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ABSTRACT

In this paper, we investigate the information theoretic bounds
of the channel of evolution introduced in [1]. The channel of
evolution is modeled as the iteration of protein communica-
tion channels over time, where the transmitted messages are
protein sequences and the encoded message is the DNA. We
compute the capacity and the rate-distortion functions of the
protein communication system for the three domains of life:
Achaea, Prokaryotes and Eukaryotes. We analyze the trade-
off between the transmission rate and the distortion in noisy
protein communication channels. As expected, comparison
of the optimal transmission rate with the channel capacity in-
dicates that the biological fidelity does not reach the Shan-
non optimal distortion. However, the relationship between
the channel capacity and rate distortion achieved for differ-
ent biological domains provides tremendous insight into the
dynamics of the evolutionary processes. We rely on these re-
sults to provide a model of protein sequence evolution based
on the two major evolutionary processes: mutations and un-
equal crossover.

Index Terms— Biological communication system; Chan-
nel capacity; Rate-distortion theory.

1. INTRODUCTION

The genetic information storage and transmission apparatus
resembles engineering communication systems in many ways:
The genomic information is digitally encoded in the DNA.
By decoding genes into proteins, organisms come into be-
ing. The protein communication system, proposed in [1],
[2] and shown in Fig. 1, is a communication model of the
genetic information storage and transmission apparatus. The
protein communication system abstracts a cell as a set of pro-
teins and models the process of cell division as an informa-
tion communication system between protein sets. Using this
mathematical model of protein communication, the problem
of a species’ evolution will be represented as the iteration of
a communication channel over time.
The genome is viewed as the joint source-channel en-

coded message of the protein communication system and hence
∗Nidhal Bouaynaya is currently in the Department of Systems Engineer-

ing at the University of Arkansas at Little Rock.

can be investigated in the context of engineering communica-
tion codes. In particular, it is legitimate to ask at what rate
can the genomic information be transmitted. And what is the
average distortion between the transmitted message and the
received message at this rate? Shannon’s channel capacity
theorem states that, by properly encoding the source, a com-
munication system can transmit information at a rate that is
as close to the channel capacity as one desires with an arbi-
trarily small transmission error. Conversely, it is not possi-
ble to reliably transmit at a rate greater than the channel ca-
pacity. The theorem, however, is not constructive and does
not provide any help in designing such codes. In the case
of biological communication systems, however, evolution has
already designed the code for us. The encoded message is
the DNA sequence. Comparison of the genomic transmis-
sion rate with the channel capacity will reveal whether the ge-
nomic code is efficient from an information theoretic perspec-
tive. However, even if the channel capacity is not exceeded,
we are assured that biological communication systems do not
rely on codes that produce negligible errors since the level of
distortion presented must account for evolutionary processes.
It is, therefore, interesting to ask ourselves whether biologi-
cal communication systems maintain an optimal balance be-
tween the transmission rate and the desired distortion level
needed to support adaptive evolution. Rate-distortion theory
analyzes the optimal tradeoff between the transmission rate,
R(D), and distortion, D, in noisy communication channels.
Given the fidelity, D, present in biological communication
systems, comparison of the genomic transmission rate with
the optimal rate R(D) can be used to determine whether or
not the genomic code achieves the optimal rate-distortion cri-
teria. Moreover, by equating the optimal rate R(D) with the
channel capacity, C, we can determine whether the biological
fidelity, D, reaches the Shannon optimum distortion. In this
paper, we will only compare the channel capacity and rate
distortion functions of a single source memoryless protein
communication system, modelling asexual reproduction. The
two-source protein communication system, modelling sexual
reproduction, is more involved mathematically and will not
be addressed here.
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Fig. 1. Protein communication system

2. PROTEIN CHANNEL CAPACITY

Assuming a first-order Markov channel, the protein commu-
nication channel is characterized by the probability transition
matrix, Q = {qi,j}1≤i,j≤20, of the amino acids. In this pa-
per, we use two different probability transition matrices: Day-
hoff’s Point Accepted Mutation (PAM) matrices [3], and a
first-order Markov transition probability matrix P [1], [2]. An
element of a PAM matrix, Mij , gives the probability that the
amino acid in row i will be replaced by the amino acid in col-
umn j after a given evolutionary interval which is interpreted
as the evolutionary distance of PAM matrices. The first-order
Markov transition probability matrix P is constructed from
the genetic code using a point mutation rate α, which rep-
resents the probability of a base interchange of any one nu-
cleotide and is assumed to be constant over time (see [1] for
the computation of P).
The capacity of a channel is the maximum rate at which

information can be reliably conveyed by the channel. It is
defined as

C = max
p∈P n

I(p,Q) = max
p∈P n

∑
j

∑
k pjQjk log

Qjk∑
k pjQjk

,

(1)
where Pn = {p ∈ R

n : pj ≥ 0 ∀j;
∑

j pj = 1} is the
set of all probability distributions on the channel input, Q is
the probability transition matrix of the channel, and I(p,Q)
is known as the mutual information between the channel in-
put and output. Evaluation of the channel capacity involves
solution of a convex programming problem. In most cases,
analytic solutions cannot be found. Blahut [4] suggested an
iterative algorithm for computing the channel capacity.
Figure 2(a) (resp. 2(b)) shows the capacity of the pro-

tein communication system as a function of the evolutionary
distance of PAM matrices (resp. point mutation rate α). As
expected, the channel capacity decreases to zero as the evolu-
tionary distance or the point mutation rate α increases. This
result has different ramifications on bioinformatics than on
communication engineering: In engineering, it is interpreted
as a loss of information after a great number of transmissions.

And no information can be obtained at the output after in-
finite transmissions. The reason is that, in communications,
only the initial message is used to convey information and not
the channel. In bioinformatics, on the other hand, the output
message captures the information of the channel (i.e. the mu-
tations) regardless of the initial message. In particular, a par-
ent organism cannot transmit reliably (channel capacity zero)
its genetic information to its offspring of many generations
no matter how small the point mutation rate is as long as it
is not zero. After a long enough time of evolution, the final
distribution of amino acids in offspring only depends on the
channel characteristics regardless of the parent organism. It is
also interesting to observe that organisms with lower mutation
rates have higher channel capacity, and therefore their genetic
information can be reliably transmitted at a higher rate.
Having computed the capacity of the protein communica-

tion channel, a comparison of the genomic transmission rate
with the channel capacity will reveal whether the genomic
code is efficient from an information theoretic perspective.

3. PROTEIN RATE DISTORTION

The rate distortion function, R(D), is the effective rate at
which the source produces information subject to the con-
straint that the receiver can tolerate an average distortion D.
A distortion matrix with elements ρi,j specifies the distortion
associated with reproducing the ith source letter by the jth

reproducing letter. The rate-distortion function for discrete
memoryless source is defined as

R(D) = min
Q∈QD

I(p,Q) = min
Q∈QD

∑
j

∑
k pjQjk log

Qjk∑
k pjQjk

,

(2)
where QD = {Q ∈ R

n × R
n :

∑
k Qjk = 1, Qjk ≥

0, d(Q) ≤ D}, d(Q) =
∑

j

∑
k pjQjkρjk, and p = {pj}

is the probability vector of the channel input.
We define the distortion between a pair of amino acids

as their distance in the Principal Component Analysis (PCA)
plane obtained from 7 physico-chemical properties (volume,
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Fig. 2. Channel Capacity: (a) Channel capacity v.s. the evolutionary distance of PAM matrices; (b) Channel capacity v.s. the
point mutation rate α
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Fig. 3. Plot of the amino acids on the first two components of the PCA analysis. The amino acids are labelled by their one-letter
standard abbreviations.

bulkiness, polarity, PH index, hydrophobicity and surface area).
The amino acid data was obtained from [Chapter 2] [5]. The
result of PCA analysis is shown in Fig 3. The amino acid
probability distributions in Archaea, Bacteria and Eukaryote
were experimentally computed in [6]. Using Blahut’s algo-
rithm for rate-distortion functions [4], we compute the rate-
distortion curves for Archaea, Bacteria and Eukaryote. They
are displayed in Fig. 4.
Figure 4 reveals two distinct regions: a low distortion re-

gion (0 ≤ D ≤ 1.4) and a high distortion region (1.4 ≤ D ≤
7.5). In the low-distortion region, the R-D curve of Eukary-
otes is the highest followed by Bacteria, then Archaea, i.e.,
we have

R(D)Ar < R(D)Ba < R(D)Eu, ∀ 0 < D < 1.4, (3)

whereR(D)Ar, R(D)Ba andR(D)Eu denote the rate-distortion

curves of Archaea, Bacteria and Eukaryotes, respectively. At
about D ≈ 1.4, the above order switches to

R(D)Eu < R(D)Ba < R(D)Ar, ∀ 1.4 < D < 7.5. (4)

The distortion can be associated with the evolutionary dis-
tance. That is a low distortion region would correspond to
small evolutionary distances, whereas the high distortion re-
gion corresponds to larger evolutionary distances. It is quite
interesting to observe that for small evolutionary distances (or
at the beginning of life), Archaea was the most efficient or-
ganism from an information theoretic perspective, followed
by Bacteria then Eukaryotes. Specifically, given a fixed trans-
mission rate (of the genetic information), Archaea would have
the least distortion. At about D ≈ 1.4, the three R-D curves
intersect and reverse orders. So, for longer evolutionary dis-
tances, Eukaryotes maintain the most biological fidelity among
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Fig. 4. Rate-distortion curves for Archaea, Bacteria and Eukaryotes: (a) low distortion region; (b) intersection region; (c) high
distortion region.

the three domains.
The actual average distortion over the protein communi-

cation channel is defined as

D =
∑

j

∑

k

pjqjkρjk, (5)

where Q = {qi,j} is the probability transition matrix of the
channel, p = {pj} is the distribution of the channel input and
ρi,j is the distortion between amino acids i and j. By trial and
error Dayhoff et al. [3] found that the 250 PAM matrix works
well for scoring of actual protein sequences. At this evolu-
tionary distance (250 substitutions per hundred residues) only
one amino acid in five remains unchanged. Table 1 displays
the actual average distortion for Archaea, Bacteria and Eu-
karyotes, where PAM250 was used as the probability transi-
tion matrix of the channel. Observe that the biological rate-
distortion values R(D), corresponding to the average distor-
tions given in Table 1, are less than the Shannon channel ca-
pacity (C = 0.8197 > R(D)). So, from rate-distortion the-
ory, we can ascertain that the genetic information is encoded
so that the system reproduces the initial input with fidelityD.
In particular, the biological communication system does not
rely on codes that produce negligible errors since the level of
distortion present must account for evolutionary processes.
The formula of the rate-distortion function given in Eq.

(2) is valid only for discrete-time stationary and memoryless
sources. For discrete-time stationary sources with memory,
Wyner and Ziv derived bounds for their rate-distortion func-
tion [7] as follows:

R(D) − Δ ≤ R∗(D) ≤ R(D) , (6)

where R(D) is the rate-distortion function of the memoryless
source with the same marginal statistics, Δ is a measure of
the memory of the source and is independent of the distor-
tion measure and the distortion value D. So, the R-D curves
for a source with memory are always shifted down compared
to the R-D curves of the corresponding memoryless source.
Moreover, the shift is a function of the source and not the

Table 1. Average Rate-Distortion for three domains of life
Archaea Bacteria Eukaryote

Distortion 9.1491 8.9964 8.8979

Table 2. Scaled norm of odd moments
Archaea Bacteria Eukaryote

scaled norm 5.0653 73.5401 1.0000

distortion. Thus, the biological rate-distortion values R∗(D)
corresponding to the average distortions given in Table 1 are
still less than the Shannon channel capacity and the bounds
on the R-D curves still exhibit the same reversal phenomenon
depicted in Fig. 4.

3.1. Evolutionary Model: Amino Acid Distribution

It is well known from information theory that the Gaussian
input maximizes the mutual information in an additive Gaus-
sian noise [8], i.e.,

I(X; X + Z∗) ≤ I(X∗; X∗ + Z∗), (7)

where I(a, b) is the mutual information between input a and
output b, X is the input, Z is the channel noise and ∗ denotes
Gaussianity. We will show that the amino acid distribution
in Eukaryotes is “more Gaussian” than Bacteria and Archaea.
Since a distribution is uniquely characterized by the set of its
moments and given that the odd moments of the Gaussian dis-
tribution are identically zero, we compute the odd moments
of the amino acid distribution for the three branches of life
[6]. Table 2 displays the scaled norm of the first 4 odd mo-
ments (3rd, 5th, 7th and 9th) for Archaea, Bacteria and Eukary-
otes. The odd moments norm of Archaea (resp. Bacteria)
are 5 (resp. 73) times higher than Eukaryotes, asserting that
the amino acid distribution of Eukaryotes is “more Gaussian”
than the two other groups of life. To explain the low-distortion
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region in Fig.4 and the switching-over of the R-D curves,
we have to dig deeper into the evolutionary processes, which
shaped the three groups of life.

3.2. Evolutionary Process: Mutation and Crossover

It is widely accepted today that the main driving forces of evo-
lution are mutations and unequal crossover 1. Furthermore,
Archaea and Bacteria rely mostly on mutations for adaptabil-
ity and survival. So, we can fairly postulate that mutations
drive the evolution of Archaea and Bacteria whereas unequal
crossovers drive the evolution of Eukaryotes. A mutation in-
volves one nucleotide or a very short sequence of nucleotides.
Therefore, it induces much less modifications to the genome
sequence than any unequal crossover. So at the beginning of
evolution, the distortion caused by mutations is small com-
pared to the distortion caused by unequal crossovers. How-
ever, with time, mutations accumulate much faster than the
rare unequal crossovers. So, the distortion caused by mu-
tations exceeds, over time, the distortion caused by unequal
crossovers. This implies higher fidelity, over time, in Eu-
karyotes than Bacteria and Archaea. For example, assume
that mutations and unequal crossovers follow a Non Homo-
geneous Poisson Process (NHPP) within the genome. The
NHPP process is a Poisson Process with a time-dependent
rate parameter, λ(t). The Probability that there are n events
in the interval (r, r + s) is calculated as follows

P (N(r, r + s) − N(r) = n) =
e−

∫ r+s
r

λ(t) dt(
∫ r+s

r
λ(t))n

n!
(8)

It can be shown that there exist parameters λ(t)mutation

and λ(t)unequal crossover representing different functions of
time which induce the trend of the R-D curves observed in
Fig. 4.

4. CONCLUSION

By modeling evolution as the iteration of a protein commu-
nication system over time, we were able to study it from an
information theoretic perspective. Investigation of the biolog-
ical communication channel capacity and the rate-distortion
curves of the three branches of life, Archaea, Bacteria and Eu-
karyotes, reveals that the biological fidelity D does not reach
the Shannon optimum distortion. Furthermore, we relied on
these results to provide an evolutionary model of the three
groups of life based on mutations and unequal crossovers.
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