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ABSTRACT
We have designed and built a data-base system for the storage of

nucleic-acid sequences. The system consists of a data base ("the library")
and software that manages and provides access to that data base ("the
Librarian").

1. INTRODUCTION

The recent proliferation of nucleic-acid-sequence data has provoked

widespread interest in computer programs as tools for ferreting out patterns,

palindromes, and other regularities in sequences that might not be easily

perceived by eye or hand[l,2]. Currently, there is a growing awareness that

the computer has another role in sequence studies: it provides a cheap,

convenient way to store and retrieve sequence data[3J. Several

computerized sequence libraries are now being built and plans have been

made both in the U.S. and abroad to fund national and international

centralized nucleic-acid-sequence libraries[4].
Such centralized facilities will free individual scientists from

countless hours of entering, verifying, and rearranging sequences along with

the other curatorial chores that would be necessary if every public and

private institution with an interest in nucleic-acid sequences were to

try to maintain an independent, up-to-date, comprehensive sequence library.

One point is often overlooked in discussions about such centralized

facilities: A properly designed, central library does not replace the

decentralized, locally controlled library. An analogy to a conventional

library illustrates this point. If the Library of Congress did not exist,

we would surely all agree that it should be built. Few of us, however, would

sell our books, empty our reprint files or even sacrifice our

departmental libraries merely because more comprehensive local and

national libraries do exist. In an even closer analogy, the computerized
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bibliographic search facilities provided by many campus and public

libraries are a valuable information-retrieval aid, but haven't persuaded

many of us to throw away our filing cabinets or forget all the citations

we carry around in our heads.

Here, we report our efforts to design and build software to fill the need

for locally-controlled, small-scale sequence libraries. Our system has

several important properties:

(1) The library has a structure that allows sequences to be stored in a way

that parallels biological relationships.

(2) Each sequence is stored with its published coordinate system. Requests

for sequence fragments may be made based on these coordinates.

(3) Sequence requests are made in a language (Delila: DEoxyribonucleic acid

LIbrary LAnguage) that allows flexible manipulation and retrieval of

arbitrary nucleic-acid fragments.

(4) Any set of sequences retrieved, including a set that encompasses the

entire library, has the format of the entire library.

(5) The system includes modules that provide an interface between the

librarian and other programs. These modules make auxiliary programs that

interact with the system easy to build, maintain, and transport with the

library.

(6) The entire Delila system is written in Pascal, a high-level language

available on many computers.

TERMINOLOGY

The analogy between our data base and a library is one we use

frequently. Accordingly, in this paper we will use the terms "library" and

"nucleic-acid-sequence data base" interchangeably. By extension, we will use

the term "librarian" to refer to the program th-at accepts requests from the

user, then searches the library and returns the desired information. We will

also occasionally use the term "library system" to refer to the library

together with its librarian and assorted auxiliary software.

Where not otherwise specified, terminology follows that of Martin[5].

2. GENERAL DESIGN

The easiest way to describe a data-base system is to list the choices

made in its design. Below, we enumerate and discuss a few of the choices that

characterize ours.
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2.1. DATA BASE CONTENT

Our data base is designed to hold wild-type sequences, together with the

numbering schemes published for each sequence. Mutant sequences are stored as

changes to the corresponding wild-type sequence. The data base also records

the taxonomic, genetic, and (where known) physical relationships among the

stored sequences. Sequences and sequence fragments can be retrieved by name,

by position within the sequence, or by reference to biological features

within the sequence (see section 3.1). Provision is made to store and also

retrieve sites recognized by enzymes or chemical probes.

2.2. LOGICAL STRUCTURE

We have chosen a structured data-base design. This choice reflects our

unwillingness to try to anticipate the keys on which we might want to search

the data base (other than those 6isted in the previous section). It also

allows biological information to be stored in the logical structure of the

data base itself. Finally, the choice is consonant with our desire to

relegate specialized search tasks to specialized programs (see below). Figure
1 is a schema that shows the logical structure of our library[5].
2.3. PHYSICAL STRUCTURE

We require that the output of successful library searches have a single,

prescribed physical structure. This structure may be transparent (invisible)

to the user, but is required to be formally identical to the physical

structure of the library itself. There are two important consequences of this

choice.

(1) Interfaces between the library and other sequence-manipulation tools can

be built for a single data structure.

(2) All tools that work on output from the librarian can be applied- to the

entire library. As a special case of this, the librarian itself will work on

the subsets it extracts.

2.4. INTERACTIONS OF THE LIBRARIAN WITH OTHER PROGRAMS

We deliberately designed the librarian as a tool with limited

capabilities: it takes one or more libraries and a set of instructions as

input; it produces a new library that contains all or part of the input.

We have restricted ourselves to the job of making it do this task well. All

other tasks (fancy formatting, sophisticated searches, etc.) have been left

to other, independently-constructed tools. The discussion in the literature

on the advantages of limited tools is extensive and need not be repeated

here[6].
The librarian communicates with other tools through two sets of
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Schema

Below is an overview of the structure of the library.
a-->>--b means a has one or sore of b.
c-->--d mans c has exactly one of d.

library
: :

v v

v v

..: :..
organism recognition-class

V V

v

chromosome

v v v v

v v v v::::

marker transcript gene piece....

v v v v v

seq:ence sequei

sequence sequei

v

enzyme

v
v

ace sequence

Figure 1: Each node of a library contains several attributes. Library nodes
hold the library title, the date and time of library creation, and the date
and time of the parent library. Organism nodes hold the name and map units of
the organism they represent. Chromosome nodes hold the range of the
chromosome'8 genetic map. Piece nodes contain both a sequence and the
appropriate numbering scheme for that sequence. (A8 adjacent sequences become
available, they are joined to already stored sequences until a chromosome
becomes represented as a single piece.) Marker, gene and transcript nodes
point to specific parts of pieces. A marker records changes (insertions,
substitutions, and deletions) in its piece. A enzyme node holds a sequence
that is recognized by a biological or chemical process.

routines. One set reads library-structured data and interprets it as needed

by any particular program. The second set allows programs to write

instructions that can be used as requests to the librarian. These two sets

are separable from the librarian itself.

2.5. IMPL NTATION LANGUAGE

Our system is written in a portable, high-level language.
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Portable code in computer science serves the same purpose as published

methods and standard materials serve in other areas of science. It permits

others to use, improve on, and ultimately supplant each published piece of

work. We assume that our data-base system will be far from the last word on

the subject. So, we have set out to make it as portable, modifiable, and

intelligible as possible. This requires using a widely available, easily

readable, higher-level language[7].

a)

b)

Delila

Figure 2: Parts of the Delila system can be joined like tinkertoys. In this
figure bubbles represent data, arrows show directions of data flow, and dots
represent the programs that control the flow. A typical data flow
construction is shown in figure 2a. A user chooses a Library for study (in
this case, a Master Library), creates a set of Delila Instructions (see figure
3a), and gives these to the librarian. The librarian performs the desired
extractions (see figure 3b). The Extracted Library can be passed through an
Auxiliary Program to obtain further Results (see figure 3c). The fundamental
distinction between auxiliary programs and the librarian is that their output
need not be a library. Auxiliary programs can comunicate with the librarian
by producing Delila instructions. For example, a search program may direct
Delila to extract regions near interesting sites.

The figure has been simplified in several ways. First, some auxiliary
programs use input other than libraries (such as previous results) and may
produce other kinds of output (such as libraries). Second, the two library
bubbles could be united (as shown in figure 2b) to indicate that Delila's
input has the same structure as its output. The instructions can also be
united, as can the inputs and results of auxiliary programs. Finally,
auxiliary programs can be thought of as users of the systes, and vice-versa.
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(a)
title 'example';

(* specification *)
organism t4;

chromosome t4;
piece ri;

(* request *)
get from 12 to 41;

(b)
* 81/06/18 11:05:33, 81/06/18 11:04:22, example
organism
* t4
* bacteriophage t4
note
* t1
* host: ecoli
* bact. rev. 40(4): 847-868 dec 1976
* the genome of bacteriophage t4
* wood and revel
note
* kilobase pairs (kb)
chromosome
* t4
* t4 chromosome (dna)
note*12
* chromosome is circular
note
* 0.00
* 166.00
piece
* ri
* riia end to riib begin
note

3
* from david pribnow (base 90 corrected to a g)
note
* 0.00
* linear
*1
* 873
* linear

* 12
* 41
dna
* gatttatatgtagatgcttttgatgatgta
dna
piece
chromosome
organism

(c)
book lister .3.05. a '/' means end of coordinates.
* 81/06/18 11:05:33, 81/06/18 11:04:22, example

organism t4; chromosome t4;
piece ri 1 3 config: linear direction: + begin: 12, end: 41

* *20 * *30 * *40
gatttatatgtagat gctttt ga t gat gt a
asp - leu - tyr - val - asp - ala - phe - asp - asp - val -

ile - tyr - met -amber-fmet - leu - leu - et - met -
phe - ile - cys - arg - cys - phe -opal -opal -

Index to the locations of pieces in this book

organism t4; chromosome t4;
page 1, piece rii 3

Figure 3: An example of the use of the library system. (a) Delila
instructions for getting bases 12 through 41 of the rII sequence of Pribnow et
al[16]. Instructions are free-format, and indentations and blank lines are
used to enhance legibility. The symbols "(*" and "*)" delimit comments. (b)
Output from the instructions shown in part a. This illustrates the current
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physical structure of the library. An asterisk ("*") in the left-most column
signals that the line holds an attribute. Other characters ("o", "c", etc.)
delimit structures seen in the schema in figure 1. A formal definition of the
library structure is available on request. (c) The result of running the
output seen in part b through an auxiliary program -- lister -- that produces
a numbered listing.

2.6. BATCH USE

The librarian is batch-oriented, not interactive. This choice stemmed

primarily from our desire to make large requests to the librarian[8,9]. With

a batch design, large requests can be prepared or modified with a

text-editor and submitted. We believe it would be a mistake to try to match

the ease of entry, manipulation, and modification provided by good

text-editors in a program whose primary purpose is data-base management.

Another influence is the choice of languages available to us. In most widely

available programming languages, interactive programming is implementation-

dependent (the conspicuous exceptions being BASIC and APL). Consequently,

although we typically run our programs in interactive environments, the source

code itself is designed as non-interactive code.

3. STATUS

Having outlined the major decisions that characterize our library system,

we can talk in more detail about what we have available.

3.1. A PORTABLE IMPLEMENTATION

We have constructed a prokaryotic-sequence library together with a

librarian that extracts data from this library. The design of the library

system follows the principles set forth in the previous section. The library

currently holds about 100,000 bases of sequence data. About 150,000

characters are required to store the sequences and associated information.

The librarian accepts requests in a language, Delila (DEoxyribonucleic acid

LIbrary LAnguage). In effect, our librarian is a special-purpose compiler

that accepts programs in Delila, parses them, produces a listing, and performs

the requested extraction. The interaction of the library, librarian, and

auxiliary programs is diagramed in figure 2. Figures 3 and 4 show example

requests.

The entire data-base system is written in Pascal, a well-structured

language that provides a wide range of data types as an integral part of the

language[10]. Pascal compilers are available under many operating systems for

many large and small computers. Our system is almost dialect-independent,
and we have run major pieces of it on the CDC 6400, Cyber 720, and VAX 11/780,
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title 'further example delila comands';

organism m2;
chromosome ms2;

piece s2;
get all piece;

organism g4;
chromosome g4;

transcript iii;
get all transcript;

organism ecoli;
chromosome ecoli;

gene laci;
get from gene beginning - 5

to gene beginning + 20;

chromosome tn9;
(* notice that the organism need not be re-specified *)

piece tn9;

get from piece ending
to piece beginning;
(* by design, this retrieves the complement: see figure legend *)

default out-of-range reduce-range;

chromosome pbr322;
piece pbr322;

get from coordinate beginning - 10
to coordinate beginning + 10
direction +;

(*bases 4352, 4353, ..., 4362, 1, ..., 11*)

get from coordinate beginning + 10
to coordinate beginning - 10
direction -;

(*the complement of bases 11, 10, ..., 1, 4362, 4361, ... 4352*)

get from coordinate beginning - 10
to coordinate beginning + 1Q
direction -;

(*the complement of bases 4352, 4351, ..., 11 C)

get from coordinate beginning + 10
to coordinate beginning- 10
direction +;

(C bases 11, 12, ..., 4352 C)

Figure 4: This figure illustrates further types of comands available in
Delila. Of particular note are the following points: (a) All sequences are
provided 5' to 3'. This means, for example, that a request for bases 20 to
10 of a sequence will produce the complement of bases 10 to 20. (b) Several
switches that control the performance of the librarian may be set by the user
by the 'default' comand. In this example, the user explicitly asks that
the librarian respond to requests for more of a sequence than is contained in
the library being searched by providing as much of the sequence as is
available. (c) Requests for segments from circular sequences must be more
specific than requests for segments from linear sequences. The bottom four
requests extract the four different segments of the sequence of pBR322 defined
by the bases 4352 and 11.
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under KRONOS, VMS, and UNIX operating systems. The library system has also

been transported to a SINTRAN III operating system on a NORD-1OS at the

European Molecular Biology Laboratories, Heidelberg (G. Ham, personal

communication). Example costs of the current implementation are described in

Appendix I.

3.2. INTERFACE PACKAGES

Like most groups interested in sequence data, we have a wide range of

programs that analyze and manipulate sequence data. (For a detailed

discussion of several such tools see [8,9] ). To use our library effectively,

we have built plug-in modules that let such 'auxiliary programs' read output

from, and write instructions to the librarian.

3.3. OTHER TOOLS

For our convenience, we have constructed a few other tools that do not

fit easily into the categories described above. These include programs that

help us enter sequence data into the library, and a program that constructs

catalogs of existing libraries to aid the librarian in its tasks.

3.4. AVAILABILITY

We will supply any of the software, data, and documentation described

above as machine-readable source code on request. We will also provide the

document LIBDEF, which includes the formal specification of the library

structure and defines the syntax of Delila in Backus-Naur Form [15].

4. RETROSPECTIVE

Foresight helps software projects succeed. Hindsight helps replace

them. In this section, we summarize some of the lessons that we learned

about design and implementation by using our system after it was built.

4.1. BATCH DESIGN

Because the librarian was built as a special-purpose compiler, lengthy

library requests can be stored as programs, and later modified and rerun

without much additional effort. In practice, such re-use is common. We now

feel that the ability to accept batch input is an essential part of the design

of any future librarian. By analogy to other compilers, it may prove useful

to have future versions of the librarian produce intermediate 'object code"

that would let frequently used requests be rerun without having to be

reparsed.

If it becomes important to create an interactive version of the

librarian then creating a set of routines that manipulate Delila instructions

will become a high-priority item. Such routines would provide a simple
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editor to read, modify, and write out instruction sets interactively. A

Delila-instruction editor independent of the librarian would provide a first

step toward this goal and be useful in its own right.
4.2. PORTABILITY

The rate of hardware and operating-system improvement nearly matches

that of new sequence acquisition[ll,12]. Thus, the typical library must

prepare to face either frequent transportation or rapid obsolescence.

Achieving portability not only allows others to use and improve your code,
but also provides substantial imuunity to hardware and operating-system

changes[7].
Midway through our project, we were given the opportunity to use a

substantially better computing environment than the one in which we started.

Because we had tried to write system-independent code, we were able to make

the transition easily. Worth noting, however, is the fact that we were

fooled more than once into learning coding practices that we thought were

standard but were not. In several cases, even tools designed to pick out

non-portable constructions. were unable to catch our mistakes. Only real

transportation points out real transportation problems.

4.3. INTERFACE PACKAGES

We wanted to create an all-purpose module that would let any program read

output produced by the librarian. In our zeal, we made the module so large

and all-purpose that its inclusion is often the single biggest cost in program

development. (Paradoxically, the problem is most severe for large programs.

Such programs are more likely to have many run-time errors, which require

frequent re-compilation to eliminate.)

One solution is to switch to an implementation language that allows

separate compilation of subroutines. Unfortunately, most widely available

languages that allow this have other important drawbacks, so that a language

switch at this stage would change our problems but not eliminate them. In the

next decade, however, at least two languages (Ada and C) promise to become

widely available that provide data structuring, modern control-flow, and

separate compilation[13,14]. It should prove useful to write a version of the

data-base system in one of those languages at some point.

A more immediate solution is to shrink the interface module. Although
this could be done by limiting its abilities, we are redesigning it so that
the user can include only the parts his or her program needs.
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APPENDIX I: EXAMPLE COSTS OF THE CURRENT IMPLEMENTATION

Our library (dated 81/01/18 22:29:26) contains 95975 bases of prokaryotic

sequences stored in 149104 characters. The current library is implemented in

two files. (This is normally invisible to the user.) The librarian (version

1.20) contains 147656 characters, 4549 lines of code, and roughly 2000 Pascal

statements. About thirty percent of the characters are in comments.

To test how access time depends on library size, ten pieces were chosen,

scattered across the second library file. The first ten bases of each piece

were retrieved. On a Cyber 720, the access time for the ten independent
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requests was:

cp sec - 0.53 sec + (0.50 sec/2237 lines) x

(line number of sequence within the file).
The fit to a straight line was good (r - 0.992) with 0.53 seconds devoted to

overhead generated by the system and the librarian. There is no qualitative

change if depth is measured in characters instead of lines, since the two

measures are highly correlated. Removal of the lower half of the library did

not affect access time to the remaining half. Access time is only a function

of the depth of the sequence in a library file, not of the size of the file

itself.

As we expected from the design of this librarian, when all ten requests

were made in one instruction set, the order was found to be important. When

pieces are requested in the same order that they are stored in the library,

they are retrieved faster than if they are requested in reverse order.

The time to pull out 10-base fragments from PHIX174 was linearly

dependent on the depth within that piece (n - 14, r - 0.996):

cp sec - 0.51 sec + 0.00011(sec/base) x (# bases deep in piece)
The length of fragments obtained also affects retrieval time linearly
(n - 11, r-0.9999):

cp sec - 0.62 sec + 0.00052(sec/base) x (length obtained, bases).
The overhead times in these last two cases differ because different

instructions were used.
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