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Abstract 
 
The purpose of gene mapping is to identify the 

causal genetic regions of a specific phenotype mainly a 
complex disease. Most complex diseases are believed 
to have multiple contributing loci often having subtle 
patterns which make them fairly difficult to find in 
large datasets. We present and discuss a new criterion 
called conditional mutual information for association 
mapping and compare it to the previous criterion 
which is mutual information from different aspects. 
Furthermore, algorithms are proposed to find 
relevance chains. The proposed algorithms are 
especially in favor of diseases having almost equally 
contributing regions known as being epistatic. These 
algorithms are applied to both simulated and real 
data. The real data represents the genotype-phenotype 
values for AMD disease. Proposed relevance-chain 
algorithms have detected some highly associated 
markers with AMD. C# source files for relevance-
chains algorithm are freely available at 
https://www.sharemation.com/amanzour.  

 
1. Introduction 

 
Gene mapping intends to identify the causal genetic 

regions of a phenotype. A study in which genotypes 
are Single Nucleotide Polymorphisms (SNPs) and the 
phenotype under investigation is a complex disease, is 
referred to as a SNP case/control study. SNPs are 
believed to have strong relation with genetic diseases. 
In case of complex diseases, the contributing loci are 
unknown and there is no complete knowledge of which 
genes the causal SNPs are located in or how many 
causal regions exist. 

Various methods are used to identify the causal 
SNPs most of which are statistical and based on 
assumption. More recent approaches, however, are 
based on information theory [1, 2]. Mutual information 
is one of the basic concepts in information theory 

which has recently been applied to many problems in 
molecular biology [4, 5]. Information theoretic 
measures have been widely used in data mining 
problems such as the on here [12]. 

Different approaches are presented to locate the 
causal regions. For this purpose, algorithms presented 
in [1] have proven useful. However, one of the 
shortcomings of this method is that it is futile against 
epistatic models. 

 In this paper, a new criterion called conditional 
mutual information is presented and compared to that 
of in [1]. It is important to note that the proposed 
criterion is not peculiar to gene mapping and holds for 
any type of association mapping in general. 
Furthermore, recursive algorithms inspired by this new 
criterion are presented to find the relevance chains in 
SNP case/control studies. The presented algorithms, 
which are in favor of the detecting epistatic models, are 
applied to both simulated and real datasets. 

 
2. Information Theory 

 
In this section a brief review will be presented on 

basic concepts and definitions of information theory. 
The most basic and conceptual figure of information 
theory is entropy. The entropy, or uncertainty of a 
variable X with realizations x is defined as follows: 
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Similarly, the amount of dependence between two 
variables or two sets or variables is quantized by 
mutual information figure: 
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 The discussed measures have many convenient and 
useful characteristics many of which are explained in 
[9] extensively. A few of these characteristics are 



stated here that prove useful to population-based gene 
mapping. Two useful theorems are presented that state 
the convexity conditions of these functions. 
Theorem 1: 

Entropy is a convex- ∩ function on probability set 
of its arguments. Mutual information is also a convex-
∩  on the probability set of either of its arguments, 
here )(xp or )(yp . 
Theorem 2: 

Mutual information is a convex- ∪  function on the 
transition probability set of either of its arguments, 
here on )|( yxp or )|( xyp  while the probability sets 

)(yp  or )(xp  are kept constant, respectively. 
 

3. Mutual Information and Gene Mapping 
 
Most of the previous works done so far have 

statistical base whereas in recent years, many methods 
are based on information theoretic concepts including 
[10, 11]. In a simple case-control study, there is 
basically an M.L matrix where M is the number of 
people and L is the number of available SNPs. It is 

stated in [1] that causal regions NS  can be found by 
equation 6. 
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The above maximization is a combinatorial problem 

in nature and can be relaxed to stepwise maximization 
which is implicitly referred to in [1]. The relaxed 
method aims to find old

NS  in a stepwise manner. Let’s 

call the resulting vector
*old

NS . Elements of 
*old

NS are 
computed as follows: 
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3.1. Mutual information Criterion versus 
Conditional Mutual Information Criterion 

 

    In this section, a new criterion for association 
mapping is presented and compared to the existing one 
from different aspects. Let’s assume that the number of 

individuals is in the order of genotypesSNP . The figure 

SNP  is the number of realizations of markers and 
genotypes is the number of SNPs available in the 
database. The new criterion states: 
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The above maximization is equivalent to the 

minimization in equation 6.  
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Since this minimization also takes a lot of time and 
complexity, we will resort to the relaxed method in, 

that is finding 
*new

NL−S such that 
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The interpretation of presented criterion is as 
follows: In a system where all variable possess 
unknown dependencies, the causal variant about the 
system outcome are the ones without which maximum 
uncertainty occurs about that particular outcome. 

The two criteria along with their stepwise relaxed 
methods will be discussed and compared from different 
aspects. 

 
3.1.1. Theoretical and Computational Comparisons 
having looked at the figure of mutual information in 
the right most equality of equation 3, it is clear that 
choosing different sets of X only changes the figure 
through entropy of Y conditioned on X. Since )(YH is 
constant, making mutual information a convex-
∪ function upon different choices of X. 

    However, it is obvious that );( PI S has as many 
as S.P distinct theoretical maxima. This makes it 

unlikely for 
*old

NS to be same as old
NS , since theoretical 

maximization can not be achieved in a stepwise 



manner. The amount of computation of the stepwise 
approach to satisfy the former criterion is proportional 
to N while that of the new criterion, it is L-N. 

 
3.1.2. Epistasy. As previously stated, epistatic models 
are known as models in which the causal regions do 
not have high correlation with the disease individually. 

In such cases, the probability for old
NS and

*old
NS to be 

equal is: 
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In the maximization method presented for the 

second criterion, however, it is virtually impossible to 

eliminate all elements of an epistatic model. 
*new

NL−S  can 
never contain all elements of an epistatic model. 
Therefore, at least one causal variant is never 
eliminated through stepwise maximization presented in 
11, no matter what kind of model the disease follows. 

Therefore, one of the big advantages of the stepwise 
method presented to satisfy the second criterion is that 
it can trap one of the disease causal regions through 
stepwise elimination no matter how many causal 
regions the disease has. 

 
4. Relevance-Chains Algorithms 

 
Complex diseases are believed to have multiple 

contributing genetic regions often having subtle 
patterns. Besides statistical concepts, mutual 
information has also been used to in relevance-chains 
algorithms [1, 6]. In a case/control study, the number 
of available samples are usually much less that the 
genotypes. 

We present new algorithms for finding relevance 
chains that follow epistatic models. For each chain of 
SNPs { }), *

J
rS S  is found such that: 
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Three different approaches are explored in order to 

find more effective sets of *
JS all of which can be done 

through stepwise maximization. 
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Recursive algorithms are best suited for finding the 
above relevance-chains because of the recursion in 
Shannon Entropy.  For instance, if J=2, we have: 
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Length of each chain is limited to a maximum 

arbitrary number maxDepth. The selection of SNPs at 
each step can be done in two ways. In the first 
approach, all SNPs having entropies higher than a 
threshold are chosen. ε−= )(max ZHT , where 

)(max ZH  is the maximum achievable entropy in the 
chosen mode. In the second approach, M SNPs are 
picked that correspond to the M maximum conditional 
entropy figures in each step. Statistical significance of 
values is verified using equation 12. 
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The relevance-chains algorithm is presented in 
figure 1. Based on the chosen mode, M SNPs are 
selected in each depth. 

 
Input=Data, maxDepth, M, Mode 

Ent=entropyfigure 

Repeat (Ent, Depth) 

SM=M corresponding markers with maximum value in 

Ent  

If (Depth =0) then return and save all elements of SM  

Else  { 

For i=1 to M 

Ent=Search(Si, Depth) 

Repeat(Ent, Depth-1) 

} 

end 

Figure 1: Relevance-chains algorithm, any of the 3 modes 
can be selected in line 3. 

 
The number of relevance chains formed is equal 

to DepthM max . By increasing M more diverse chains are 
formed but at the cost of a higher computational time. 



Table 1 shows a comparison between the proposed 
relevance-chains algorithm and that of Zaher Dawy et 
al presented in [1]. 

 
Table 1: Comparison between the proposed relevance-

chains algorithm and and that of Zaher Dawy et al [1]. 
 Proposed 

algorithm 
Zaher Dawy 

et al. algorithm 
Generality Acceptable Acceptable 

Computational 
Complexity 

Acceptable Acceptable 

Inter-chain and 
intra-chain diversity 

Capable Not capable 

Discovering 
epistatic models 

Capable Not capable 

Discovering other 
models 

Capable Capable 

 
5. Application 

 
5.1. Data sets 

 
The proposed methods were tested on simulated and 

real datasets.  The simulated data assumed 10000 SNPs 
which were assumed ternary variables. Hundred 
samples, were simulated half of which were considered 
as controls and the other half as cases. All variables 
assumed to be iid and therefore were generated 
randomly. 

The real data set that we implemented the 
relevance-chains algorithm on related to AMD disease 
which was previously used in [7]. The database is 
available as an open source in [8]. 116212 SNPs were 
extracted and recorded for 146 individuals. 50 
individuals were controls and the other 96 were cases. 
The genotypes all had three realizations as the 
simulated dataset; one for heterozygous and two for 
homozygous combinations.  

 
5.2. Results 

 
By applying the relevance-chains algorithm in [1] 

on the random dataset, maximum two-locus mutual 
information achieved was 0.4007. This figure was 
achieved while M=10 and did not improve even at 
M=40. However, all three modes of the relevance-
chains algorithms presented in equation 10 were 
applied to the same simulated data and the results are 
shown in figure 2. The highest mutual information 
value achieved by relevance chains is illustrated for 
different M while depth is one. It is clear that by 
increasing M more diversified chains are formed and 
hence, higher mutual information is achieved. 

 
Figure 2: Results for all 3 modes of relevance-chin 

algorithm applied to random datasets for different M 
and depth=1. The maximum figure is illustrated at each 

step. 
 
    Applying different modes of the proposed 

algorithm on AMD disease dataset also revealed chains 
having epistatic models. 

The relevance-chain algorithm was applied with 
depth=1 and M=5 and some 2-tuple chains were 
observed. Markers rs2187210 (SNP_A-1702347) and 
rs10498077 (SNP_A-1667319) together caused mutual 
information of 0.9216. However, marker rs2187210 
and the disease vector alone make only 0.0034 bits of 
mutual information while marker 43884 makes 0.2056 
bits. Another relevance chain of equal value which was 
0.9216 is made between rs2187210 and rs9304554 
(SNP_A-1689432). Rs9304554 alone has mutual 
information of 0.0631 bits. Both modes B and C 
detected these chains. Mode B also detected a 
somewhat epistatic-model chain between markers 
rs2187210 and rs6845733 (SNP_A-1702798) that lead 
to a joint mutual information of 0.81076. Rs6845733 
by it self makes as small as 0.0238 bits of information 
about the disease. Rs542359(SNP_A-1673543) which 
only has 0.0034 bits of mutual information, jointly 
with rs10498077 made up to about 0.9218 bit of 
information about the disease which was detected by 
mode B. 

Markers 43884 and 93244 might be considered as 
major contributing loci since they always appeared at 
the end of the relevance chains. Most of the achieved 
figures have low statistical significance due to small 
number of available samples for certain SNPs. This is 
because the values of many SNPs were not 
successfully extracted from the samples and hence 
were marked as “No Call” which greatly affected the 
statistical significance of the results.  



6. Discussion and Conclusions 
 

Interaction between genetic regions can be tricky 
and subtle. The presented algorithms mentioned in this 
work tend have the advantage of not being based on 
any apriori assumption while most of the statistical 
approaches are based on such assumptions. 

As stated in the literature, one of the major 
disadvantages of a case/control study is that high 
association does not necessarily establish causality. In 
this work, a different criterion was proposes for 
assessing cause and effect relationship amongst data. 
The relaxed version of this criterion which is based on 
stepwise maximization proves useful in detecting 
causal regions of epistatic models while having a 
reasonable computational complexity. This opens way 
for dealing with complex diseases having unknown 
number of susceptibility regions.  

Algorithms were also presented in order to find 
relevance chains having epistatic models. Epistasy-
model search is what makes this approach distinct from 
other SNP case-control studies. The idea here is to 
avoid the full search by only checking those pairs that 
have a higher probability of containing the subtle 
patterns. 

Parameters M and T can be used to control 
computational time or amount of epistasy achieved in 
resulting chains, respectively. In the first case, by 
setting a threshold T, the amount of diversity of each 
chain is controlled whereas in the second case, by 
setting M, computational complexity can be handled. 
However, even if the disease possesses models other 
than epistatic, the proposed algorithms can also detect 
the major contributing loci at the last step of the 
algorithm. 

The available dataset for AMD disease contains 
many epistatic models amongst its markers. This can 
imply that the above disease might be controlled by the 
epistatic model. However, the statistical significance of 
the results is fairly low which calls for further 
investigation on the available genotypes. 

Both stepwise maximization of the proposed 
criterion and the presented algorithms have reasonable 
computational complexity, meaning that their 
complexity only grows linearly with increase in the 
number of markers or samples. This reasonable 
computational time makes them convenient for 
applications on a genome-wide level. 
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