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Abstract The DNA sequencing efforts of the past
years together with rapid progress in sequencing tech-
nology have generated a huge amount of sequence data
available in public molecular databases. This recent
development makes it statistically feasible to apply uni-
versal concepts from Shannon’s information theory to
problems in molecular biology, e.g to use mutual infor-
mation for gene mapping and phylogenetic classifica-
tion. Additionally, the genetic information in the cell is
continuously subject to mutations. However, it has to be
passed from generation to generation with high fidelity,
raising the question of existence of error protection and
correction mechanisms similar to those used in techni-
cal communication systems. Finally, better understand-
ing of genetic information processing on the molecular
level in the cell can be acquired by looking for parallels
to well established models in communication theory, e.g.
there exist analogies between gene expression and frame
synchronization.
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1 Introduction

Communications engineering as well as genetics have
both experienced a major breakthrough in the mid twen-
tieth century. In 1953, the double helix structure of the
DNA was deciphered by Watson and Crick. From this
point on it was clear that the genetic information is
stored in form of two complementary directed strands
composed of letters from a four symbol alphabet. Until
the discovery of the molecular basis of genetics, the
research was concentrating on classical genetics, based
on the rules of Mendelian inheritance of traits. Shannon
[21] himself was using mathematics to study how differ-
ent trait combinations propagated through several gen-
erations of breeding in his Ph.D thesis completed in
1940. He devised a general expression for the distribu-
tion of several linked traits in a population after multiple
generations under a random mating system, which was
original at that time, but went largely unnoticed, since
he did not publish his work. After completing his Ph.D
thesis, Shannon shifted his focus towards digital com-
munications and cryptography.

In 1948, Shannon [22] established the theoretical fun-
damentals of digital communication systems. He intro-
duced the concept of information based solely on the
statistical characteristics of the information source. He
defined information in an abstract way independent of
semantics that does not differentiate between text, video
or audio as was generally being done when studying
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communication systems at that time. Using such
information definition, Shannon proved that a message
generated by an information source can be losslessly
compressed to the entropy of the source (source coding
theorem) and that it is possible to code the informa-
tion in a way, such that one can transmit it error-free
at the maximum rate that the channel allows (channel
coding theorem). Ever since, communications engineers
have been devising algorithms to achieve the limits of
these two theorems. The definition of information based
solely on statistical characteristics of the information
source also applies to genetic data. Recent advances
in DNA sequencing technology supply enough data to
apply Shannon’s general information concept to molec-
ular biology. Section 2 gives a short introduction to basic
principles from molecular biology required for better
understanding of the following sections. In Sect. 3 we
show how mutual information and compression can be
used for phylogenetic classification. Section 4 describes
the application of mutual information to gene map-
ping. The question whether an error correcting code
has evolved on the genome sequence level is addressed
in Sect. 5. Finally, in Sect. 6 we model transcription ini-
tiation (one step in protein synthesis) as frame synchro-
nization in a communication system.

The original involvement of information theorists
with molecular genetics goes back to the discovery of
the genetic code. In the period between the discovery of
the DNA structure in 1953 and the decipherment of the
genetic code 1961–1969, when no actual DNA sequences
and only very few amino acid sequences were known,
several different coding schemes describing the map-
ping of the DNA sequence (four letter alphabet) to a
protein (amino acid sequence from a 20 letter alpha-
bet) were proposed by coding theory experts. Some of
them had high information density, while others have
foreseen error correction capabilities. The experimental
discovery of the actual genetic code (the mapping rule of
the 43 = 64 DNA sequence triplets to the 20 amino acids
and a stop symbol) was a disappointment for the coding
community since it does not seem to implement any of
the two. A review of the proposed codes can be found
in [12]. From this point, there has been little interaction
between the two communities until recently. We believe
that with all the newly available sequence data further
interactions could be fruitful as our research suggests.
The question why the genetic code has evolved the way
it is remains open. There seems to be evidence for the
optimality of the code in terms of error minimization
using metrics based on physio-chemical properties of
the resulting amino acids like their hydrophobicity [10].
Apparently, evolution imposes additional constraints
on the optimization of how the genetic information is

being stored, which makes the modeling rather peculiar.
This has to be accounted for by communications engi-
neers modeling evolution and the molecular processing
of genetic information in the cell as a communication
system.

2 Biological background

2.1 DNA

In 1944, the desoxyribonucleic acid was identified as
the primary carrier of genetic information. The discov-
ery of the geometric arrangement of the DNA building
blocks in a double helix by Watson and Crick followed in
1953. The DNA consists of two complementary directed
strands of nucleotides. Each nucleotide is composed of
a backbone unit (sugar and phosphate) and one of the
four bases adenine (A), guanine (G), cytosine (C) or thy-
mine (T). The sugar phosphate backbone determines the
direction of each strand which is referred to as 5′ to 3′ by
convention. The two strands are held together by elec-
trostatic interaction via weak hydrogen bonds between
the complementary bases A–T and C–G, see DNA in
Fig. 1. Here, nature has implemented a simple comple-
mentary repetition code, which is very advantageous for
DNA replication, that has to take place every time a
cell divides. Each of the two complementary strands is
used as template for the DNA copy of one of the two
daughter cells.

2.2 Mutations

The process of copying is prone to errors leading to
point-mutations, insertions, deletions and duplications.
According to evolutionary theory a certain degree of
mutation is necessary to allow for adaptation of differ-
ent species to changing environmental conditions. Prop-
agation of evolutionary disadvantageous mutations is
hindered by natural selection in contrast to neutral and
the rare advantageous mutations. Assuming a common
ancestor, the degree of dissimilarity in the genomes of
existing species can be used to reconstruct their phy-
logenetic relationships, as shown in Sect. 3. Mutational
variations observed across the human population are
the origin of genetically influenced diseases. The main
objective of gene mapping is to determine which of the
varying positions in the genome, also referred to as sin-
gle nucleotide polymorphisms (SNPs) [1] are related
to the disease under investigation. Section 4 describes
an information theoretical method to identify the SNPs
which are statistically related to the investigated disease.
It relies on population based data from clinical stud-
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Fig. 1 Protein synthesis

ies. Since high rate of mutation would lead to too many
evolutionary disadvantageous mutations per generation
cycle, it is crucial that the genome copying process takes
place with high fidelity. Nature has implemented mech-
anisms to minimize the error susceptibility of the copy-
ing machinery. However, error protecting measures on
the sequence level similar to error correcting codes in
communication systems are currently not known. We
believe that especially in case of complex multicellu-
lar (eukaryotic) organisms, which have long genera-
tion cycles and a limited number of offsprings, nature
might have developed sequence level error correcting
measures to ensure the necessary high replication fidel-
ity. The primary and best understood function of the
genome is to carry information for the synthesis of pro-
teins, see Sect. 2.3. However, in complex eukaryotes like
vertebrate the proportion of the genome actually cod-
ing for proteins is less than 10%, as opposed to simple
fast evolving single cell organisms (prokaryotes), where
almost all of the genome codes for proteins. The non-
coding part has been largely neglected by the research
community for a long time until comparative genom-
ics has recently identified regions in the genomes of
vertebrate species that do not code for proteins, but
show a high degree of evolutionary conservation [26],
labeled conserved non-genic region (CNG) in Fig. 2.
This implies some unknown evolutionary important
function. The proportion of such conserved non-cod-
ing regions in the human genome is comparable to that
of protein coding regions. Currently, our search for error
protecting means on the sequence level concentrates on
these regions, see Sect. 5. They might be carrying parity
information to protect the coding regions.

2.3 Protein synthesis

The protein coding part of the genome is converted to
proteins in a process called gene expression. It takes
place in two basic steps, see Fig. 1. First, during tran-
scription the genomic DNA region coding for a protein

Fig. 2 Genome organization of multicellular organisms

is copied into messenger RNA (mRNA) by the RNA
polymerase molecule. The resulting mRNA corresponds
to a complementary copy of the template strand except
that the base T (thymine) is substituted by U (uracil).
In the second step, the ribosome molecule translates
the mRNA into a sequence of amino acids—a protein.
Hereby, triplets of bases are converted to amino acids
according to the mapping rule described by the genetic
code [19].

2.4 Genome structure

The protein coding portion of the genome is arranged
in genes. The genes vary in size and are randomly dis-
tributed across the genome. The beginning of a gene
is characterized by a promoter sequence in front of
it. The end is signalled by a terminator. During tran-
scription initiation, the first step in protein synthesis,
the promoter sequence has to be detected. This resem-
bles frame synchronization in digital communication
systems. Further investigation of this analogy is pre-
sented in Sect. 6. In eukaryotes the mRNA produced
during transcription contains non-coding regions called
introns. These are being spliced out (removed from
the mRNA) before translation occurs. Only the coding
exons are finally translated to protein. The described
genome structure is depicted in Fig. 2. The content rec-
ognition method described in Sect. 3 can be used to
distinguish between the coding exons, non-coding but
transcribed introns and the non-genic regions not
taking part in gene expression.

3 DNA classification using compression distance
measures based on mutual information

The possibility of using mutual information for classifi-
cation and content recognition of genetic sequences is
exploited in this section. Two different mutual informa-
tion based distance measures are proposed, one for clas-
sification and one for content recognition. The measure
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proposed for classification is a metric. The influence of
compression based entropy estimation on the proposed
measures is investigated. Examples of successful appli-
cations in the field of genetics are presented.

Mutual information describes the amount of infor-
mation shared by stochastic processes. It can be used to
derive distance measures quantifying the similarity of
the processes. Mutual information based distance mea-
sures can be used to compare texts written by different
authors or to build phylogenies of different species.

3.1 Compression based entropy approximation

The definition of mutual information is based on the
entropies of the compared sources, which will be approx-
imated using compression. The idea of using compres-
sion for phylogenetic classification of whole genomes
was first introduced in [14]. Shannon’s fundamental the-
orem on data compression states that every source S
can be losslessly compressed up to its entropy rate H(S).
Thus, the compression ratio achieved by an optimal com-
pression algorithm designed for a given source S when
compressing a message s generated by this source is a
good approximation of the sources actual entropy rate

H(S) ≈ |comp(s)|
|s| , (1)

where |.| denotes the size in bits or symbols. The entropy
of DNA sequences is less than two bit due to the use of
a four symbol alphabet (A,C,G,T).

In general a universal compressor for a whole class
of sources (e.g. DNA sequences, natural texts) is avail-
able. Such universal compressors gradually adjust their
underlying general statistical model describing the
whole class of sources to the individual statistics of
the particular message being compressed. For example,
genomic DNA sources contain approximate repeats and
palindromes (reverse complements) due to duplications
and point mutations that occur during evolution. DNA-
compress uses this general property of genomic DNA
and compresses the specific repeats occurring in the
particular sequence being compressed. Such universal
compressors are particularly suited to compare sources
of a given class as they should be able to compress well a
concatenation of messages generated by similar sources
as opposed to dissimilar ones. Consequently, the condi-
tional entropy H(Si|Sj) of two different sources Si and Sj
will be approximated as the compression ratio achieved
for the message si when the compressor’s model is
trained on the message sj. The compression size of the
concatenated sequences |comp(sj, si)| can be used for

this purpose

H(Si|Sj) ≈ |comp(sj, si)| − |comp(sj)|
|si| . (2)

3.2 Mutual information based distance measures

The aim of unsupervised classification is to build clus-
ters of all sources Si based on chosen criteria. A distance
metric d(Si, Sj) quantifying the similarity of the sources
is required for such clustering.

Content recognition serves a different purpose. Here,
a set C of known content sources SC

i , i ∈ {1 . . . |C|} is
provided together with a set U of unknown sources
SU

j , j ∈ {1 . . . |U|}. The goal is to find the best match-

ing content source SC
b with the smallest distance b =

arg mini(d(SC
i , SU

j )) for each unknown source SU
j . The

distance measure for content recognition on the con-
trary to classification does not have to satisfy the axioms
of a metric.

Information theory describes the relatedness of
sources Si and Sj as the mutual information I(Si; Sj)

shared by these sources

I(Si; Sj) = H(Si) − H(Si|Sj) = I(Sj; Si). (3)

Mutual information is an absolute measure of informa-
tion common to both sources. It can be transformed to a
bounded distance through normalization in two differ-
ent ways: one way, to be used for content recognition, is
to normalize by the maximum possible mutual informa-
tion the two sources can share, resulting in

dCR(Si, Sj) = 1 − I(Si; Sj)

min(H(Si), H(Sj))
≤ 1. (4)

The lower bound is reached for sources that share the
maximum possible mutual information given their
entropies. It can be reformulated using conditional
entropies

dCR(Si, Sj) = min(H(Si|Sj), H(Sj|Si))

min(H(Si), H(Sj))
. (5)

Using the compression based approximations in (1) and
(2) it can be written as

dCR = |comp(sj, si)| − |comp(sj)|
|comp(si)| , (6)

for |comp(si)| < |comp(sj)|. Since the triangle inequal-
ity is not satisfied for dCR this measure is not a metric
distance. Thus for classification we normalize I(Si; Sj) by
the maximum entropy of both sources resulting in the
following distance metric

dCL(Si, Sj) = 1 − I(Si; Sj)

max(H(Si), H(Sj))
≤ 1. (7)
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Compared to dCR in (4) the two sources must not only
share maximum possible mutual information, but also
need to have identical entropies in order to achieve
dCL = 0.

The advantage of the compression based approxima-
tion of the derived distances is that no prior alignment
of the compared sequences si and sj is necessary.

3.3 Results

Different types of compression algorithms were tested
with respect to their classification and content recogni-
tion performance: Lempel–Ziv, Context Tree Weighting,
Burrows Wheeler Transform, Prediction by Partial
Matching (PPM) and DNACompress. In general PPM
and DNACompress performed best for genetic
sequences. A set of properties making a compression
algorithm suitable for classification and content recog-
nition was derived in [7].

A typical classification problem in molecular genetics
is reconstruction of phylogenetic relationships between
different populations (e.g. human populations, differ-
ent mammalian species) in form of a binary tree, where
the nodes represent the separation events and the root
the common ancestor of all the investigated populations
according to the evolutionary theory. Figure 3 shows a
phylogenetic tree of the human population constructed
using dCL with DNACompress and the quartet tree gen-
eration method described in [4]. Mitochondrial DNA
(mtDNA) was used for this study. It is about 16,000
bases long and particularly suited for phylogenetic stud-
ies, since it is inherited only maternally and shows high
rate of mutation because it resides in mitochondria out-
side of the cells protecting nucleus. The migration pat-
tern observed in the tree corresponds to the currently
accepted theory of African human origin and the results
presented in [27]. Interesting highlight is the close rela-
tionship between North American Navaho descendants
and the European Finnish population, indicating that
North America might have not only been populated
from north eastern Asia by crossing the Bering land
bridge, but possibly also through the Arctic.

To demonstrate the content recognition performance
of the derived measure, we present the results for con-
tent recognition of non-genic regions (ng), exons (ex)
and introns (in). As content sequences the first 50,000
nucleotides (50 kb) of concatenated sequences of each
type were taken from the human chromosome 19 (c19).
Sequences of different sizes of each type taken from the
beginning of chromosome 1 (c1) were used as unknown
sequences. For each unknown sequence j the distance
dCR(SC

i , SU
j ) to every content sequence i was calculated.

Using DNACompress and dCR all unknown sequences
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Fig. 3 Human phylogeny based on mtDNA

Table 1 Content recognition of non-genic regions (ng), introns
(in) and exons (ex)

SU
j \ SC

i c19ng-50kb c19in-50kb c19ex-50kb
c1ng-300kb 0.04-best 0.84 1.02
c1ng-13kb 0.65-best 1.01 1.01
c1in-300kb 0.93 0.58-best 1.01
c1in-13kb 1.00 0.05-best 1.07
c1ex-300kb 1.02 1.01 0.96-best
c1ex-13kb 0.98 0.94 0.83-best

were recognized correctly as shown in Table 1. Some
distances are greater than 1 due to the concatenation
in the compression based approximation of conditional
entropy in (2), leading to high compression ratios if a
dissimilar sequence is used for training.

The obtained results demonstrate how the derived
distance measures approximated using compression can
successfully be applied to phylogenetics and recogni-
tion of sequence type. In Sect. 4 the dCL distance mea-
sure will be used for pairwise SNP comparison in gene
mapping.

4 Gene mapping and marker clustering using
Shannon’s mutual information

This section discusses the application of Shannon’s infor-
mation theory to population-based gene mapping. In
addition, a mutual information based distance measure
is used in conjunction with multidimensional scaling
to build and visualize clusters of genetic markers. The
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presented approaches are applied to clinical data on
autoimmune Graves’ disease.

Mutual information, defined as

I(X; Y) =
∑

x

∑

y

p(x, y) log2
p(x, y)

p(x)p(y)
, (8)

where X and Y are random variables, can be interpreted
as the reduction in entropy (or uncertainty) of one ran-
dom variable given another. In the following, it will be
used as a measure of dependence between the physical
manifestation of a trait (phenotype) and the underly-
ing genetic make-up (genotype). Connecting particular
phenotypes with the causal genotypes is the main aim of
gene mapping.

4.1 Gene mapping

About 90% of deviations between the genomes of two
individuals from a population are single point muta-
tions. Such variations in the genomes of a population
occurring with a relative frequency ≥1% are referred
to as single nucleotide polymorphisms (SNPs). It is esti-
mated that only about 0.3% of the human genome are
SNPs. The term allele refers to the nucleotide observed
at a particular SNP locus (position) in an individual.
At most one mutation per genome position is assumed
to have occurred during the short human evolution.
This assumption results in biallelic SNPs—exactly two
different alleles are observable per SNP in a popula-
tion. Assume that a particular region of the genome was
sequenced across the population resulting in ACCGTA
in 76% of the cases and ATCGTA in 24%. The second
position would thus be a SNP with major allele A = C
and minor allele a = T. In a simplistic view sexually
reproducing organisms posses two homologous copies
of their genome, each inherited from one of the parents.
Thus, per SNP locus we observe two alleles, one from
each parental side. An individual will have either inher-
ited two homozygous alleles from both parents (either
AA or aa) or two heterozygous (a different allele from
each parent Aa or aA). Modeled as a discrete random
variable each SNP locus would thus have four possible
realizations. However, the genotyping does not allow
to distinguish the parental origin of the alleles (Aa is
indistinguishable from aA), reducing the number of
observable realizations of a SNP to three.

In a typical clinical population-based gene-mapping
study a small subset of L suspect SNP markers from the
overall estimated 10 million human SNP loci S1, S2, . . . ,
SL is genotyped in N individuals. Preferably, in a pop-
ulation-based disease study half of the individuals (the
cases) carry the disease under investigation, the other

case

control
AA

aA/Aa

aa

Fig. 4 Genotype–phenotype transition diagram for a two-locus
model

half (the controls) are healthy. In such case-control
studies the phenotype P is a binary variable (healthy/dis-
eased) and the genotype a set of ternary random vari-
ables S1, S2, . . . , SL. Figure 4 depicts a simple channel
diagram describing the information transfer from a ter-
nary SNP Si to the binary phenotype P. The probabilities
of the random variables’ realizations and the transition
probabilities can be derived from relative frequencies,
i.e. observed counts divided by N. These probability esti-
mates exhibit a variance that depends on the sample
size N. From these probabilities, the mutual informa-
tion I(Si; P), where i = 1 . . . L between each SNP Si and
the phenotype P can be estimated to investigate each
SNPs causality both in absolute (through the unit bits)
and relative terms [18].

The approach presented here for single SNPs and
binary phenotypes can be easily extended to the joint
analysis of multiple SNPs and/or higher order and con-
tinuous phenotypes [6]. A detailed comparison of the
proposed method with other statistical and signal pro-
cessing based methods can be found in [20].

4.2 Marker clustering

So far, we have used mutual information between phe-
notype and genotype. In this section, we use the mutual
information between SNPs to find groups or clusters
of correlated genetic markers, which are likely to form
evolutionary entities. This is an important tool for gene
mapping, as it can provide additional hints about which
markers should be interpreted jointly. As distance mea-
sure between two SNPs the metric dCL(Si, Sj) presented
in (7) is applied. In this case Si and Sj represent SNPs. In
order to avoid biased results, only the data from the con-
trols should be used to compute the distances between
all markers. Subsequently, classical multidimensional
scaling can be used to cluster and visualize the SNPs in
two- or three-dimensional space for further analysis [5].

4.3 Results

The proposed methods were successfully tested on sim-
ulated and real data sets. The clinical data set described
in [25] was used to generate the results presented in this
section. The study suspects a 317 kb long region across



Electr Eng (2007) 90:161–173 167

0 50 100 150 200 250 300 350 400
0

0.005

0.01

0.015

0.02

(kb)

M
ut

ua
l I

nf
or

m
at

io
n 

I(
S

i;P
)

24
49

57
58

Fig. 5 Mutual information in bit btw. Graves’ disease and each
SNP in a region suspect of being related to the autoimmune
disease

the genes CD28, CTLA4 and ICOS to be related to the
Graves’ autoimmune disease. The region comprises 108
dispersed SNP loci, which were genotyped in 384 cases
and 652 controls. Figure 5 shows the mutual information
estimate for all 108 SNPs [6]. It should be noted that the
effects measured are relatively weak (≈0.01 bit as com-
pared to the theoretical maximum of 1 bit). To determine
the results’ significance, the permutation-based critical
values of the total study (global null hypothesis based on
5% significance level) have been determined and plot-
ted. Our analysis of the autoimmune disease data set also
revealed two study-wise significantly associated regions,
which are identical to the most promising regions found
by the logistic regression analyses reported in [25]. The
multidimensional scaling clustering analysis (described
in Sect. 4.2) of the same dataset in two-dimensional
space is depicted in Fig. 6. It can be seen that the SNP loci
identified as significantly related to the Graves’ disease
tend to cluster. The resulting cluster indicated by the

ellipse in Fig. 6 points to similar evolutionary histories
and ages of these markers. This implies with high proba-
bility only a single causal marker among these SNP loci.

In comparison to other statistical gene-mapping
methods, applying the simple, yet theoretically well-
defined concept of mutual information to the represen-
tation of SNP-phenotype and SNP–SNP relationships
does not require any assumptions to be made and thus
lays out a consistent framework for a first screen in gene
mapping approaches.

5 Conserved non-genic elements—implementations
of error correcting codes?

The DNA is the primary carrier of genetic information.
This information must be “transmitted” to various des-
tinations. During cell replication the genomic informa-
tion must be copied and passed on to the two daughter
cells as each cell carries a copy of the whole genome.
A further example is the transmission of genetic infor-
mation from genes to proteins. The genetic transmission
channels introduce noise and one might ask whether
nature has developed error protecting means similar to
those that we use in digital data transmission over noisy
channels in order to make reliable communication pos-
sible? Consider the transmission of genetic information
over generations in evolutionary time. The DNA is sub-
jected to mutations making this transmission channel
noisy. Assuming a simple model of nucleotide muta-
tions, Battail [3] showed that the capacity of this channel
decreases exponentially over time. He concludes that,
for any reasonable instantaneous mutation rate, genome
conservation over large geological timescales can only

Fig. 6 Marker clustering in a
two-dimensional scaling;
autoimmune disease data
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be explained by genome regeneration. He hypothesizes
that there exists an error correcting code implemented
on the genome sequence level for this purpose and that
genome regeneration must occur before the capacity of
the channel falls below the error correction ability of this
code [3]. Further evidence for this hypothesis is given by
a recently published discovery about the error correct-
ing ability of the plant Arabidopsis [15]. The experiment
shows that mutations that are present in the genomes of
the parents are corrected in the genomes of their off-
springs with certain probability. Assuming an error cor-
recting code on the genome level, we need to find out
where in the genome it is implemented. This amounts to
the detection of functional elements in the genome, i.e.
separating evolutionary noise from meaningful biologi-
cal information.

5.1 Detection of functional DNA sequences and
conserved non-genic elements

Comprehensive identification of biologically functional
elements in the DNA represents a central and ambi-
tious goal in modern genetics. The reliable detection
and analysis of functional elements are crucial steps
towards a deep understanding of how complex organ-
isms work. Early approaches to this problem were lim-
ited to the use of information from one species. Today,
with high quality genome sequences of several species
at hand, a comparative approach, taking into account
multiple sources of information, is often used to infer
regions in the genome subjected to evolutionary pres-
sure. The evolutionary relationship of multiple organ-
isms can be described in form of a phylogenetic tree.
The common ancestor is represented by the root of the
tree. The passage of DNA along the organismal lineages
is described by the branches of the tree. During the pro-
cess of evolution, the passed genetic information (DNA)
is subjected to mutations that cause variations. Natural
selection decides about the success of the transmitted
DNA. Altered information in regions whose variation
will negatively influence the fitness of the organism will
most likely diminish the organisms capability to repro-
duce and prevent passing its DNA to the next generation
whereas mutations in regions not being under selective
pressure will be passed on to further generations with-
out restrictions. Thus, those elements within the genome
carrying information for important basic functions are
less likely to successfully mutate during evolution due
to natural selection. Consequently, by identifying con-
served elements in the assembly of the genomes of
several species, we find candidates that are very likely
to be functional. Nowadays, having access to the com-
plete sequences of a number of vertebrate genomes this

approach provides a powerful tool for the systematic dis-
covery of functional elements in the genome [9,17,24].

5.2 Evolution in a communication theoretic
framework

In terms of communications engineering the evolution
can be regarded as a single input multiple output system.
In the biological transmission system (evolution), we
may think of the common ancestor as the transmitter.
Its sequence of bases is the output of the information
source. In Fig. 7, a single input multiple output communi-
cation scenario and an evolution scenario are depicted.
The divergence of lineages, indicated by the inner nodes
of the phylogenetic tree, is equivalent to the scattering of
the dispersing electromagnetic wave on obstacles. The
leaves of the tree correspond to the receiver antennas in
the SIMO system. They receive the sequences that we
are able to observe in the species today. The information
is transmitted over the branches of the phylogenetic tree,
equivalent to the signal paths in terms of communica-
tions theory. Errors (mutations), erasures and insertions
occur during transmission.

5.3 Modeling evolution

Commonly, the evolution can be described by a set of
parameters [28]. We abstract evolution by a phyloge-
netic tree T = {τ , t′} that we specify by a topology τ and
the respective branch lengths t′ accounting for the phy-
logenetic relationships and the evolutionary distances
among the species. A continuous time stationary Markov
process with state space X = {A,C,G,T} describes the
mutation process. A rate matrix R defines this Markov
process and is related to the matrix of transition proba-
bilities between two nodes in the phylogenetic tree by

P(tu→v) = eRtu→v , (9)

where tu→v denotes the evolutionary distance between
the nodes u and v in the tree. The rate of substitutions at a
site is strongly dependent on its position along the DNA
sequence as some regions are under purifying selection

Ancestor

Species 1

Species 2

Species 3

Fig. 7 Left Phylogenetic tree relating three species as they
evolved from a common ancestor. Right A single input multiple
output scenario
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and thus evolve more slowly than neutral regions. In
terms of the phylogenetic description, we model rate
heterogeneity as a site dependent scaling parameter θi,
where i denotes the nucleotide position, working on the
lengths of the branches of the tree.

ti = θit′.

The thus influenced absolute evolutionary distances lead
to higher or smaller substitution probabilities according
to (9) and more or less conserved regions. In the follow-
ing, we parameterize evolution by the set ψ i containing
the parameters described above

ψ i = {R, τ , θit′}. (10)

Note that evolution is site dependent, theoretically each
site i could evolve differently. However, in practice over
large regions of the genome constant values for R and
T are assumed.

5.4 Estimation algorithm

Figure 8 shows the transmission model for evolution.
The single sequence {xi} is transmitted over the mul-
tipath channel evolution. At the receiver, we observe
the receive vector sequence {yi} consisting of the ances-
tral sequence as we observe it today in the genomes of
the considered species. The channel is characterized by
the transition probabilities py(yi|xi;ψ i) conditional on xi

and parameterized over ψ i. The channel is not constant
for all input sequences. Different genome regions have
been subjected to different substitution rates because
they are subjected to different natural selection pressure
dependant of the biological importance of the informa-
tion they carry. From this point of view, estimating the
conservation of a particular DNA region is equivalent
to the estimation of how good the transmission chan-
nel was in this region. We will introduce a detection
method which, in contrast to earlier approaches [17,24],
is independent of the assumption about neutral evolu-
tionary rates and which does not require a priori tun-
ing parameters. We propose a definition of conservation
that relies on the Kullback–Leibler distance to the well
defined maximum possible conservation that does not
allow for any mutations to occur [11]. From a communi-

Fig. 8 Information transmission in evolution

cation theoretic viewpoint, the maximum conservation
is equivalent to the case of noiseless transmission, i.e
the base xi is observed unchanged in all components of
the receive vector yi. In this situation, the channel shall
be specified by py(yi|xi;ψ0) and the receive vector yi
is distributed according to py(yi;ψ

0). For the compari-
son with the maximum conservation case, we estimate
the evolutionary model that maximizes the likelihood
of an ensemble of received vectors. In a sliding window
over the observed data Y i = [

yi−δ , . . . , yi+δ

]
, δ fixed, we

determine the evolutionary model ψ̂ i that most likely
led to the observed data. Assuming statistical indepen-
dence among the columns of Y i

ψ̂ i = arg max
ψ i

⎧
⎨

⎩

i+δ∑

j=i−δ

log(py(yj;ψ i))

⎫
⎬

⎭ . (11)

We calculate the probability mass function py(yi; ψ̂ i)

for a column parameterized by ψ̂ i and compare the
estimated distribution with the one corresponding to
the maximum conservation process using the Kullback–
Leibler distance

si = D
(

py(yi; ψ̂ i)||py(yi;ψ
0)

)
. (12)

si is the score assigned to the column in the middle of
the sliding window. Note that a low score corresponds
to a good channel and thus a highly conserved region. A
score of zero is best explained (in the ML sense) by the
process of maximum conservation. Gaps are treated as
missing data causing the algorithm to consider only the
subtree of species where data is available. A comparison
of the results that we obtained with our method is pre-
sented in the next Section. Figure 9 shows our estimation
of conservation and the underlying genomic data, and
alignment of the genomes of five species. Mutations are
highlighted by colored background. Our distance based
score signal reflects the different degrees of conserva-
tion as one can observe by comparing the signal course
with the data. Results on synthetic data suggest that our
method exceeds the performance of established tools
from bioinformatics [11].

5.5 Conserved non-genic sequences

Two to three years ago, when genomes from multiple
sequences became available in high quality, the compar-
ative methods revealed an unexpected feature of the
DNA. It has been discovered that a lot of the con-
served genome regions are non-genic, not coding for
proteins [8,24]. These regions are believed to have
important functions and are still poorly understood. If
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Fig. 9 Top the conservation
scores indicating conserved
regions. Bottom visualization
of the respective genomic
data, a small section of an
alignment of the genomes of
human, mouse, rat, chicken
and fugu
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an error correcting code exists on the genome sequence
level, we expect the conserved non-genic regions to play
a fundamental role in its implementation. Using our
algorithm to identify conserved regions in the genome,
future work will concentrate on the analysis of these
conserved regions with respect to our hypothesis of an
error correcting code on the genome level.

6 Analogy between digital data transmission and
transcription initiation

In digital data transmission the data is often divided
into frames, whose header contains special patterns that
indicate the beginning of the message in order to main-
tain synchronization. These patterns, the “sync words”,
need to be detected reliably by the receiver. Similarly,
during transcription initiation—the first step of gene
expression—the RNA polymerase has to recognize the
promoter that indicates the beginning of a gene, see
Sect. 2.4. In bacteria the RNA polymerase is directed
to the promoter by the so called sigma factor. This
sigma factor recognizes two short (six basepairs long)
sequences separated by a spacer and positioned 35 and
10 basepairs (bp) before transcription start site (TSS).
Therefore they are called the −35 and −10 regions.
Hence, this process corresponds to a synchronization
with two sync words in digital data transmission, see
Fig. 10.

TSS-35 -10

Sigma factor

Fig. 10 Promoter detection by the sigma factor

6.1 Choice of the sync words in binary and quaternary
digital transmission

The sync words in digital data transmission have to be
chosen such that they satisfy the following two condi-
tions [2]: firstly, the probability of a random occurrence
of the pattern in the data stream is to be minimized;
secondly, the structure of the pattern should be such
that the preceding symbols cannot yield a shifted sync
word, as e.g. if the (binary) pattern is +1+1+1+1+1+1
there is a probability of 0.5 (assuming equally probable
symbols) that it is followed by a +1 which may lead
to a shifted synchronization. While the probability of a
random occurrence does not depend on the sequence
in case of independent symbols, the second condition
is to be analyzed using the aperiodic autocorrelation
function ϕss(τ ) of the sync word. ϕss(τ ) describes the
similarity of a sequence s = {s1, s2, . . . , sl} to itself for
every shift τ ∈ [−(l − 1); +(l − 1)]
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ϕss(τ ) =
l−|τ |∑

m=1

sm · s∗
m+|τ |, (13)

where s∗
m denotes the complex conjugate of sm. In order

to minimize the probability of shifted synchronizations,
the autocorrelation function of the sync word should
have a narrow maxima at τ = 0 and smallest possible
values for τ �= 0 [16]. In general, the autocorrelation
properties of a sequence are evaluated using the peak
sidelobe (PSL)

PSL = max
τ\{0}[ϕss(τ )], (14)

which should be as small as possible to minimize the
probability of false synchronizations.

6.2 Autocorrelation properties of E.coli promoter
sequences

As mentioned before, transcription initiation corre-
sponds to the process of synchronization used in digital
data transmission, since two sync words—the promoter
regions—need to be detected by the sigma factor. In
order to gain more insights into promoter detection, we
determine the autocorrelation properties of the −35 and
the −10 promoter region in the bacterium Escherichia
coli (E.coli) by adapting the autocorrelation function to
the quaternary alphabet of nucleotides. Therefore, we
have to redefine the product in (13) with respect to its
biological meaning, i.e. such that it rates the effect of
nucleotide matches and mismatches on the synchroni-
zation quality of the sequence. We rate an agreement
of nucleotides by 1, a divergence of nucleotides by the
negative value − 1

3 (i.e. punishing mismatches with an
overall weight of −1). This is done by introducing a mis-
match score matrix D

A C G T

D =

⎛

⎜⎜⎜⎜⎜⎝

1 − 1
3 − 1

3 − 1
3

− 1
3 1 − 1

3 − 1
3

− 1
3 − 1

3 1 − 1
3

− 1
3 − 1

3 − 1
3 1

⎞

⎟⎟⎟⎟⎟⎠

A

C

G

T

, (15)

and by replacing the product in (13) by the respective
matrix values

ϕss(τ ) =
l−|τ |∑

m=1

D(sm, sm+|τ |). (16)

6.3 Results

The consensus (i.e. most frequently detected) sequences
are TTGACA for the −35 region and TATAAT for the −10

region, respectively (see e.g. [13]). Figure 11 shows the
autocorrelation functions of the two sequences. Calcu-
lation of the peak sidelobe for both promoter regions
according to (14) results in

PSL−35 = ϕss(|τ | = 2) = 0,

PSL−10 = ϕss(|τ | = 3) = 1.67.

To rate the autocorrelation properties of the pro-
moter sequences, we calculated the values of PSL for
all 46 = 4, 096 possible nucleotide sequences of length
6. The mean value and the standard deviation of the
resulting values are listed in Table 2.

It can be seen that the PSL of the −35 promoter
sequence is highly below average, whereas that of the
−10 promoter sequence lies above the mean value. In
fact, only 1.15% of all possible sequences of length
6 have a better or equal PSL than the −35 region.
Opposed to that, 79.37% of all sequences have a bet-
ter or equal value of PSL compared to the −10 region.
This fact suggests that nature employs a synchronization
in two steps: firstly, the −35 region has to be detected out
of all possible sequences with high accuracy to enable
a reliable localization of the close-by transcription start
site, see Fig. 12. In the second step, both regions are
detected simultaneously, see Fig. 10, however, due to
the synchronization conducted before, the sigma factor
only needs to detect the −10 region out of around seven

−5 −4 −3 −2 −1 0 1 2 3 4 5
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0

1

2

3

4

5

6

τ

ϕ
ss

(τ
)

 

 
-35 consensus TTGACA
-10 consensus TATAAT

Fig. 11 Autocorrelation functions of −35 and −10 consensus
promoter

Table 2 Mean and SD of PSL for all possible sequences of length 6

PSL ratio

Mean 1.30
SD 0.76
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TSS-35 -10

Sigma factor

Fig. 12 Pre-synchronization during promoter detection

sequences based on the shape and limited deformability
of the sigma factor that yield a variable spacing of 15 to
21 bp between the two promoter regions. Therefore, the
sequence of the −10 promoter region is less important
for synchronization. This brings up the conclusion that
the two promoters might have evolved in a way to serve
different tasks: while the −35 region is indispensable for
indicating the close-by transcription start site and, thus,
needs to have excellent synchronization properties, the
sequence and structure of the −10 region seems to play
a more important role during later steps of transcrip-
tion initiation like DNA unwinding and opening, which
require AT-richness (i.e. a high content of the nucleo-
tides A and T) [23].

7 Conclusions

The newly available sequence data makes application
of information theory to molecular genetics statistically
feasible. Concepts like mutual information based
distance measures combined with source coding can
be applied to phylogenetic classification. Mutual infor-
mation can be used for gene mapping of complex dis-
eases. Additionally, communication theoretic models of
information transmission can be used to search for error
correcting codes in the genome or to gain better under-
standing of the molecular processes in the cell like the
transcription initiation.
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