
Pergamon 
Pattern Recognition, Vol. 29, No. 7, pp. 1187-1194, 1996 

Elsevier Science Ltd 
Copyright © 1996 Pattern Recognition Society 

Printed in Great Britain. All rights reserved 
0031-3203/96 $15.00+.00 

0031-3203(95) 00145-X 

APPLICATION OF INFORMATION THEORY TO DNA 
SEQUENCE ANALYSIS: A REVIEW 

RAMON ROMAN-ROLDAN,* PEDRO BERNAOLA-GALVANt and JOSI~ L. OLIVER~ 
* Departamento de Fisica Aplicada, University of Granada, 18071-Granada, Spain 

t Department of Applied Physics II, University of M~laga, Spain 
:~ Institute of Biotechnology, University of Granada, Spain 

(Received 19 January 1995; in revised form 15 September 1995; received for publication 16 October 1995) 

Abstract--The analysis of DNA sequences through information theory methods is reviewed from the 
beginning in the 70s. The subject is addressed within a broad context, describing in some detail the 
cornerstone contributions in the field. The emerging interest concerning long-range correlations and the 
mosaic structure of DNA sequences is considered from our own point of view. A recent procedure developed 
by the authors is also outlined. Copyright © 1996 Pattern Recognition Society. Published by Elsevier 
Science Ltd. 
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1. I N T R O D U C T I O N  

In the words of Werner Ebeling and Mijail Volken- 
stein: "1 "...living beings are natural ordered and infor- 
mation-processing macroscopic systems originating 
from processes of self-organization and natural evol- 
ut ion. . ,  all processes in living systems originate from 
physical processes. Living beings are open thermo- 
dynamic systems which permanently exchange matter, 
energy, entropy and information with their surround- 
ing...". Many other authors agree that living beings 
are characterized mainly by their ability to process 
information and thus they can be analyzed from this 
perspective. The physical support of such information 
is the DNA double helix, which plays a basic role in 
both the coding and the transmission to the next 
generation of all the information needed for living 
functions. 

The above quotation suggests that the maintenance 
of living activity as an information processor: (a) is of 
physical nature and (b) affects more long-range phe- 
nomena, such as biological evolution or the origin of 
life. These problems are usually addressed from the 
double perspective of thermodynamics and informa- 
tion theory. Many authors have attempted to join 
these two approaches, t2-41 in trying to solve this prob- 
lem. ~5'6) Moreover, the processing of biological infor- 
mation has an artificial parallel: the processing of 
information by computers. Both types of massive in- 
formation systems are needed from a joint analysis. 
This approach, centered on the so-called "Physics of 
Information", is complex and attractive, and is now- 
adays the subject of intense research [see reference (7) 
and refs therein], among which the cornerstone work 
may be the recent Physics of  Computation Workshop3 s~ 

Here we focus on a more limited field. Nucleotide 
sequences are examined from an external point of view, 
as messages, without taking into account the detailed 
physical-chemical mechanisms for information pro- 
cessing. Protein synthesis is modeled as a system to 
process information, source plus channel (Section 2). 
A basic question is to obtain significant and reliable 
measures of parameters such as order, regularity, 
structure, complexity, etc. in a given DNA sequence. 
This would allow comparisons with other sequences 
(or with other segments of the same sequence), thus 
deriving results of interest to evolutionary studies 
(molecular phylogeny), identification of coding seg- 
ments (finding genes, exons, transcription signals), etc. 
In general, the aim is a measure capable of indicating 
how far a natural sequence is from a random one. 

The application of information theory to DNA se- 
quences began in the 70s. Two periods can be distin- 
guished, the first around 1970-1977, when the first 
publication appeared. Several authors 19-11) developed 
methods to estimate parameters such as information, 
redundancy or divergence in DNA sequences. The 
shared aim of all these studies was to obtain a quanti- 
tative expression of the complexity of these sequences. 
In Section 3, we describe the pioneering work of 
Gatlin, as well as subsequent modifications. 

Despite the fact that DNA sequences contain all the 
relevant information for living beings, the above at- 
tempts do not completely succeed in obtaining a quan- 
titative measure for such information. In some of these 
studies, DNA was virtually indistinguishable from 
a random sequence. The best exponent of this pessi- 
mistic point of view was the paper of Hariri et al. ~12) 
After a relatively quiet pause, the second period (1987 
to the present) can be characterized by renewed, inte- 

1187 



1188 R. ROMA, N-ROLDAN et al. 

rest in the subject, aided by the great increase in 
sequence data generated by genome projects. Nucleo- 
tide-sequence data banks now contain chains long 
enough to overcome the major limiting factor in 
properly applying information theory to DNA se- 
quences. Other techniques derived from signal theory, 
such as Fourier transform, autocorrelation, spectral 
analysis, random walks or chaotic dynamics, have also 
been applied. The most outstanding result was 
the finding of long-range correlation in DNA se- 
quences.l~ 3-15) Information-theory measures are also 
used in detecting long-range correlations, such as mu- 
tual information. ~ 3. ~ 61 

Cosmi et al. reported an entropic method for recog- 
nizing DNA patterns, in order to classify sequences," 7) 
which is briefly described in Section 4. Recently, the 
role of repeats on word entropies has been ana- 
lysed. "81 We addressed this topic in Section 5. In 
Section 6, we present our recent (1993) and current 
research, also showing the nonrandomness.of DNA 
sequences through entropic profiles derived from asso- 
ciate chaotic images, tl 9~ 

2. THE DNA-PROTEIN COMMUNICATION CHANNEL 

All the information needed to control the biological 
reactions in cells and tissues, including protein syn- 
thesis, is contained in DNA. We are aware that this 
sentence expresses only a first-order approximation, 
since nucleic acids exhibit a complex chemistry and the 
string model of DNA (representation of DNA as 
a string of letters that represent the order in which the 
nucleotides occur in the molecule) does not express 
that chemistry, being a very approximate description 
of the molecule. The central question of the application 
of techniques such as information theory to the study 
of DNA may be then how good is this first approxi- 
mation. The DNA molecule can be described sche- 
matically as a polynucleotide chain forming a double 
helix. There are four nucleotides (bases) and thus we 
can consider the DNA chain to be a message coming 
from a source that uses an alphabet of four symbols. 
On the other hand, proteins are also lineal chains of 20 
different basic constituents (the amino acids). Each 
DNA sequence determines a unique protein chain 
although each protein can be coded by several some- 
what different DNA sequences. The genetic code es- 
tablishes the correspondence between the sequence of 
nucleotides in DNA and the sequence of amino acids 
in the protein. Since there are 20 amino acids and only 
four nucleotides, a combination of several nucleot- 
ides-- jus t  three (codon)--is  needed to code each 
amino acid. 

Genetic information always flows in an irreversible 
manner from nucleic acids to protein in all living 
beings (no mechanisms for back-translating proteins 
into nucleic acids are known) and, essentially, through 
the same basic mechanisms. It is not our aim here to 
describe the details of such mechanisms, except to note 
that biological information transfer can be well 

modeled as a communication channel. The input is the 
DNA sequence and the output the amino-acid chain in 
the protein. The information source and the trans- 
mission channel for the proposed communication sys- 
tem are described below. 

2.1. The information source 

The central concept in studies involving contiguous 
patterns of textual elements is an abstract device 
(called the source) that generates sequences of symbols 
(messages) chosen from a finite alphabet. Such symbol 
selection can take place according to a variety of ran- 
dom mechanisms. Particularly important are ergodic 
sources in which the random mechanism leads to 
"typical" (i.e. statistically homogeneous) messages 
with high probability (close to 1) and to "atypical" 
sequences with negligible probability. It is well known 
that probability distributions of textual elements (such 
as letters or biliterals) are preserved in all sufficiently 
long texts and thus we can assume that languages, and 
also DNA, can be modeled by ergodic sources. For  
DNA, the information source may be defined by: 

(1) The alphabet: B = {C,A, U,G} (C, cytosine; A, 
adenine; G, guanine; U, thymine or uracil). 

(2) In general, symbols in B are not emitted with the 
same frequency. The probability distribution on the 
alphabet is a property of the source: 

p(U) + p(C) + p(a) + p(G) = 1. (1) 

(3) Bases are not independent in the genetic mess- 
age. The source cannot be considered to be of the 
Bernouilli type, but rather must be modeled as a Mar- 
kov source with a stochastic matrix: 

[p(BilBj) ], ~ p(BilBj) = 1. (2) 
i 

It is also assumed that this Markov source is statio- 
nary and ergodic, and thus probability distribution 
can be (1) derived from the conditional probabilities 
and (2) experimentally determined: 

p(Bi) = ~ p(B, IB)p(B). (3) 
J 

2.2. The transmission channel D N A protein 

This corresponds to the genetic code shown in Table 
1, heavily degenerated, and known since 1961. The 
channelis assumed to be stationary and memoryless; it 
can be represented by the random correspondence 
between the codon set B3={Ba,B2,B3} and the 
amino-acid set A = {Ai}: 

B 3 P(A/B'BzB3)~ A. 

For a channel without noise (mutations), the in- 
put/output probabilities are: 

p(Ai/B1, B2, B3) 

f 1, if the pair (AdB . B2, B3) belongs to the code 
l 0, if not. 
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Table 1. Genetic code 

GCU,GCC,GCA,GCG Alanine 
CGU,CGC,CGA,CGG,AGA,AGG Arginine 
AAU,AAC Asparagine 
GAU,GAC Aspartic acid 
UGU,UGC Cysteine 
CAA,CAG Glutamic acid 
GAA,GAG Glutamine 
GGU,GGG,GGA,GGC Glycine 
CAU,CAC Histidine 
AUU,AUC,AUA lsoleucine 
UUA,UUG,CUU,CUC,CUA,CUG Leucine 
AAA,AAG Lysine 
AUG Methionine 
UUU,UUC Phenylalanine 
CCU,CCC,CCA Proline 
UCU,UCC,UCA,UCG Serine 
ACU,ACC,ACA,ACG Threonine 
UGG Tryptophan 
UAU,UAC Tyrosine 
GUA,GUC,GUG,CUU Valine 
UAA,UAG,UGA STOP 

3.  O R D E R  A N D  C O M P L E X I T Y  M E A S U R E S  

We next consider the original contribution of 
Gatlin, 19) together with the subsequent improvements 
by Sibbald. ~2°~ For clarity, we have somewhat modi- 
fied the presentation. The analysis of sequences takes 
into account the base composition as well as the 
ordering of bases, giving rise to dimers, trimers . . . . .  
n-tuples, n being as high as possible. A DNA sequence 
is considered under the following two complementary 
viewpoints. 

3.1. The order or regularity of the sequence 

As an extreme theoretical example, the most ordered 
sequence might be one as, for example, AAAAAA .... 
while one Of the most disordered (complex) ones could 
be generated in a purely random way (an empirical 
assessment of this quality is far from trivial~2X)). As 
a measure of order we can adopt the divergence be- 
tween a sequence which is as random as possible and 
the natural sequence; such divergence is taken as the 
difference between the two corresponding Shannon 
entropies: 

D n = H Cr) _ Hen) 
n n 

- f ,  fj f,Y  
= _  , 4 ,  

B, fi®j fi®j 

where fs are relative frequencies and the indexes span 
the following sets: 

k, the B, subsequences of length n; 
i, the subsequences of length n - 1, obtained by 

deleting the first base of B,; 
j, the subsequences of length n - 1, obtained by 

deleting the last base of B.; 
i®j,  the subsequenees of length n - 2, obtained by 

deleting the first and the last base of B.. 

For n =  1 and a sequence of infinite length, 
Hexpected = 21og2=2bits.  for any other level, 
Hexpected is the entropy of the theoretical distribution of 
the frequencies of n-tuples, conditioned by the ob- 
served ones for n - 1, assuming an independent dis- 
tribution. Therefore, H expec,ed represents the maximum 
theoretical entropy at level n compatible with the 
observed sequence at the level n - 1. 

3.2. The complexity 

Conceptually, this is the complement of the previous 
measure. Numerically, it would also be the comple- 
ment of the previous measure if the analysis were 
carried out at only one level, but in such a case it would 
be superfluous. However, the multi-level study makes 
both measures useful. The complexity is defined by the 
divergences in a recurrent manner: 

C. = C._ 1 - D . .  (5) 

Note that complexity increases with the entropies of 
the corresponding histograms: 

C , = C , _  1 - D . = ( C . _  1 - D , _ 0 - D , =  . . . .  
n n n 

= C o -  E D , = C o +  Z H ' ,  " ' -  E H'/', (6) 
i = 1  i = 1  i = 1  

The first two divergences have a simple meaning in 
the context of the genetic message. While D 1 measures 
the distance from equiprobability, D 2 reflects the dis- 
tance from the independence for contiguous bases. The 
redundancy R of the code (up to this level) is given ~x lj 
by: 

2 " R = D I + D  2. 

Figure 1 shows in cascade the multi-level measures 
of both divergence and complexity. Additivity and the 
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alternate order simplify an understanding of its mean- 
ing. Before a DNA chain is observed, a complexity of 
2 bits/base is available. The first measure (base compo- 
sition) detects a divergence. D 1 with respect to C . . . .  
which leads to a complexity C 1 (in this case, the same 
as the entropy). At the second level, a divergence D2 
with respect to C1 is detected, which lead to a com- 
plexity C2, and so on. At any level n, the complexity 
C, is residual in character, in the sense of being 
what remains after successive reductions due to 
the order introduced into the sequence from n = l. 
However, at the same time, it also has the character of 
being available for additional reductions at higher 
levels. 

Equiprobability and independence of the symbols 
(which imply maximum entropy per symbol) are the 
conditions under which the source can emit the maxi- 
mum diversity of messages and thereby lead to the 
highest richness in information. Any deviation from 
these conditions decreases diversity, but increase the 
reliability of the message, measured by the redun- 
dancy. As a result, the system is able to detect and 
proof-read errors. DNA chains, as with messages in 
any other natural language or in any other artificial 
communication system, have developed a trade-off 
solution between what might be called quantity and 
quality of information. Two observations are note- 
worthy here: (1) in vertebrate genomes the redundancy 
is due mainly to D2, while in the remaining genomes it 
is due to D1; (9) (2) in agreement with the last observa- 
tion, and by using protein sequences from different 
organisms, Reichert etal. ¢~m found the existence of 
linearity between R and D 2, claiming that this finding 
constitutes the "true arrow of time". 

As mentioned above, the overall results of these 
attempts were not as encouraging as might be ex- 
pected, °2) thus indicating that the first-order model 
may be insufficient and that there may be important 
information that the string model does not convey. It is 
hard to accept, however, that we are not able to express 
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Fig. 2. Conditional divergence versus conditioning level for 
some short DNA sequences. 
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in a mathematical form all we know about genetic 
information. The failure may be due to the way in 
which we have approached the problem. 

One of the reasons for the failure may be the relative- 
ly short lengths of the sequences used. The conditional 
divergences (divided by log 4, in order to be expressed 
in bits/base) of some DNA sequences with similar 
lengths to those used by Hariri et al. [see Fig. 3 in 
reference (12)] are shown in Fig. 2. We have also 
included a random sequence as well as a fragment of 
800 bp from HHBB (total length = 73326 bp). 

We cannot distinguish between both the different 
DNA sequences, nor between a given DNA sequence 
and a random one. 

When larger sequences are used, some differences 
can be found. Figure 3 shows the profiles obtained for 
the complete length of the human sequence HHBB 
(73326bp), a viral sequence (PT7GG, 39936bp) and 
a randrm sequence of 100.000 bp in length. Neverthe- 
less, the figures obtained for higher level values (4-7) 
were not reliable and it can be shown that they can 
vary with the length of the sequence. 

4. CHARACTERIZATION OF SEQUENCES 

0.4 Cosmi etal .  ¢17) attempted to classify sequences ac- 
cording to their codon-usage frequencies. These 

0.3 authors used a statistical method based on maximum 
entropy techniques of multivariate statistics. The 

o.z method was applied to the analysis of nucleotide se- 
quences from eukaryotes. Protein-coding sequences 

o.1 are often interrupted by intervening untranslated 
sequences (introns). Dividing coding segments from 
their introns, these authors obtained two mutually 

O 
exclusive classes. The percent of correctly attributed 
sequences is 26% for coding and 35% for introns with 
a small percent of error (1%). Thus, the method could 
be used to distinguish between coding and noncoding 
sequences. 
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5. THE ROLE OF REPEATS 

The role of DNA repeats on word entropies has been 
recently analysed by Herzel et alJ TM They constructed 
hypothetical model sequences composed by equidis- 
tributed symbols with randomly interspersed repeats, 
showing that the entropy of DNA sequences measur- 
ing the information content is much lower than sugges- 
ted by earlier empirical studies. 

6. A RECENT CONTRIBUTION 

Oliver et al. (19) have recently described a method to 
assign entropic profiles to DNA sequences; in such 
profiles an entropic measure is plotted against different 
subsequence lengths. 

A combination of two different techniques was used. 
In 1990, Jeffrey (22) proposed a powerful method to 
analyse DNA sequences: the chaos-game representa- 
tion (CGR). This method, based on a technique from 
chaotic dynamics, produces a square, fractal-like pic- 
ture of gene sequences, visually revealing previously 
unknown structures. This provides a graphic way of 
displaying both statistical and sequential properties of 
DNA sequences. The densities of points in subsquares 
of 4 -m in size correspond to the frequencies of 
oligomers of m in length. On the other hand, certain 
concepts from the field of multiresolution-information 
for digital images recently developed by Romgn 
et al. t23) were applied to the CGR images of DNA 
chains. First, the entropy of the histogram of gray 
levels was translated into the entropy of the histogram 
of point densities in CGRs; secondly, different resolu- 
tions in images were translated into different sub- 
square sizes of the CGRs, which in turn correspond to 
different oligomer lengths. 

6.1. Iterated function system 

The aspect of chaos theory applied in this work is 
described by Barnsley 124) as an iterated function system 
(IFS): 

{(X,d); w . , n = l , 2  . . . . .  N}, 

where (X,d) is a metric space and w. is the n-func- 
tion of the form w . : X ~ X ,  such that Vx, yeX,  
d(w.(x), w,(y)) <_ sd(x, y), s being the contraction fac- 
tor, 0_< s_< 1. 

For simplicity, the IFSs are usually of the form: 

{NM, W,, n = 1 , 2  . . . . .  N}. 

The analysis of DNA sequences is carried out as 
follows: (A) The number of functions is N = 4, the 
number of different bases in the sequence; for M = 2, 
we have X = ~2. (B) Each w n function has the form 
x~+ 1 = s,(xi + c,) and all the contraction factors s n are 
fixed to 0.5. (C) The constants c, of the functions are 
assigned to the corners of a square. (D) In a random 
algorithm (chaos game), the functions w, operate ac- 
cording to a given probability distribution. In this 
work, it is the DNA sequence that drives the operation 

order of the system functions; that is, each function is 
associated to a base in the sequence. Plotting the 
points determined by the successive pairs (x, y), we 
obtain the CGR attractor. 

6.2. Entropic measures on the histogram of  densities 

By normalizing the density set, we obtain a distribu- 
tion whose entropy, for each m, coincides with the one 
mentioned above. Instead, the authors obtain the nor- 
malized histogram Q of densities (the number of cells 
in the CGR versus the density) and, also for each m, 
either the entropy (H-m profile) or the relative entropy 
with respect to the reference histogram Z (D-m profile), 
being: 

N 

H(Q)=  ~ qj ' logqj  (7) 
j=0  

N 

D(QIIZ)= ~ q / l o g  qj, (8) 
j= 0 Zj 

where qi is the observed relative frequency of cells with 
i points and z~ the expected one. 

The reference is a theoretical source producing se- 
quences in a purely random way; that is, each sequence 
should be a sample from a succession of equiprobable 
random variables. If so, the resulting histogram ob- 
tained by averaging on several of these sequences goes 
toward the binomial distribution as the number of 
sequences goes to oc. 

Any departure from random behavior results in 
a rise in the relative entropy (always positive), whereas 
the effect on histogram entropy is a deviation from that 
corresponding to the binomial distribution. Figures 
higher than the binomial value may be associated with 
the presence of structure or complexity in the se- 
quence, while lower figures correspond to excessively 
uniform sequences. 

To obtain the H-m profiles, the density scale was 
adjusted by grouping histogram classes in order to 
obtain an entropy of 0.25 bits for the theoretical refer- 
ence. Higher entropies reveal the presence of order and 
regularity in the analysed sequence. This method 
would hide random deviations because of the exces- 
sive sequence uniformity, but such uniformity would 
not be expected in DNA sequences. 

6.3. Examples and results 

H-m profiles were obtained in both random and 
DNA sequences for the necessary range of resolutions. 
Figure 4 shows the entropic profile for a DNA se- 
quence (HUMHBB) compared with several simulated 
random ones of the same length (73326 nucleotides). 
DNA and random sequences look very different, since 
the first departs markedly from randomness for all 
resolution levels from 1 to 5. 

Histogram entropies of most DNA sequences 
showed a maximum for m = 2, the exceptions being the 
fl-globin regions from the human (HUMHBB) and 
mouse (MMBGCXD) genomes, the bacterial sequence 
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Fig. 4. TheentropicprofilesofaDNAsequence(HUMHBB) 
compared with those from several random sequences. 

ECUNC and the Xenopus mitochondrial genome, all 
showing a maximum for m = 3. 

Therefore, our results seem to suggest the existence 
of a maximum of dependence at the di- and trinucleo- 
tide levels, the dependence decreasing at higher resolu- 
tion levels; thus, randomness of DNA sequences seems 
to be greater as the resolution level (i.e. the oligomer 
length considered) increases beyond m = 3. 

We have also used D-m profiles in a later, more 
general work, t25~ including, besides DNA sequences, 
other types of sequences. 

6.4. Current research 

We summarize here recent addenda 126~ to the above 
described research topic. 

• For low resolutions, the histogram scale is quite 
fine-grained: the range is {0, 1 . . . . .  N} for all resolu- 
tions, while the number of nonzero values may be at 
best 4 m (total number of cells in the GCR). The refer- 
ence histogram, derived from a theoretical distribu- 
tion, is not affectd by this restriction, taking nonzero 
values over the entire range. This effect is more appa- 
rent at low resolutions, since, when m rises, 4 m may 
reach similar or even higher values than the number of 
significant values in the reference histogram (for the 
binomial histogram, this number may be estimated as 
2#, p = N/4  m being the average number of points per 
cell). 

A solution proposed for this problem a9~ is an ad- 
justment of the histogram scale, but this approach 
presents some drawbacks: (1) the entropy limit for 
which a given sequence is considered random is chosen 
arbitrarily and (2) random deviation due to excessive 
uniformity are hidden. 

Instead, we propose the elaboration of a splitting 
CGR as follows: Given a maximum resolution M . . . .  
for m < Mm, , we delineate 4 M' ' -m CGRs by taking 
nonoverlapping sequence segments of length 
N4 m- urn,, CGR. The histogram for the sequence was 

then the average of the histograms for each segment. In 
this way, the maximum number of nonzero values is 
the same for all resolutions (4 u~") and, therefore, the 
comparisons to the reference histogram are equally 
reliable (the average number of points per cell is also te 
same). 

Since different segments in the sequence are ana- 
lysed separately, splitting CGRs enable~ a distinction 
between sequences with the same global nucleotide 
composition, but different subsequence order (fre- 
quencies). 

• The histogram entropy depend's on sequence 
length and thus sequences of different lengths cannot 
be properly compared. The solution here is a pseudo- 
normalization. Figure 5 is a plot of both maximum 
(Gibbs distribution," 1,26~) and binomial entropies ver- 
sus sequence length. Furthermore, the entropies cor- 
responding to both a random sequence with different 
probabilities for each symbol and a DNA chain are 
also shown. The relative positions of the two last 
values are maintained constant in respect to the maxi- 
mum and the binomial entropies. Thas, we propose the 
following measure of sequence complexity: 

H(Q) - H b i  n 
h =  

Hma x -- Hbi n' 

which will be named normalized entropy, a measure of 
entropy independent of  sequence length. It is not a strict 
normalization, since the negative values (H(Q) < Hbi,) 
prove to be somewhat dependent on sequence length. 
On the other hand, the possibility of a sequence show- 
ing (H(Q)< Hbin) may be also interesting, since it 
means a random excess which is highlighted through 
this representation. 

• There are two causes by which the histogram 
entropy computed from the splitting CGR may differ 
from the binomial entropy: (a) the relative frequencies 
of the different subsequences are not the same (compo- 
sitional heterogeneity) and (b) the subsequence dis- 
tribution over the sequence varies (spatial hetero- 
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geneity). The solut ion we propose  for the first p rob lem 
is to use as the reference his togram, for each resolution,  
tha t  ob ta ined  under  the assumpt ion  that  the probabi l -  
ity for each subsequence is the cor responding  observed 
relative frequency. It can be then shown that  this 
h is togram corresponds  to the nonweighted  average of 
b inomial  distr ibutions.  

Now, nonzero  relative entropies,  as well as the 
differences between h is togram ent ropy  and  the refer- 
ence his togram, may be a t t r ibuted  only to spatial  
heterogeneity.  Note  also that  H ( Q ) <  Hre f prove to 
mean  an excess of homogenei ty  and  tha t  H(Q) > Hrc f 
means  an excess of heterogeneity.  Such an analysis 
may be useful in searching for long-range correlat ions 
in D N A  sequences. ~13- i s.zv.28~ 

• On  the other  hand,  it may also be useful to know 
the par t  of complexity which can be a t t r ibuted  to the 
restrict ions in t roduced  at each resolution. To discount  
the s t ructure  dragged from previous resolutions, the 
most  r a n d o m  his togram at length m, which is compat -  
ible with the known  const ra in ts  at length m ' <  m, is 
used as a reference. 

7. CONCLUSIONS 

As can be seen in this review, the informat ion  theory 
methods  are fully suitable for D N A  sequence analysis, 
in the present state of art. Mainly,  it is due to their  
ability for handl ing  symbolic sequences. 

We thus encourage bo th  informat ion theory a n d  
D N A  sequence researchers to develop new applica- 
tions, mainly in the current  subject of long-range 
correlat ions and  composi t iona l  patchiness.  
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