the phenotype. The second and
following elements are SNPs that contribute significant
additional mutual information about the phenotype. Rele-
vance chains are found by the following algorithm:

1. For all i ¼ 1; . . . ; L, calculate IðSi;P Þ. Determine
significance by means of comparison with critical
value �1��ððjSj � 1ÞðjP j � 1Þ=2; 1=ðN ln 2ÞÞ.

2. Make each SNP that exhibits significant mutual
information the first element of a new chain.

3. In this step, markers are determined that contain

additional significant information about the pheno-

type given the markers already found in Step 2. If Sc
denotes the SNP that is the first element of relevance

chain c, calculate IðSi;P jScÞ for all i 6¼ c. Compare to

critical value �1��ðjSj2 ðjSj � 1ÞðjP j � 1Þ; 1=ðN ln 2ÞÞ.
4. If only one additionally significant marker is found,

add to the current chain. If k additionally significant
markers are found, duplicate the current chain
k times and add each additional marker to one of
the new chains. Repeat Steps 3 and 4 for each
existing relevance chain.

5. Depending on the available sample size, either
terminate the algorithm or further extend chains. To
do so, start over with Step 3 and let the current chain
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1. It is assumed that there is no knowledge about the data’s haplotype
phase. The proposed method can be easily extended to the case where
haplotype effects are suspected and the haplotype phase has been
estimated. This is discussed in Section 3.2.

Fig. 1. Genotype-phenotype transition diagram for a two-locus model.



containmmarkers. Thesemmarkers are combined in
a vector random variable S. The mutual information
IðSi;P jSÞ is calculated for all i and compared to the
critical value �1��ðjSj

m

2 ðjSj � 1ÞðjP j � 1Þ; 1=ðN ln 2ÞÞ.
To understand the evaluation of significance in Step 3, it

is important to know that the mutual information between
two conditionally independent random variables X;Y

given a random variable Z is given by [14]

IðX;Y jZÞ � �
jZj
2
ðjXj � 1ÞðjY j � 1Þ; 1

N ln 2

� �
: ð10Þ

To avoid estimating the probabilities in (6) from too few
samples, it is sensible to stop the algorithm after a certain
chain length, depending on the sample size N .

The resulting relevance chains are now subject to
interpretation. From the biological point of view, an SNP
that only appears as a secondary (i.e., not first) element in
one or more chains (asymmetrical chains) is unlikely to be
directly causal to the disease. However, such a marker does
modulate the existing genotype-phenotype relationship of
the first SNP. Contrarily, a multilocus disease with equally
causal markers is likely to result in symmetrical chains
where each causal marker appears as a first element in one
chain and as a secondary one in the others. This follows as a
consequence from the chain rule of mutual information (7)
and the symmetry property (4).

However, there is one constellation where the described
algorithm fails to detect the causal markers. Consider the
(rather theoretical) example of two causal markers,S1 andS2,
where IðS1;P Þ ¼ IðS2;P Þ ¼ 0 bit, but IðS1; S2;P Þ ¼ 1 bit. As
neither marker is found in Step 1 of the algorithm, both
markers remain undetected. This example underlines the
importance of multiple-loci mutual information as intro-
duced in Section 3, when causal variants are uncorrelated.
Such purely epistatic models are described in [17].

3.2 Haplotype Data and Phase-Known Genotypes

The methods described so far investigate the directly
observed, unphased genotypes, which, in most cases, is
the type of raw information at hand. It is, however,
indicated that haplotype analyses may be advantageous in
cases where the genotyped loci are not causal themselves,
but rather in linkage disequilibrium (LD) with the causal
variant or in certain cis-regulated cases where multiple
marker alleles contribute to a common disease only when
they are located at the same chromosome. In the instance of
the two-locus model depicted in Fig. 1, we have 16 different
phased haplotype combinations (phase-known genotypes)
instead of nine possible genotype combinations. Assuming
no parent-of-origin effects (i.e., equal disease risks for
genotypes ij/kl and kl/ij), these 16 states collapse to 10 states
(in Fig. 1, the double heterozygote aAbB is split into ab/AB

and Ab/aB) [16].
Algorithms have been proposed to infer the haplotype

phase statistically from genotype data, if phased data are
not directly determined by the experimental design [18],
[19], [20]. A discussion of phase estimation on gene
mapping from an information theoretic point of view is
given in Section 6 and Appendix C.

Generally, the gene mapping of phase-resolved multi-

locus genotypes is different from the above described

procedure insofar as a genotype may have a larger number

of realizations, e.g., 10 for two-loci genotypes instead of

nine realizations. This increase in the parameter jSj will

change the underlying distribution’s shape (parameters jXj
in (8) and jXj and jZj in (10) will increase).

Moreover, the haplotype combinations’ probabilities of

individuals as output by phase estimation algorithms can

easily be included in the calculation of MI. This is achieved

simply by calculating the relative frequencies from prob-

ability-weighted counts of phased genotypes. As a simpli-

fied example, consider a study comprised of N ¼ 4

individuals (two cases, two controls) genotyped at two loci.

One case and one control individual are heterozyguous in

both loci and the other two subjects are heterozyguous at

the first locus but homozyguous at the second locus. The

standard Expectation-Maximization (EM) algorithm is

applied to estimate phase in the double heterozygotes aAbB

into cis and trans constellation, and the probabilities found

are given in Table 1.
The relative frequencies needed to calculate the MI (pðx; yÞ

in (3)) for controls are then given as p(Ab/ab,control) =

(1+0)/4 = 0.25, p(AB/aB,control) = 0, p(Ab/aB,control) =

0.125, and p(AB/ab,control) = 0.125. The joint probabilities

for cases are calculated similarly.

3.3 Extension to Continuous Phenotypes

Until now, the phenotype has been regarded as a discrete,

usually binary, variable. In this section, the concept of gene

mapping using mutual information will be extended to

quantitative traits.
Obviously, it is possible to quantize the phenotype and

afterward treat it as a discrete variable. This strategy will

result in a loss of information due to quantization and will

hardly supply a sufficient number of samples for each

quantized category. It is more appropriate to treat the

phenotype as a continuous variable.2 To derive an expres-

sion for the mutual information between a discrete and a

continuous random variable, we will, however, in a first

step, quantize the phenotype with step size � > 0 and

obtain its probability mass function (PMF) as
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TABLE 1
Phase-Known Genotype Probabilities as Calculated

by the EM Algorithm

2. Note that, here, P denotes the continuous phenotype variable and p a
possible realization, while pðxÞ and fðxÞ are PMFs and PDFs, respectively.
Hence, fðpÞ denotes the phenotype’s probability density function.



pðj�Þ ¼
Z ðjþ1Þ�

j�

fðpÞdp; j ¼ 0; 1; 2; . . . ; ð11Þ

and the joint PMF as

pðj�; sÞ ¼
Z ðjþ1Þ�

j�

fðp; sÞdp; j ¼ 0; 1; 2; . . . ; ð12Þ

where s denote the possible realizations of S, i.e., the SNP’s
possible allele combinations.

The mutual information between S and P is then

IðS;P Þ ¼
X
s

X1
j¼0

pðj�; sÞ log2

pðj�; sÞ
pðj�Þ � pðsÞ : ð13Þ

For sufficiently small �, the integrals can be approximated by

Z ðjþ1Þ�

j�

fðpÞdp � fðj�Þ �� ð14Þ

and

Z ðjþ1Þ�

j�

fðp; sÞdp � fðj�; sÞ ��; ð15Þ

which turns (13) into

IðS;P Þ ¼
X
s

X1
j¼0

fðj�; sÞ �� log2

fðj�; sÞ ��
fðj�Þ �� � pðsÞ : ð16Þ

As �! 0, (16) becomes

IðS;P Þ ¼
X
s

Z
SP
fðp; sÞ log2

fðp; sÞ
fðpÞ � pðsÞ dp; ð17Þ

where SP denotes the support set of the phenotype
variable P . Equation (17) is the mutual information between
a discrete and a continuous random variable.

To evaluate (17), two steps are necessary. First, the PDFs
fðpÞ and fðp; sÞ8s must be estimated by means of the
available sample data. This is a problem that can hardly be
automated and needs to be tackled by inspection. Very
often, the PDFs will be normal distributions, in which case,
the problem reduces to parameter estimation of the mean �

and variance �2. However, other PDFs may be considered
as well. In the second step, the integral in (17) has to be
evaluated for each part of the sum. In general, this may not
be possible analytically. Hence, numerical integration
methods need to be applied in order to solve (17) for the
mutual information.

In preliminary tests, this method delivered satisfactory
results. However, it turns out that particular emphasis must
be put on the issue of numerical stability and accuracy in
integration.

4 MARKER CLUSTERING USING INFORMATION

THEORY

So far, we have used mutual information between pheno-
type and genotype in a variety of cases. In this section, we
use the mutual information between SNPs to find groups or
clusters of correlated genetic markers which are likely to
form evolutionary entities. This is an important tool for

gene mapping as it can give additional hints to which
markers are to be jointly interpreted. Multiple study
populations with deviating correlation structures (i.e.,
different marker clusters) may help to pinpoint the
potential causal region determined by these correlated
marker groups [21].

Our approach is based on rearranging markers in two or
three-dimensional space according to their correlation to
visualize their interdependence. From these diagrams, the
relation between single markers, i.e., their tendency to form
clusters, will become obvious. Moreover, the relative
positions of neighboring marker groups or clusters may
provide helpful knowledge about the long-range LD.

Clusters are formed in three steps. First, the pairwise
mutual information between SNPs, IðSi;SjÞ; i; j ¼ 1; . . . ; L,
is determined. In order to avoid biased results, it is sensible
to use only population-based controls for this step. Next,
the pairwise mutual information, which is a similarity
measure, needs to be transformed into a dissimilarity or
distance measure. To do so, the normalized information
distance [22] is used, a metric that satisfies the identity and
symmetry axioms and (neglecting a small error term) the
triangle inequality. It is defined as

dðSi;SjÞ ¼ 1�HðSiÞ �HðSijSjÞ
HðSi; SjÞ

¼ 1� IðSi;SjÞ
HðSiÞ þHðSjÞ þ IðSi;SjÞ

:

ð18Þ

Calculating all distances, we obtain a diagonally symme-
trical L� L matrix D. In the third step, the method of
classical multidimensional scaling (MDS) (sometimes called
principal coordinate analysis) is used to obtain the markers’
coordinates in two, three, or n-dimensional space. We used
the simple and standard MDS, but other cluster methods
could also be employed. The interested reader is referred to
[23] for a step-by-step introduction to MDS.

5 APPLICATION

5.1 Data Sets

The proposed methods were tested on simulated and real
data sets. We used the real data set described in [24]. In this
study, 108 SNPs and one microsatellite marker (recoded as
biallelic) across a 317 kb region of the genes CD28, CTLA4,
and ICOS were genotyped in 384 cases of Graves’
autoimmune disease and 652 controls. Genotype-phenotype
association has been originally tested by logistic regression
analyses mostly assuming a multiplicative model of allelic
risks (multiplicative effects of alleles at a locus).

For the case-control simulation, a haplotype population
was generated by a coalescent approach allowing for
random mutations and recombinations (recombination
parameter 4Ner ¼ 100 for 100 kb) [25]. Haplotypes were
characterized by a sequence of SNP alleles. SNPs with a
minor allele frequency of less than 0.05 were excluded and
two loci with minor allele frequencies between 0.1 and 0.3
were chosen as the causal variants. A two-locus multi-
plicative association model with allelic relative risks of 1.5
and a phenocopy rate of 0.01 was specified [26]. This model
conferred strong effect amplification among the causal
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variants. After removing the causal SNPs (at positions
between 11 and 12 and between 37 and 38), a sample of
1,000 case-control pairs was drawn. A genotyping error of
rate 0.002 was allowed.

5.2 Results

Fig. 2 shows the results of one-locus mutual information for
the simulated and real data sets. It should be noted that the
effects measured are relatively weak (� 0:01 bit as com-
pared to the theoretical maximum of 1 bit). To determine
the results’ significance, the critical values (based on � ¼ 5%
significance level) have been determined and plotted. The
lower lines represent the analytical-based critical values of
single tests (see Section 3), whereas the upper lines
represent permutation-based critical values of the total
study (global null hypothesis).

Using critical values obtained from permutation tests is
indicated when the aim is to fix the overall, i.e., study-wide,
type I error probability. This way—although time-consu-
ming—multiple dependent tests can be corrected for with
higher accuracy as compared to FDR or Bonferroni
corrections. The permutation tests of primary associations
are performed by permuting case/control labels. When the
significance of relevance chain elements of order 2 or higher
(conditional MI) are evaluated, the secondary marker’s

genotype values need to be permuted in order not to
destroy the significant association between the primary
markers and the phenotype. It must be noted that, in
studies with larger numbers of markers and the application
of studywise critical values, the natural trade-off between
type I and type II error probabilities will greatly increase the
risk for false negative decisions. Therefore, the method for
determining the critical values must be chosen carefully. If
the emphasis is on minimization or control of false-positive
results, it is recommended to use study-wise tests.

To assess the quality of the relevance chain algorithm,
the simulated data set with its known properties is used. In
this data set, two causal multiplicative markers with
approximately equal strength have been simulated at
positions 11-12 and 37-38. The analysis of the simulated
data set delivers the relevance chains (14, 34), (14, 38),
(16, 34), (16, 38), (34, 14), (38, 14) (see Fig. 3).

Such a symmetrical result indicates two equally and
jointly causal markers. For example, SNP 34 is a second-
order element to SNP 14, but the reverse is also true. Fig. 3
displays the causal regions and their interdependence,
verifying that our algorithm indeed delivers correct results
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Fig. 2. One-locus mutual information results for the simulated data set

(a) and the real autoimmune disease data set (b). The lines indicate the

5 percent significance levels for table-wise testing (upper line) and

single-marker testing (lower line).

Fig. 3. Relevance chains for simulated data (a) and autoimmune disease

data (b).



in scenarios of multiple causal loci at nonneighboring
positions.

In Fig. 4, the mutual information between pairs of
markers and the phenotype is depicted for the simulated
data set. The maximum value of 0:02 occurs at the
combination of SNPs 14 and 34, a result that corresponds
to the two maximal one-locus mutual information values
shown in Fig. 2. The critical value in this case is
�0:95ðð9� 1Þð2� 1Þ=2; 1=ð2000 � ln 2ÞÞ ¼ 0:0056 bit.

Our analysis of the autoimmune disease data set
revealed two study-wise significantly associated regions
(see Fig. 2), which are identical to the most promising
regions found by the logistic regression analyses reported
by [24]. The first region is located 5’ upstream of the gene
CTLA4 and comprises the markers 13 (= CTAF343), 15, 23,
and 24 (= MH30). The second region at the 3’ end of CTLA4
includes the markers 49 (= CT60), 56, 57 (= JO31), 58
(= JO30), 60 (= JO27_1), and 72. The markers of both regions
belong to one cluster with similar patterns of cross-
individual variation, except for the weakly associated
markers 56 and 72 (see Fig. 5).

This set of markers is likely described by similar
evolutionary histories and ages and, most likely, maps only
a single causal locus within these two regions. This
observation thus corroborates the suggestion of [24] that
only one causal variant is located at the 3’ end of CTLA4. In
contrast to the original article, however, we found an
additional significant signal at SNP marker 40 (= CT53) after
adjustment for the main effects at markers 23, 49, and 57
(see Fig. 3). This additional (modifying) association was not
detected by a stepwise regression procedure in the original
article and may not be attributed to slightly different
significance thresholds between our and the original
analysis (the p values of the conditional MI between
marker 40 and the phenotype given markers 23, 49, and
57 are highly significant with 2 � 10�4, 2 � 10�5, and 8 � 10�5,
respectively).

It represents a genuine new result of our method which
was missed by other analysis methods. Interestingly,
marker 40 lies in the promotor region of CTLA4, which
directly corroborates the experimental finding of genetically

controlled expression variation in CTLA4 splice forms
reported by [24].

6 DISCUSSION AND CONCLUSIONS

The behavior of genetic associations with complex traits is
expected to be influenced by multiple contributing loci,
effect modification between loci, and various transmission
and interaction systems. The genetic patterns, however, are
largely unknown for specific gene-trait association studies.
A potential advantage of our approach is its lack of a priori
assumptions and the ability to easily extend the method to
complex analyses that deal with multiple loci, haplotype
probabilities, quantitative traits, and environmental factors.
The idea is based on the perception that the association
between a genetic marker and a complex disease can be
interpreted as a quantity of information contained in the
marker about the disease. The concept of relevance chains
can then be used to find groups of jointly associated
markers and their respective order, corresponding to the
conception of genetic effect modifiers. Both a time-saving
analytical mode and a permutation-based study-wise mode
of significance determination of MI values are implemented
in our method.

The results obtained for clinical as well as simulated data
sets indicate that our methods constitute a promising
approach. The question needs to be discussed of how the
proposed methodology relates to commonly used methods.
Traditionally, there are two standard statistical methods
applied to gene mapping. One method is to test the
observed contingency tables for independence by means
of the �2 or the log-likelihood test (e.g., [27], [4]). These
methods are defined very similarly to mutual information
(see Appendix B). However, as we have seen in Section 2,
the concepts of information theory constitute a background
that allows us to go far beyond simple single-marker tests
for independence. Moreover, with results scaled to bits, a
very intuitive assessment of a marker’s causality or strength
becomes possible. The other group of methods used for
gene mapping are regression-based approaches. Very often,
linear or logistic regression is used to analyze the influence
of haplotypes, alleles, or genotypes on the phenotype (e.g.,
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Fig. 4. Two-locus mutual information for simulated data. The maximum

value is IðS14; S34;P Þ ¼ 0:0216 bit.

Fig. 5. Marker clustering in a two-dimensional scaling; autoimmune

disease data.



[3]). A unified stepwise regression procedure very similar to
our relevance chain method has been outlined in [16]. It
tests the likelihood ratio between a full regression model
(e.g., the main effects of a primary and secondary locus) and
a constraint model (only the main effects of the primary
marker). Using this method for our simulation data, the
same modifying (secondary) markers are revealed as in our
relevance chains (Fig. 3) when we apply a very conservative
significance level (p < 0:00005) for each single test. Our
method applies a permutation procedure to adjust for
testing multiple secondary SNPs and needs no conservative
significance level to be defined. As expected, no haplotype-
specific effects across primary and secondary markers were
found because the two causal loci were simulated as
unlinked.

Our approach also revealed very similar results in the
real data set example as compared to the original article,
except for a new additional study-wise significant signal in
the promoter region of CTLA4. In the original article, the
effect of secondary loci in addition to the main associated
loci was tested, assuming a multiplicative model for the
allele effects [24]. Such trend regression approaches,
however, imply a continually increasing or decreasing
causality scheme across genotypes, which is possibly not
always an accurate assumption. The slight difference
between the original and our results might be attributed
to the fact that the use of mutual information does not
assume any particular mode of allelic risk.

Section 3.2 describes how our methods can be easily
applied to analyze phase-estimated haplotype data. It may
be argued that a haplotype analysis is indicated for certain
cis-regulated cases where multiple marker alleles contribute
to a common disease only when they are located at the same
chromosome. However, in a situation where the number,
locations, and functional patterns of these causal markers
are largely unknown, this advantage comes at the cost of
possibly inaccurate assumptions, e.g., random mating
(panmixia) or evolutionary relatedness of haplotypes as
assumed by some statistical techniques of haplotype phase
estimation. Moreover, the length of analyzed haplotypes
has to be determined arbitrarily (sliding window proce-
dures) or by appropriate haplotype block definitions. It is
often argued that reconstructing the haplotype phase can
increase the statistical power of a test method. From an
information theoretic point of view, it is easily shown that
this increase in power cannot be regarded as a measure of
test quality as even the worst of phase estimation
techniques will increase the test power. This matter is
discussed in Appendix C.

Applying the simple, yet theoretically well-defined
methods from information theory for single or multiple-
marker analysis and the determination of relevance chains
seems to deliver satisfactory results, while assumptions
such as HWE, random mating, haplotype length and phase,
linear association models, or number and position of causal
markers do not have to be made. We think, therefore, that
the representation of marker-marker and marker-pheno-
type relationships with one simple and basic measure of
information lays out a consistent framework for a first
screen in gene mapping approaches.

APPENDIX A

NOTATION

For reasons of reading clarity, the notation used in this

paper is rather compact. Capital letters such as S denote

random variables, while small letters such as s denote an

outcome of a random experiment and, hence, a realization

of S. These realizations s are elements of the support set SS ,

whose size is denoted by jSj. The notation
P

s means a sum

over all realizations of S, correctly
P

s2SS . Probability mass

functions (PMF) are denoted by pð�Þ and probability density

functions (PDF) are denoted by fð�Þ. Consequently, pðsÞ
means pSðsÞ, pðp; sÞ means pPSðp; sÞ, etc.

�ða; bÞ is the Gamma distribution with shape parameter a

and scale parameter b. �1��ða; bÞ denotes the ð1� �Þ-quantile

of the Gamma distribution, i.e., that value that is exceeded

with probability � [28].

APPENDIX B

THE CONNECTION BETWEEN �2, LOG-LIKELIHOOD

RATIO, AND MUTUAL INFORMATION

Without going into too much detail, the connection between

mutual information and the �2 and log-likelihood ratio (or

G2 or 2ÎI) tests is discussed. Using the definition of relative

frequencies,

pðeventÞ ¼ event counts

total counts
; ð19Þ

it can be easily shown that

2ÎI ¼ 2N ln 2 � IðX;Y Þ; ð20Þ

where N is the number of observed samples (the total

counts).
The �2 and log-likelihood ratio tests are very similar; in

fact, the �2 test is a second-order Taylor approximation of

2ÎI. For independent random variables, both have an

asymptotic �2 distribution. (Very often in the literature, 2ÎI

is said to be asymptotically distributed as �2. This, however,

is only approximately correct, viz. for its approximation, the

�2 test.)
As mentioned in the text, the logarithm base b used in

entropy expressions is arbitrary and the result is equal bar a

scale factor ln b. Using the natural logarithm, we can expand

the expression for mutual information IðX;Y Þ into a Taylor

series about expansion point pXY 	 pX � pY , i.e., “about

independence,” and obtain

IðX;Y Þ � 1

2

X
x

X
y

ðpðx; yÞ � pðxÞpðyÞÞ2

pðxÞpðyÞ : ð21Þ

Obviously, this expression relates to the �2 test with the

same constant factor 2N (and an additional factor ln 2 if the

binary logarithm is used). The direct proof that (21) has a

Gamma distribution is rather involved. However, the same

fact can be quite easily derived from knowing the �2 test

variable follows a �2 distribution (given the null hypothesis

is true). Since I ¼ X2

2N ln 2 , we can scale the �2 distribution by

the factor 2N ln 2 and obtain a Gamma distribution.
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One particularly important consequence of the relation
between �2 and MI is that all accuracy properties of the
�2 test can be attributed to MI, too. Most important for the
proposed gene mapping methods is the fact that the
�2 distribution (and, thus, our gamma distribution, too) is
considered a very good approximation for sample sizes as
small as N ¼ 10.

For a more detailed discussion of the matter, the reader is
referred to [14].

APPENDIX C

HAPLOTYPE ESTIMATION AND TEST POWER

The methods proposed in this paper can be easily used for
the analysis of data whose haplotype phase has been
reconstructed by statistical methods such as the
EM algorithm [18]. Haplotype phase estimation is often
recommended with the argument that it can increase the
statistical test power defined as 1� �, where � is the type II
(false negative) error probability.

To understand the effect of haplotype phase estimation
from an information theoretic point of view, we consider
the reverse process. Let a random variable G denote an
SNP sequence (length l � 1) with unresolved gametic phase
and let H denote the same sequence with estimated phase.
Obviously, G is easily derived from H by combining several
heterozygous states into one. For instance, the genotypic
state aAbB in Fig. 1 would split into the haplotype
combinations ab=AB, aB=Ab, Ab=aB, and AB=ab.

Hence, G is a function of H. This implies that G and any
random variable P (e.g., the phenotype) are conditionally
independent given H. In statistical terms, P , H, and G form
a Markov chain in that order. Under this condition, one of
the fundamental theorems of information theory, the data

processing inequality [6], states that

IðG;P Þ � IðH;P Þ: ð22Þ

Thinking in the other direction, this proves that even the
worst of haplotype phase estimation techniques, e.g.,
guessing, will increase the mutual information between
the SNP sequence and the phenotype. Depending on the
quality of the phase estimation algorithm, this increase in
mutual information will be more or less justified. However,
since the haplotype phase can never be reconstructed
unambiguously, a certain amount of mutual information
will always be unjustified or spurious information.

The increase in mutual information will always increase
the test power, 1� �, since the increase in mutual
information makes it more likely for a marker set to lie
above the significance threshold. Hence, the type II or false
negative error probability � decreases and the test power
increases. However, this test power increase is obtained at
the cost of more type I errors because the spurious
information will make it more likely to assess a noncausal
SNP sequence as causal, hence making a false positive
decision.

This shows that an increase in test power cannot be taken
as a quality measure for haplotype phase estimation
techniques. When phase estimated data is analyzed, it

needs to be kept in mind that part of the observed

associations may be spurious ones.
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