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Abstract
Background: Searching for approximate patterns in large promoter sequences frequently
produces an exceedingly high numbers of results. Our aim was to exploit biological knowledge for
definition of a sheltered search space and of appropriate search parameters, in order to develop a
method for identification of a tractable number of sequence motifs.

Results: Novel software (COOP) was developed for extraction of sequence motifs, based on
clustering of exact or approximate patterns according to the frequency of their overlapping
occurrences. Genomic sequences of 1 Kb upstream of 91 genes differentially expressed and/or
encoding proteins with relevant function in adult human retina were analyzed. Methodology and
results were tested by analysing 1,000 groups of putatively unrelated sequences, randomly selected
among 17,156 human gene promoters. When applied to a sample of human promoters, the method
identified 279 putative motifs frequently occurring in retina promoters sequences. Most of them
are localized in the proximal portion of promoters, less variable in central region than in lateral
regions and similar to known regulatory sequences. COOP software and reference manual are
freely available upon request to the Authors.

Conclusion: The approach described in this paper seems effective for identifying a tractable
number of sequence motifs with putative regulatory role.

Background
Discovery of regulatory elements in human gene promot-
ers is one of current bioinformatics challenges. Although
transcriptional control mechanisms have been investi-
gated in various organisms for at least three decades, it is
still almost impossible to predict tissue-specific or devel-
opmental-stage-specific expression of a given gene by sim-
ply analyzing its promoter sequence [1].

The 5' segment immediately adjacent to the TSS includes
the core promoter and the proximal promoter, which usu-
ally extends about 200–300 nucleotides. This region is
involved in the modulation of transcription. The distal
part of a promoter is variable with respect to composition
and length, which may encompass from 100 nucleotides
to over 2 kb. There is no clear-cut defined 5'-boundary for
promoters [2].
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Regulatory elements binding the same transcription factor
can be found in different promoters as short DNA
sequences, differing among them to some extent; they are,
in general, from 5 to 25 nucleotides long [3,4], often sep-
arated by un-conserved sequences. Control regions are
modular in nature and expression of a given gene depends
on specific combination of its regulatory elements and
sometimes from their order and orientation [5].

Searching by computational methods for promoters and
for regulatory elements in DNA sequences spanning sev-
eral Kb, produces a large number of false-positive results.
A possible solution to this problem is to identify a "shel-
tered environment" in which specificity of pattern discov-
ery might be enhanced. Unknown binding sites for
transcription factors might be detected by searching for
common elements in upstream regulatory regions of
genes with common biological function and/or expres-
sion. In fact, genes with similar expression are frequently
co-regulated and genes with related function are often
similarly expressed [6].

In this study, we attempted to detect putative regulatory
elements in promoters of genes expressed in an adult
human tissue (retina), by a multi-step approach involving
computational analysis of large-scale expression data,
selection of a subset of putatively co-expressed genes,
retrieval of the upstream portion of their complete
genomic sequence and application of pattern discovery
on promoter regions.

Results
Analysis of known regulatory sequence elements binding 
transcription factors
Before applying COOP software on a selected group of
promoters, we attempted to exploit information on
known regulatory sequences available in TRANSFAC [10],
to establish some "rules" which could facilitate the discov-
ery of novel regulatory elements. In particular, TRANSFAC
matrix data were analysed in order to describe number,
percent and localization of fixed and variable positions in
consensus sequences.

We first considered 385 matrices including information
on mammalian regulatory elements. Average length of
consensus sequences was 13.0 and mode 12; motifs of
even length were more represented (even lengths two
times more represented than odd lengths among consen-
sus sequences of length ranging from 8 to 17). Less than
5% of the motifs showed only invariant positions (aver-
age and mode of length of completely invariant motifs
were 10.3 and 9, respectively). About 33% of motifs
showed more than 75% fixed positions (average length
11.5, mode 10), whereas about 73% showed more than
50% fixed positions (average length 12.3, mode 8). In

general, the shortest the motif, the less variable appeared
its consensus sequence.

By separately considering three regions of consensus
sequences (left, center and right), we observed that lateral
positions are variable in 37% of sequences, whereas cen-
tral positions are variable only in 20% of them.

Most regulatory elements included in TRANSFAC seem to
be symmetrical, being equally variable in their left and
right sides.

We obtained very similar conclusions from the analysis of
the group of 610 eukaryotic matrices. Results of this anal-
ysis suggested that pattern discovery on mammalian pro-
moter sequences might focus on patterns 10, 12 or 14
nucleotides long, showing from 0% to 25% variable posi-
tions, and possibly, less variable in the central region.

COOP : Clustering Overlapping Occurrences of 
approximate Patterns
Since sequence signals with biological significance are fre-
quently subtle, stringency of pattern discovery analyses in
biological sequences cannot be set too high. This implies
that results are often too numerous. A novel tool for Clus-
tering Overlapping Occurrences of approximate Patterns
(COOP) was implemented in Python (Figure 1). This soft-
ware allows identification of tractable numbers of possi-
bly interesting motifs, starting from large numbers of
exact or approximate patterns.

Selection of genes and retrieval of putative promoter 
regions
Among 1,814 genes expressed in retina, statistical analysis
of differential expression, by Audic and Claverie test [11],
picked out 80 genes significantly more expressed in retina
than in all other tissues. We selected as well a group of 59
known genes whose mutation is known to cause retinal
diseases, recorded in OMIM and/or in RetNet databases,
and/or encoding proteins for which a specific function in
retina has been described. In total, 129 were selected. For
each of these genes, the Reference Sequence or the longest
sequence of the mRNA with complete CDS was compared
by BLAT [12] to human genome sequence, for annotation
of the intron/exon structure and for prediction of the most
probable TSS (Transcription Start Site). We predicted with
good confidence TSS of 90 genes (45 overexpressed Uni-
Gene clusters, 28 retinal disease genes, 7 both overex-
pressed and retinal disease-genes and 10 genes encoding
proteins with a retinal function)[13]. Sequences from 90
selected genes, each corresponding to 1 Kb upstream the
predicted TSS, were retrieved for further analyses. For one
gene, USH3A (LL 7401) two alternative promoters
(USH3A-A and USH3A-B) controlling transcription of
messenger RNA encoding retinal products were found.
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Therefore, 91 gene promoters pertaining to 90 different
retinal genes were considered for the study.

Search for approximate patterns
Retinal datasets
We considered datasets including sequences correspond-
ing to the 500 bp upstream the predicted TSS of the
selected genes (unmasked sequences, 500U91; partially
masked, 500PM91; masked, 500M91) and the group of
91 fully masked sequences corresponding to 1 Kb
upstream the predicted TSS (1000M91 dataset). Fully
masking of sequences in datasets 500M91 and 1000M91
produced, on average, 435 and 788 unmasked nucle-
otides, respectively.

In each group of sequences, approximate patterns of
length ranging from 10 to 14 nucleotides, with at most
two variable positions (10-2, 12-2, 14-2 patterns), were
searched by SPEXS (Tables 3 and 4). For each dataset, pat-
terns were ranked in different classes, according to the
number of sequences in which they were represented
(Tables 3 and 4, Figure 2).

In the 500 bp datasets the number of sequences in which
most represented patterns were found as relatively low,
reaching a maximum of 44 (48%) for 10-2 patterns in
unmasked sequences (500U91) and only 5 (5.5%) for 14-
2 patterns in masked sequences (500M91). When consid-
ering sequences of length 1,000, the number of sequences
with occurrences of most represented patterns slightly
increased. For instance, most represented 10-2 patterns
were found in 32 sequences in 500M91 and in 40
sequences in 1000M91.

Negative control datasets
Random groups of human promoter sequences were
established as negative control. One thousand groups of
91 promoter sequences randomly selected among 17,156
(1 Kb long) human gene promoters were generated
(RAN1000M91i, with i ranging from 1 to 1,000). Each of
these 1,000 groups included the same number of
sequences of the 1000M91 set of retinal gene promoters
and sequences fully masked and of the same length of ret-
inal gene promoters. Moreover, TSS predictions were
done by Promoser [14,15] according to identical criteria
adopted for TSS prediction of retina genes.

Results of pattern discovery in the 91 retina gene promot-
ers group (1000M91) and in the dataset of 1,000 groups
of 91 human gene promoters randomly selected among
17,156 (RAN1000M91i) are shown in Tables 3 and 4 and
in Figure 2. The number of patterns with different quorum
in the retinal datasets and in the negative control groups
of promoter sequences are reported. In the last two rows
of Table 4 the comparison of pattern discovery results in

Flow-chart of COOP programFigure 1
Flow-chart of COOP program. Input, output and main 
steps are shown.

SPEXS PATTERN LIST
( )q d o i fc fl

SEARCH FOR PATTERN
OCCURENCES (q)

CLUSTERING
( )d o

ClustalW MULTIPLE
ALIGNMENT

MATRICES
CONSTRUCTION

CONSENSUS
BUILDING

( )i fc fl

MATRICES
&

CONSENSI
Page 3 of 15
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:121 http://www.biomedcentral.com/1471-2105/6/121
Table 1: Description of COOP parameters.

Step Parameter Description Range Example

Search for pattern 
occurrences

q Quorum (minimum number out of N input sequences in which a 
given pattern must be represented)

1 - N ≥ 20 out of 100 sequences

Clustering d Physical distance between 5'-ends of occurrences of patterns 
of length p

0 - |p| ≤ 2 nucleotides

o Ratio between observed overlapping occurrences of two 
patterns and their average number of occurrences

0 – 1 ≥ 0.8

Consensus building i Ratio between the number of nucleotides per alignment 
position and the total number of lines in the alignment. The 
maximal number of adjacent positions exceeding the threshold 
i (m) is further analysed for determining the consensus 
sequence of the motif

0 – 1 ≥ 0.5

l Nucleotide length of the lateral region of the motif 0 - m/2 3 bp (out of 10)
fl Frequency of a single nucleotide in each position of the lateral 

region to be considered specified
0 – 1 ≥ 0.6

fc Frequency of a single nucleotide in each position of the core 
region to be considered specified

0 – 1 ≥ 0.8

Table 2: Procedure for building a consensus sequence starting from a matrix of nucleotide counts, according to selected parameters. 
Rows from two to five represent the matrix of nucleotide counts in different positions of an alignment associated to a cluster of 
pattern occurrences. The sixth row contains, for each alignment position, the ratio between number of sequences in the position and 
the total number of lines in the alignment. Out of 11 positions of the matrix, positions from one to ten (shaded in grey) fulfil the 
minimum i (0.5) and are considered for building the consensus. If the lateral region length is set to 3 nucleotides, a 3-4-3 motif is 
obtained. The fl (0.6) threshold is applied to the positions in the lateral regions, whereas the fc (0.8) is applied to positions in the core 
region. Cells containing values fulfilling the condition reported on the left are in bold. In the last row, the derived consensus sequence 
is shown.

1 2 3 4 5 6 7 8 9 10 11

A 0 0 0 4 0 0 0 0 0 0 0
C 0 0 5 0 5 2 0 0 0 0 2
G 0 4 0 0 0 3 5 5 0 4 0
T 3 0 0 1 0 0 0 0 5 0 0

i (0.5) 0.6 0.8 1 1 1 1 1 1 1 0.8 0.4
fl (0.6) 1 1 1 1 1 1
fc(0.8) 0.8 1 0.6 1

Consensus sequence T G C A C N G G T G -

Table 3: Number of sequences in which most represented patterns were found in different retinal datasets.

Pattern 500U91 500PM91 500M91 1000M91

10-2 44 42 32 40
12-2 19 19 10 12
14-2 11 11 5 7
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the 1000M52 retinal gene promoters group and in the
dataset of 1,000 groups of 52 sequences (RAN1000M52i)
randomly selected among 17,156 human gene promoters
is shown.

The number of patterns found in at least 10 and in at least
20 out of 91 retinal promoter sequences is higher than the
average of number of patterns found in at least 10 and in
at least 20 out of 91 randomly selected promoter
sequences, calculated over 1,000 different samples.
Statistical significance (P-value) of number of patterns
found in each number of sequences of the retina datasets
was calculated as the proportion of negative control ran-
dom datasets in which the number of patterns found was
higher or equal to those found in retinal promoters. When
this number was below 0.05, the difference was consid-
ered statistically significant. Over 1,000 random samples,
351.3 10-2 patterns were found in average in at least 20
promoter sequences, while 719 patterns were found in at
least 20 retinal promoters (P-value = 0.017). Similarly,
714 12-2 patterns were found in 7 or more retinal pro-
moter sequences, whereas 410.2 were found in average in
random samples (P-value = 0.060). Statistical significance
of this observed difference resulted just above 0.05. This
effect could be due to possible heterogeneity of the class
of 91 gene promoters. When considering the group of 52
promoters corresponding to genes significantly more
expressed in retina than in all other considered tissues
(1000M52) and the corresponding negative control data-
set (RAN1000M52i), the difference between retinal and
random datasets is more evident. For instance, 114 12-2
patterns were found in 7 or more retinal promoter
sequences, whereas 33.7 in average were found in 1,000
random samples (P-value = 0.027).

In Figure 2A, the cumulative number of patterns is plotted
against the number of sequences in which they were
found, among sequences of dataset 1000M52 and
RAN1000M52i. In Figure 2B the comparison between the
1000M91 and the RAN1000M91i is shown. For negative

control (random groups of promoters), the average value
of 1,000 sets of sequences is given, with an interval of two
standard deviations centred to the mean (e.g. 4,895 pat-
terns were found in at least five sequences out of 91 in the
retina dataset, whereas the average number of patterns
found in at least five sequences out of 91 was 3,057 in the
negative control dataset). It should be noticed that in both
comparisons the number of patterns found in the retinal
dataset is always considerably higher than average in the
negative control dataset.

Putative novel regulatory elements in retina gene 
promoters identified by COOP
We considered the group of 716, 12-2 patterns detected by
SPEXS in at least 7 out of 91 promoter sequences of genes
expressed in human retina (dataset 1000M91). We clus-
tered the 6,611 occurrences of 716 selected patterns by
using different sets of parameters, in order to identify
combinations maximizing the biological meaning of
resulting motifs. Distance parameters ranging from 2 to 5
nucleotides were used, each associated with o values of 0.6
or 0.7. The number of clusters decreases when d increases
and increases with o. For instance, when o is set to 0.6, the
increase of d from 2 to 5 changes the total number of
clusters from 211 to 183, changing the number of clusters
containing only the occurrences of one SPEXS pattern
("single clusters") from 136 to 116, with maximum
number of patterns per cluster increasing from 119 to
180. We kept o high, in order to cluster patterns according
to their "very frequent" overlapping occurrences. The
change of o from 0.6 to 0.7 changes the number of clusters
obtained with d = 3 from 195 to 279, while the number of
"single clusters" changes from 123 to 183. The number of
clusters containing the occurrences of different SPEXS pat-
terns is quite stable in respect to variation of o (72 and 97,
respectively), whereas the number of "single clusters"
increases considerably with o. In all cases, the number of
extracted motifs, ranging in these experiments from 169
(d = 5, o = 0.6) to 300 (d = 2, o = 0.7), is considerably lower
than the number of patterns considered.

Table 4: Statistics about patterns found in different groups of retina gene promoter sequences and in the corresponding negative 
control random datasets.

Quorum Pattern Obs. Exp. P-value

10-2 719 351.3 0.017
20 12-2 0 - -

14-2 0 - -
1000M91 (91 promoters of retinal genes vs RAN1000M91i) 10-2 18683 12846.4 0.016

10 12-2 41 35.4 0.324
14-2 0 - -

7 12-2 714 410.2 0.060

1000M52 (52 promoters of retinal genes vs RAN1000M52i) 5 12-2 1537 429.4 0.001
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Comparison of patterns discovery results in retinal gene promoter sequences and in 1,000 negative control datasetsFigure 2
Comparison of patterns discovery results in retinal gene promoter sequences and in 1,000 negative control 
datasets. Plots of number of patterns (12 bp long, with at most two variable positions) vs number of sequences in which they 
were found, in retinal gene promoter sequences (open squares) and in 1,000 negative control datasets (filled diamonds). For 
negative control datasets, the average value of 1,000 sets of sequences is given, with a two standard deviations interval. Statis-
tically significant differences (0.05 threshold) are marked by stars. (A) Comparison between the 1000M52 dataset (52 pro-
moter sequences of genes overexpressed in the retina) and the RAN1000M52i dataset (1,000 groups of 52 randomly chosen 
human promoters); (B) Comparison between the 1000M91 dataset (91 retinal gene promoter sequences) and the 
RAN1000M91i (1,000 groups of 91 randomly chosen human promoters).
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Starting from 6,611 occurrences of 716 selected patterns
found in at least 7 sequences with d set to 3 and o to 0.7
COOP produced 279 clusters with an average number of
occurrences per cluster of 13.9 (median 9 and mode 7,
maximum 150). Clusters are associated to 279 sequence
alignments, 89 of which (31.9%) are longer than 12
nucleotides, and to position-specific scoring matrices. In
average, 13.9 occurrences per motif were observed. These
279 motifs occurred in 87 sequences out of 91. The mean
number of motifs per sequence is 26.7, whereas the mean
number of motif occurrences per sequence is 42.6. Sub-
groups of these motifs could be similar or overlapping.

Motifs occurrences were ranked into four classes accord-
ing to their position in promoter sequences (bp distance
from the predicted TSS). The observed distribution signif-
icantly deviated from expectation under assumption of
randomness (1,558 motif occurrences from -1 to -250;
1,002 in -251/-500; 626 in -501/-750 and 690 in -751/-
1000; chi squared test: P = 3.03*10–121). There is a posi-
tive correlation between density of motif occurrences and
proximity to TSS. In fact, over 40% of total motifs occur-
rences are concentrated in 250 nucleotides close to the
predicted TSS and the two thirds of the total number of
occurrences fall within 500 nucleotides adjacent to the
first exon. Regions of promoters sequences corresponding
to the 500 bp proximal to TSS were in average less masked
than the upstream regions. When normalizing the
number of motifs occurrences to the percentage of
unmasked nucleotides in the different regions, a strong
difference remains, with significant deviation from a ran-
dom distribution. P value of chi squared test for the com-
parison among two groups (from -1 to -500 and from -
501 to -1000) is 3.3*10–48.

From each sequence alignment pertaining to a cluster, a
consensus sequence representing the motif was built. Dif-
ferent sets of parameters were used to this purpose. The
choice of different stringency of parameters for building
consensus sequences influences the length of obtained
motifs and the fraction of variable positions included in
them. Threshold i ranged from 0.1 to 0.5 and fl and fc
ranged from 0.6 and 0.8 (data not shown). If fl and fcare
sufficiently stringent, a low value for i could be used, in
order to maximize information extracted. When a i = 0.1
is applied for construction of consensus sequences, the
average length of motifs remains almost unchanged
(12.4), with 89 motifs of length over 12. Part of the infor-
mation about each motif is lost when a matrix is built
from the alignment of pattern occurrences and when fre-
quency data are converted into a consensus sequence. We
used moderately stringent thresholds for the minimum
frequency of a single nucleotide determining "fixed" posi-
tions. In particular, fl was set to 0.5, whereas fc, referring to
the core regions of consensus sequences, was set to 0.7.

Out of 279 motifs, only 62 "most informative" motifs
were selected, which showed a completely conserved con-
sensus or a consensus showing variable positions only in
the side regions (Table 5). The average length of this group
of sequence motifs was 13.0, with about 55% of them
longer than 12 nucleotides. Two pairs of motifs were rep-
resented by the same consensus sequence. The resulting
group of 60 motif consensus sequences, representing
putative functional elements in retinal promoters, were
compared with TRANSFAC data, by TESS program [16]. In
particular, we used the "Filtered String-based Search
Query" tool [17] for comparison only with known regula-
tory sites of mammals, with no mismatches allowed and
by using the entire length of known sites instead of their
core positions. Out of 60 motifs, 53 (88%) exactly
matched at least one sequence known to bind a mamma-
lian transcription factor. Sequences corresponding to
common or general transcription factors (Sp1, Sp3, MAZ,
GCF, CUP or Yi) were matched by 47 out of 60 consensus
sequences (78%), 22 of which matches also additional
factors (AP-1, AP-2, WT1, Krox-20, GR, PPUR or ER). In
total, 26 consensus sequences resulted similar to
sequences recognized by AP-1, AP-2, WT1, Krox-20, GR,
PPUR or ER.

Analysis of positive control datasets
To the purpose of both analysing COOP efficiency with
selected conditions and of indirectly comparing the per-
formances of the method with those of different software,
we analysed by COOP a group of 26 human positive con-
trol datasets prepared by Tompa and colleagues for the
assessment of computational tools for the discovery of
transcription factor binding sites [18,19]. This benchmark
included 26 groups of promoters, for which it is known
which regulatory signals should be detected.

The number and the length of promoter sequences and of
known signals per dataset are reported in Table 6, along
with the adopted quorum [see Additional file 1]. The
number of signals per group of promoters which are
shorter than the length of approximated patterns taken as
input by COOP (12 nucleotides) and which were, in prin-
ciple, very difficult to find by adopted settings, is also
reported. For each experiment, among different motifs
predicted we selected only the one corresponding to the
motif represented in the highest number of sequences. For
each dataset the nucleotide-level and site-level [18] over-
lap between pattern occurrences belonging to the cluster
(i.e. the selected motif) and known signals, evaluated by
different measures (see Methods), are included in Table 6
[see Additional file 1].

Moreover, the "combined" statistics summarizing COOP
performance over the collection of human datasets, was
compared with the same statistics calculated for the 14
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Table 5: List of 60 consensus sequences corresponding to selected motifs showing most conserved central regions. For each motif, 
consensus sequence, length and total number of occurrences in the 1000M dataset are reported, along with LocusLink symbols of 
corresponding genes. In the last column, for each consensus, the list of mammalian transcription factors recognising similar DNA 
sequences is reported.

Consensus sequence Length Total occ. Genes in which promoter the motif was found Transcription factors

AAAAAAAAAAAAAA 14 151 EFEMP1, CCNI, CNGB3, KCNV2, IMPDH2, SLC24A1, 
DHRS3, G2AN, RTP801, MGC15WIF11, USH3A, CRX, 18, 
HMGA1, SLC24A2, RDS, TULP1, DC-TM4F2, OPN1SW, RP1, 
MGAT4B, GAPD, ELOVL4, RRAD, ARR3

NGGCCCCGCCCCCN 14 114 EEF1G, HMGA1, EFEMP1, CYBA, KRT18, OPA1, DPYSL4, 
RAX, FLJ1415, MGC15WIF11, FLJ1415, ALMS1, EIF3S8, 
G2AN, ALMS1, DC-TM4F2, MSH6, RCV1, KRT19, DHRS3, 
PITPNC1, RRAD, HPCAL1, MGAT4B, SLC38A3, IMPDH2, 
CNGB1, RDH5, EFEMP1, CRABP1, C7orf20, CCNI, GNB1, 
CRX, GAPD, ARF4L, AIPL1, DKFZP564K0822

AP-1, GCF, Sp1, Sp3, 
TFIID

GCACCCCCAGCCCCN 15 101 RHO, G2AN, EFEMP1, SLCO4A1, CYBA, HPCAL1, KIFC3, 
RCV1, NK4, KRT18, CRX, ARR3, PPP1R3F, MGAT4B, NRL, 
RRAD, CCNI, SAG, ALMS1, MGC15WIF11, 
DKFZP564K0822, VMD2, DPYSL4, GNAT1, GAPD, 
OPN1SW, RAX, DHRS3, COPEB, SLC38A3, TMEM16B, 
SLC24A1

Sp1

NGAGGGCAGGGGCNN 15 94 GNB1, KRT19, ELOVL4, VMD2, MSH6, HMGA1, RHO, NK4, 
SLC38A3, LRRCGUCA1B, CYBA, RCV1, RRAD, GUCY2D, 
MGC15WIF11, AIPL1, MGAT4B, KIFC3, CRX, CRABP1, 
G2AN, ALMS1, RTP801, EEF1G, COPEB, OPA1, EFEMP1, 
KCNV2, PDE6A, AOC2, RLBP1, FLJ1415, RAX, DPYSL4, 
WIF1, DC-TM4F2

Sp1

CCTCCCTCCCTCCC 14 76 ARF4L, COPEB, RHO, SLC38A3, FLJ1415, WDR17, ELOVL4, 
DHRS3, KCNV2, OPA1, CCNI, GUCA1B, RDH5, RAX, 
ALMS1, DKFZP564K0822, NK4, RGS19IP1, RRAD, KIFC3, 
KRT19, SLCO4A1, HPCAL1, DPYSL4, TNFRSF6, CNGB1, 
DC-TM4F2

MAZ

NCTCCCCCTCCCCC 14 43 CNGB1, GAPD, RPE65, ALMS1, COPEB, MSH6, RRAD, 
CRABP1, TNFRSF6, CRX, WIF1, FLJ1415, DKFZP564K0822, 
PDE6A, RDH5, SLC38A3, CYBA, GNB1, MERTK, WDR17

Sp1, AP-2, MAZ

GNNTGGGGGAGGGGN 15 41 CYBA, RLBP1, KCNV2, CNGB1, COPEB, KIFC3, RDH5, 
CCNI, FLJ1415, MGC15WIF11, AIPL1, NK4, HPCAL1, 
CNGB1, GUCA1A, ALMS1

MAZ, Sp1

CNCCCCCACCCCCACC 16 40 RCV1, SLC38A3, HPCAL1, KIFC3, RLBP1, RPE65, DHRS3, 
RTP801, CYBA, DPYSL4, RDH5, RRAD, COPEB

AP-2alphaB, Sp1, WT1

CTCCCCCTCCCCNNC 15 26 CNGB1, CRX, GAPD, RHO, CNGB1, COPEB, CYBA, AIPL1, 
RAX

AP-2, MAZ, Sp1

CCCCAGCCCCNCA 13 23 CCNI, EFEMP1, SLCO4A1, MGC15WIF11, ARR3, CYBA, 
HPCAL1, KIFC3, RAX, RLBP1, MGAT4B, AIPL1, RGS19IP1, 
ALMS1

Sp1

NNGGCCCCTGCCCN 14 23 HMGA1, NK4, LRRCGUCA1B, FLJ1415, GNB1, KRT19, 
AIPL1, GUCA1A, DHRS3

Sp1

NCCCCCTCCACCN 13 22 ARR3, HMGA1, KRT19, VMD2, DHRS3, ARF4L, RAX, CCNI, 
SIRT3, GUCA1B, DC-TM4F2

Sp1

NCNGGGCTGGGGN 13 22 CYBA, HPCAL1, RRAD, GAPD, GUCA1A, RHO, G2AN, 
EFEMP1

Sp1

NNTCCCCCTCCCNN 14 22 TNFRSF6, CNGB1, CRX, EEF1G, GAPD, RPE65, ALMS1, 
DKFZP564K0822, COPEB, AIPL1

AP-2alphaB, MAZ, Sp1, 
WT1 -KTS

NNCCCAGCCCCCAN 14 20 RDH5, SLC38A3, EFEMP1, ARR3, CYBA, GAPD, HPCAL1, 
NK4, PPP1R3F

Sp1

NTGGGGGAGGGGNA 14 20 COPEB, CYBA, RLBP1, PITPNC1, CNGB1, CRX, GAPD, 
MERTK, CCNI

MAZ, Sp1, Sp3

CCNGCCCTGGCCT 13 18 GUCA1A, GUCY2D, RCV1, VMD2, EFEMP1, LRRCGUCA1B, 
C7orf20, 4, RRAD, UNC119, MERTK

Sp1

GCNGCCCCTGCCN 13 18 CRX, CYBA, GNB1, HMGA1, RHO, SLC38A3, MGAT4B, 
FLJ1415, KRT18

NCNGGGGGCGGGG 13 18 CYBA, RRAD, FLJ1415, HMGA1, RDH5, RGS19IP1, G2AN, 
RTP801, DC-TM4F2

AP-1, ER, Sp1

CTNCCCCTCCCC 12 17 RLBP1, AIPL1, PITPNC1, CNGB1, GAPD, RHO, CNGB1, 
EFEMP1, COPEB, CYBA, GNB1, PDE6A

AP-2alphaB, MAZ, Sp1
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GGGGTGGGGNTG 12 17 GUCY2D, FLJ1415, AIPL1, RDH5, CRABP1, HPCAL1, KIFC3, 
DHRS3, RTP801, CYBA, RLBP1

AP-2alphaB, Sp1, Sp3

CCCGCCCCTGNCC 13 16 GNB1, HPCAL1, KRT19, MGAT4B, G2AN, Sp1
NGGGGGTGGGGGN 13 16 HPCAL1, RRAD, DHRS3, FLJ1415, CYBA, GNB1, DPYSL4 Sp1
NNCCCCCGCCCCNN 14 16 GNB1, RGS19IP1, LRRCGUCA1B, ALMS1, DC-TM4F2, 

KRT18, SAG
AP-1, AP-2alphaB, ER, 
Krox-20, Sp1, WT1, WT1 
I, WT1 I -KTS

AGNGGGAGGGGCN 13 14 CYBA, EFEMP1, RAX, MGC15WIF11, ARF4L, CRX, 
SLCO4A1

MAZ, Sp1, Sp3

CCCTGTCCCTGGAN 14 14 ARR3, HPCAL1, FLJ1415, DC-TM4F2, KRT19, 
LRRCGUCA1B, TMEM16B

GR

CGGGGCCGCCNCN 13 14 FLJ1415, DC-TM4F2, MGC15WIF11, COPEB, MGAT4B, 
SLCO4A1, RAX

CUP, Sp1

CTCTCTCTCCNTN 13 14 GAPD, GUCA1A, NRL, RRAD, FLJ1415, GNAT2, KCNV2
NANCTCTGCACCC 13 14 LRAT, TNFRSF6, CYBA, KIFC3, DPYSL4, G2AN, RTP801
NCCGCCCCCGCCN 13 14 GNB1, IMPDH2, SLC38A3, COPEB, CYBA, KRT18, 

SLCO4A1
AP-1, ER, Kxox-20, Sp1, 
WT1 I -KTS, WT1-del2

NGGCCTCTGGNCN 13 14 CYBA, GAPD, KRT19, RDH5, DPYSL4, HPCAL1, MGAT4B
NGGGAGGGGGAAG 13 14 GAPD, AIPL1, FLJ1415, EEF1G, RPE65, ALMS1, WDR17 AP-2alphaB, MAZ, Sp1, 

WT1 I -KTS
NGNCCCCAGCCCC 13 14 GAPD, GUCA1A, RHO, ARR3, CYBA, NK4, PPP1R3F AP-2, Sp1
NNCCCAGCCCAGNN 14 14 GAPD, RHO, ARR3, CRABP1, CYBA, RRAD, MGAT4B Sp1
TGGGGGTGGGGGN 13 14 HPCAL1, RLBP1, DHRS3, CYBA, HMGA1, RRAD, DPYSL4 Sp1
NGGCGGGGGCGGGG 14 13 EFEMP1, KRT18, RRAD, SLCO4A1, IMPDH2, EFEMP1, 

COPEB
AP-1, Krox-20, Sp1, WT1 
I -KTS, WT1-del2

GGNAGGGGCGGG 12 11 ELOVL4, REA, G2AN, GNB1, MSH6, GUCY2D, RGS19IP1, 
LRRC21, SLCO4A1, PITPNC1

MAZ, Sp1

CCCGCCCGCCCC 12 9 GNB1, RGS19IP1, WIF1, PITPNC1, DC-TM4F2, HMGA1, 
DPYSL4, KRT18, RAX

Sp1

GGGCGGGGCNGG 12 9 CYBA, DPYSL4, MGAT4B, MSH6, RCV1, ALMS1, FLJ1415 ER, GCF, Sp1
GGGCTGGGGGTG 12 9 CYBA, HPCAL1, KIFC3, RCV1, RHO, G2AN, 

DKFZP564K0822
Sp1

GGGGAAGGGNGG 12 9 TULP1, CRX, MSH6, KRT19, CNGB1, SLC38A3, AIPL1, 
HMGA1, FLJ1415

GGGGCGGGCNNG 12 9 EEF1G, KRT19, DC-TM4F2, GUCY2D, RGS19IP1, PITPNC1, 
C7orf20, RTP801

ER, Sp1

GGNGCGGGCGGG 12 9 HMGA1, KRT19, DPYSL4, DC-TM4F2, RGS19IP1, WIF1, 
PITPNC1, FLJ1415

AP-2, ETF, Krox-20, Sp1, 
WT1 I -KTS

GNNGGGGCTGGG 12 9 GAPD, HPCAL1, KIFC3, RCV1, RAX, COPEB, RDH5 WT1 -KTS
CAGGGGGCGGGG 12 8 CYBA, EFEMP1, HPCAL1, FLJ1415, GAPD, HMGA1, G2AN, 

DC-TM4F2
AP-1, ER, Sp1, Yi

CNCCCCCACCCC 12 8 CYBA, HMGA1, RCV1, SLC38A3, HPCAL1, RLBP1, DHRS3 AP-2alphaB, CACCC-
binding, factor, Sp1, WT1

GAGTGGGGGAGG 12 8 DHRS3, KCNV2, COPEB, CYBA, HMGA1, WIF1, FLJ1415, 
MGC15WIF11

GCCTGGGGGAGG 12 8 CYBA, SIRT3, KIFC3, CCNI, DKFZP564K0822, DC-TM4F2, 
MGC15WIF11

AP-2

GGGCAGGGGCNG 12 8 CYBA, GNB1, HPCAL1, HMGA1, RHO, SLC38A3, MGAT4B, 
G2AN

Sp1

GGGCGGGGCTGG 12 8 CYBA, HPCAL1, RAX, MSH6, RCV1, ALMS1, DC-TM4F2 ER, GCF, Sp1
CCCTGTCCCTGG 12 7 CNGB1, GNB1, FLJ1415, KRT19, ELOVL4, TMEM16B, 

FLJ1415
GR

CCTTCCCCCNGC 12 7 GNB1, SLC38A3, AIPL1, SLCO4A1, RDH5, TULP1, NK4 MAZ
CNCCTCCTGCNC 12 7 CRABP1, GUCA1A, PDE6A, RGR, DPYSL4, WIF1, HPCAL1 PPUR, Sp1
CNGCCCCCAGNC 12 7 RHO, EFEMP1, DC-TM4F2, CNGB1, CYBA, NK4, MERTK Sp1
GCNCCCCTCCCC 12 7 COPEB, CRX, HPCAL1, RGR, CNGB1, MERTK, RAX MAZ, Sp1
GGGCAGGGGCGG 12 7 ELOVL4, HMGA1, HPCAL1, RHO, SLC38A3, MGAT4B, 

G2AN
Sp1

Table 5: List of 60 consensus sequences corresponding to selected motifs showing most conserved central regions. For each motif, 
consensus sequence, length and total number of occurrences in the 1000M dataset are reported, along with LocusLink symbols of 
corresponding genes. In the last column, for each consensus, the list of mammalian transcription factors recognising similar DNA 
sequences is reported. (Continued)
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different programs tested by Tompa and colleagues on the
same datasets [18]. Results are presented in Figure 3 and
in Table 7 [see Additional file 2].

The comparison showed that the performances of COOP
on the "very difficult" human dataset are in line with
those of the top rated tools. In comparison with other
software, COOP resulted to be in the best 20% of evalu-
ated tools according to four measures (nSn, nPC, sSn,

GGGGCTGGGGNC 12 7 ARR3, CYBA, HPCAL1, NK4, RAX, PPP1R3F, RLBP1 AP-2alphaB, Sp1
GNAGGGGGCAGG 12 7 GAPD, NK4, GUCA1B, SLC38A3, WIF1, G2AN, EFEMP1 Sp1
TGGGGGAGGNNA 12 7 KCNV2, COPEB, HMGA1, KIFC3, RDH5, CCNI, FLJ1415 MAZ, Sp1
TTTTTTTTTNTA 12 7 IMPDH2, G2AN, SLC24A2, RTP801, KCNV2, USH3A-

PROMB, CCNI
TBP

Statistics comparing the accuracy of COOP and of 14 different motif discovery tools on 26 human positive control datasetsFigure 3
Statistics comparing the accuracy of COOP and of 14 different motif discovery tools on 26 human positive 
control datasets. Combined measures of correctness over all 26 human datasets, as defined in Methods. The number of 
datasets (out of 26) for which no motif was predicted by each tool is reported in brackets, following the name of the tool.

Table 5: List of 60 consensus sequences corresponding to selected motifs showing most conserved central regions. For each motif, 
consensus sequence, length and total number of occurrences in the 1000M dataset are reported, along with LocusLink symbols of 
corresponding genes. In the last column, for each consensus, the list of mammalian transcription factors recognising similar DNA 
sequences is reported. (Continued)
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sASP) and in the best one third according to six measures
(nSn, nPC, nCC, sSn, sPPV, sASP).

Discussion
Pattern discovery in sequences of putative and sometimes
incomplete promoters is a considerably complex problem
[20-25]. It may be reasonably assumed that some regula-
tory regions of a group of co-regulated genes share similar
sequence elements. In yeast, pairs of genes showing over
0.84 Pearson correlation between their expression pro-
files, have over 50% probability of sharing at least one
common transcription factor binder [26].

Since patterns with biological significance could be subtle
[27], a main difficulty in pattern discovery approaches is
a priori establishing a "quorum" and defining search
parameters (e.g. pattern length, number of allowed wild-
cards or distance of occurrences from the model). By
increasing the distance and/or decreasing the quorum, the
number of false positives becomes excessively large. A
possible solution to the problem of output explosion is to
use biological knowledge both before and after applica-
tion of automated pattern discovery.

We analysed TRANSFAC data to obtain information about
frequent properties of regulatory elements. It should be
noticed that although not all TRANSFAC matrices are
based on high-quality data and on large samples of
sequences, this database represents the largest existing col-
lection of known regulatory elements in different
organisms.

In this study we developed a novel tool, called COOP, for
analysing promoter sequences of putatively co-regulated
genes, aiming at extraction of sequence motifs with possi-
ble regulatory function. The motif extraction method is
based on Clustering of Overlapping Occurrences of
approximate Patterns, which allows identification of trac-
table numbers of possibly interesting motifs, starting from
large numbers of exact or approximate patterns.

Our method is somehow related to two approaches pro-
posed by van Helden [28] and by Caselle [29], although
these studies considered yeast promoter sequences and
dealt with exact patterns. The originality of our approach,
mainly resides principally in adopting a new similarity
measure between patterns, based on the frequency of pat-
tern co-occurrences, and in designing a flexible procedure,
with seven parameters which could be varied in order to
modulate stringency of different analysis steps.

Motifs reconstruction was designed to maximize informa-
tion included in each extracted sequence motif avoiding
generation of spurious elements, given that clustering
parameters (d and o) are appropriately set. Each obtained

motif is represented by a consensus sequence, derived
from the alignment of strings grouped in a specific cluster
by adjustable criteria. In particular, the i threshold affects
the length of the consensus sequence, whereas the l, fc and
fl determine the number and the distribution of variable
positions in the consensus sequence.

In order to evaluate the performance of the method, we
analysed positive control datasets, such as all the human
benchmark groups of promoter sequences, containing
known signals at known positions, proposed by Tompa
for a systematic assessment of motif discovery tools.
COOP analyses were carried out with the same settings
used for analysing retina gene promoter. The quorum was
established by using an unique criterion for different data-
sets, based on the total number of sequences in the sam-
ple. In the first analysis phase, approximated patterns of
12 nucleotides, with at most 2 variable positions, were
searched. Benchmark datasets were 26 groups of different
number of promoters sequences. Each set of sequences
contained a group of known signals. Lengths of signals
ranged from 4 nucleotides to 71 nucleotides. Thus, several
datasets contained a number of very short signals, which
were very hard to find by a motif discovery approach
designed to find motifs of length equal or higher than 12
nucleotides. We predicted a motif for all but two human
datasets, which included only two sequences. COOP
performed comparably well than the tools which were top
rated in the Tompa assessment. It should be noticed that
some of the other tools gave no predictions for a number
of datasets, thus being advantaged from the averaging
nPPV, sPPV and nCC scores when calculating combined
statistics over all the human datasets [18].

The method we developed was applied, in a case study, to
a collection of human promoter sequences pertaining to a
group of 91 putatively co-regulated genes expressed in the
retina.

One Kb long promoter sequences were identified by pre-
dicting the most probable TSS according to the consensus
of information about cDNA and ESTs alignments with the
genome sequence. Even neglecting the possible presence
of alternative promoters, definition of exact(s) TSS it is a
still open problem, because of low sensitivity of promoter
prediction programs and of incomplete cDNA coverage of
5' exons. However, cDNA coverage of the majority of
genes selected for this study is almost complete, since
genes considered are well known and/or highly expressed.
The adequacy of our method for selecting gene promoter
sequences is supported by results obtained by Trinklein
and colleagues [30]: over 90% 152 human 600 bp pro-
moter sequences, randomly selected among 10,276 TSS
predictions (based only on alignment with full-length
cDNA clones from Mammalian Gene Collection) resulted
Page 11 of 15
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active in at least two cell lines. Although the size of 1 Kb
upstream the TSS might be insufficient to cover all possi-
ble regulatory regions for all genes, it could reasonably
include both core and proximal promoters and at least
part of the distal promoter.

A very high number of approximate patterns of length
from 10 to 14 with at most 20% variable positions was
found in retina promoter sequences. This is partially due
to the fact that they include similar sequences or
sequences shifted only by few positions. By using COOP
for clustering approximate patterns, on the basis of their
frequent overlapping occurrences, we identified a number
of interesting sequence motifs, often longer than the orig-
inal patterns.

In order to test the significance of the group of sequence
patterns frequently found in retinal promoters and used
as input for COOP, we generated and studied different
negative control datasets corresponding to a thousand
groups of sequences, randomly selected among a very
large group of human promoters. The average pairwise
level of pattern sharing in these groups of promoters was
expected to reflect the general level of pattern sharing
between human gene promoters. We observed that the
selected group of retinal promoters (pertaining to a sam-
ple of genes putatively co-expressed, co-regulated and/or
with similar function) is enriched in common patterns as
compared to random groups.

Sequence motifs produced by COOP resulted more fre-
quently in the regions close to the TSS. Moreover, the
group motifs consensus sequences selected according to
very low variability in their central region was compared
with sequences which are known to bind mammalian
transcription factors under stringent criteria. Signals simi-
lar to those for general and widespread transcription
factors, such as Sp1 or MAZ, are the most represented.
Moreover, a number of selected motifs resulted to be sim-
ilar to signals recognised by transcription factors
expressed in tissues of ectodermal origin and relevant to
development and function of retina (AP-1, AP-2, WT1,
Krox-20, GR, PPUR or ER). For instance, AP-1 elements
were found in a number of retinal gene promoters includ-
ing cGMP-phosphodiesterase beta subunit [31] and
hydroxyindole-O-methyltransferase [32] whereas the
WT1 zinc finger factor is essential for normal develop-
ment of retina and specifically involved in regulation of
retinal genes [33].

Conclusion
We developed a method to detect sequence motifs corre-
sponding to putative regulatory elements in gene promot-
ers, starting from lists of approximate patterns with
occurrences in promoter sequences. This method could be

profitably applied to different datasets, including pro-
moter sequences of different groups of genes in humans
or in other Eukaryotes, for which co-regulation could be
demonstrated or inferred. The method could be used to
investigate on different kinds of regulatory sequences,
such as intronic enhancers, or other sequence motifs with
non-regulatory function.

Availability and requirements
COOP can be downloaded free-of-charge from the web
page http://telethon.bio.unipd.it/bioinfo/Retina/
suppl_material.html. COOP was developed in Python.
The software works under Linux and requires Python 2.3
or higher, BioPhyton 1.40b and ClustalW. COOP is pro-
vided 'as is' with no guarantee or warranty of any kind and
it is freely available for all.

Methods
COOP : Clustering Overlapping Occurrences of 
approximate Patterns
COOP takes as input a FASTA file of nucleotide sequences
and a list of patterns with their number of occurrences in
sequences or in their reverse complement. We used the
SPEXS program [7] for producing the list of approximate
patterns frequently represented in selected groups of pro-
moter sequences. SPEXS code is freely available and it pro-
vides a number of advantages in terms of execution time
and flexibility of parameters determining search condi-
tions and output appearance.

Seven COOP parameters can be varied in order to select
stringency at different stages of the analysis (Table 1).

In the first step, patterns represented in more than q pro-
moters are searched by COOP in promoter sequences. In
particular, both direct and reverse complement sequences
of each pattern are compared against promoter sequences
in order to collect pattern occurrences. Then, pattern
occurrences (strings) are clustered according to a similar-
ity measure based on frequency of their co-occurrences
and by a joining algorithm derived from the so called
"quick-find" algorithm [8]. In order to be included in the
same cluster, two different strings must occur in promoter
sequences much more frequently together than sepa-
rately. Given the physical distance between pattern occur-
rences, measured as nucleotide distance between the 5'-
ends of two corresponding sequences, the threshold d
defines the maximum value for the distance between two
pattern occurrences to be considered overlapping. Thresh-
old o indicates the minimum ratio between observed
overlapping occurrences of two strings and their average
number of occurrences, allowing their inclusion in a
unique cluster. The total number of clusters obtained in
this way is influenced by the number of pattern occur-
rences to be clustered, depending on the q parameter, and
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depends as well on values selected for the minimum dis-
tance between patterns and for threshold o.

Once clusters are obtained, all sequence elements corre-
sponding to pattern occurrences belonging to each given
cluster are multi-aligned by ClustalW [9], with Gap Open-
ing Penalty set to 100. Each alignment is then analysed in
order to build up a matrix describing nucleotide counts in
alignment positions. The cell xA1 of the matrix contains
the number of times the A nucleotide has been observed
in the first alignment position. Later, consensus sequences
are built from matrices (Table 2). The maximal number of
adjacent matrix positions fulfilling the established
threshold for i (minimum ratio between number of nucle-
otides per alignment position and total number of lines in
the alignment) is further analysed to determine the m
nucleotides long motif consensus sequence.

Once the extension of lateral regions (l, ranging from 0 to
m/2) is fixed, motif positions are considered invariable if
the frequency of a single nucleotide exceed selected
thresholds (fl for lateral regions and fc for the core region
of the motif). Once the length of motif and of lateral
regions is known, the extension of the core region is fixed.

Moreover, an additional procedure is available, which
uses IUB/IUPAC nucleic acid single letter, double-degen-
erate codes (M = [A|C], K = [G|T], S = [G|C], W = [A|T], R
= [G|A], Y = [T|C]) and four-degenerate code (N =
[A|G|;C|T]) and follows IUPAC rules for string consensus
reconstruction: i. A single nucleotide is shown if its fre-
quency is greater than 50% and at least twice as high as the
second most frequent nucleotide; ii. A double-degenerate
code indicates that the corresponding two nucleotides
occur in more than 75% of the underlying sequences (but
the criteria for a single nucleotide assignment are not
met); iii. All other frequency distributions are represented
by the letter "N".

The output of the program is a collection of sequence clus-
ters, each one representing a sequence motifs. Each cluster
is associated to an alignment, to a matrix describing nucle-
otide counts in alignment positions and, ultimately, to a
consensus sequence. Moreover, information about pro-
moter sequences and nucleotide positions in which each
cluster string occurs is given.

Selection of genes and of putative promoter regions
Analysis of genomic expression data
For the study, genes significantly more expressed in retina
than in all other tissues were identified by analysis of
genomic expression profiles of several human tissues.
Genomic expression profiles were reconstructed in silico
by using 41 unbiased (un-subtracted and/or un-normal-
ized) UniGene cDNA libraries pertaining to 11 adult

human normal tissues (retina, bone, hyppocampus, liver,
lung, marrow, melanocyte, muscle, pancreas, prostate and
testis) for which at least 6,000 ESTs per tissue were availa-
ble [34]. The whole dataset included 270,871 ESTs, corre-
sponding to 27,924 UniGene "clusters". The expression
profiles were merged in an expression data matrix, which
was then analysed by the Audic and Claverie test of differ-
ential expression in order to identify genes significantly
more expressed in retina than in all other tissues consid-
ered. Significance threshold was set to a = 0.05.

Disease genes and genes encoding proteins with a specific function 
in the retina
By searching in OMIM [35], Retinal Information Network
[36], LocusLink [37] and GeneCards [38,39] we selected a
group of known genes whose mutation causes retinal dis-
eases and genes encoding proteins which play specific
functions in retina.

Retrieval of putative promoter regions
Reference Sequences of selected genes (RefSeq) [37] were
extracted from corresponding LocusLink entries. When
RefSeq for a gene was unavailable, the longest mRNA
sequence with complete CDS was used. Sequences were
then searched by BLAT [40] against release 15 of human
genome sequence, for prediction of Transcription Start
Site (TSS), obtained by analysis of mRNA/genomic DNA
alignment, 5' ESTs placement and Acembly gene bounda-
ries [41] annotation. Genomic sequences of 1 Kb
upstream the predicted TSS were retrieved. These
sequences were masked by RepeatMasker [42], in order to
remove repetitive DNA.

Negative controls
Negative control groups of promoter sequences were
established as 1,000 sets of promoter sequences, sampled
at random among 17,156 human gene promoters.

Reference sequences of 27,427 human mRNA were
obtained from GenBank. A group of 20,315 reference
sequences was obtained, after exclusion of all sequences
referring to unknown genes (chromosome open reading
frames, hypothetical or predicted proteins) or to genes
including in their sequence record words referring to
vision, eye or retina.

Retrieval of promoter sequences corresponding to 1 Kb
upstream the predicted TSS of genes was done by Promo-
Ser [14,15]. TSS prediction options were set in order to
retrieve for each gene 1 Kb upstream the most 5' TSS, with
the same criteria used for retrieval of retinal gene promot-
ers. In addition, exclusion options of PromoSer were set to
extract at most one promoter per gene and to avoid
retrieval of overlapping sequences. By this way, 17,156
promoters were localized and retrieved.
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A Python script was developed for iterative random extrac-
tion of groups of m sequences from a list of N sequences,
with N > m, without repetition.

Analysis of known regulatory sequence elements binding 
transcription factors
We used the TRANSFAC version available through BIO-
BASE. TRANSFAC [43] is a database of eukaryotic cis-act-
ing regulatory DNA elements and trans-acting factors
containing information on transcription factors, regulated
genes, regulatory sites and nucleotide distribution matri-
ces for binding sites of transcription factors. By using Perl
scripts developed to the purpose, flat files pertaining to
matrices data were parsed in order to extract information
about consensus sequences length and about number,
percent and localization of fixed and variable positions.

Analysis of positive control datasets
We analysed by COOP groups of promoters for which it is
known which regulatory signals should be detected. Anal-
yses were done of the complete set of groups of human
sequences included in public benchmarks prepared by
Tompa and colleagues [18], including three different
types of sequences: 9 groups of real genomic promoter
sequences containing known transcription factors bind-
ing sites, 9 groups of randomly chosen human genomic
promoter sequences in which the binding sites were
planted and 8 groups of sequences randomly generated
according to a Markov chain of order 3 (that was con-
structed from human promoter sequences) in which the
binding sites were planted.

We analysed such datasets by using the same methodol-
ogy applied for the identification of putative novel regula-
tory elements in retinal gene promoters, including
searching for 12-2 patterns by SPEXS and motifs recon-
struction by using COOP (clustering parameters: d = 3 and
o = 0.7). The quorum (q) was set to the highest integer
equal or less than one third of the total number of
sequences in the dataset. When with the selected quorum
no results were obtained, q was set to the highest integer
giving results. When analysing datasets composed of from
3 to 6 sequences, q was set to 2. We made no motif predic-
tions for the two datasets of two sequences each.

For each group of promoters, among different clusters
obtained, we selected only the one corresponding to the
motif represented in the highest number of sequences. For
each dataset out of the 26 considered, we checked the
overlap between pattern occurrences belonging to the
cluster (i.e. the motif) and known signals. The efficiency
of COOP was evaluated according to different measures,
defined as follows. At nucleotide-level nTP (number of
nucleotide positions in both known sites and predicted
sites), nFN (number of nucleotide positions in known

sites but not in predicted sites), nFP (number of nucle-
otide positions not in known sites but in predicted sites)
and nTN (number of nucleotide positions in neither
known sites nor predicted sites). A predicted site overlaps
a known site if they overlap by at least one-quarter the
length of the known site. Thus, at site-level we calculated:
sTP (number of known sites overlapped by predicted
sites), sFN (number of known sites not overlapped by pre-
dicted sites) and sFP (number of predicted sites not over-
lapped by known sites). We then calculated the following
measures of accuracy. At either the nucleotide (x = n) or
site (x = s) level: Sensitivity, xSn = xTP/(xTP + xFN); Posi-
tive Predictive Value, xPPV = xTP/(xTP + xFP). At the
nucleotide-level: Specificity, nSP = nTN/(nTN + nFP); Per-
formance Coefficient, nPC = nTP/(nTP + nFN+ nFP); Cor-
relation Coefficient,

; Average Site Performance, sASP = (sSn + sPPV)/2 [18].

In addition, the statistics (nSn, nPPV, nSp, nPC, nCC, sSn,
sPPV, sASP) summarizing COOP performance (with
selected settings) over the collection of human datasets,
were computed with the "combined" method [18] and
compared with the same statistics calculated for the 14
different programs tested by Tompa and colleagues on
human datasets.
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