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ABSTRACT A statistical method of comparative sequence
analysis that combines horizontal and vertical correlations
among aligned sequences is introduced. It is based on the
analysis mainly of quartet combinations of sequences consid-
ered as geometric configurations in sequence space. Numerical
invariants related to relative internal segment lengths are
assigned to each such configuration and statistical averages of
these invariants are established. They are used for internal
calibration of the topology of divergence and for quantitative
determination of the noise level. Comparison of computer
simulations with experimental data reveals the high sensitivity
of assignment of basic topologies even if much randomized. In
addition, these procedures are checked by vertical analysis of
the aligned sequences to allow the study of divergences with
positionally varying substitution probabilities.

Introduction

Sequence analysis of nucleic acids has become routine. As
data accumulate at an ever increasing rate, we are witnessing
the origin and growth of a new kind of library: A data bank
accessible by a worldwide computer network to provide the
sequence of any archived gene. In this situation, it is
important to have reliable methods for comparative sequence
analyses that uncover the kinship relationships hidden in sets
of sequences.
We introduce here a concept of comparative sequence

analysis of nucleic acids that we call statistical geometry. It
is particularly useful for the analysis of "old" relationships
that have randomized to a large extent. It provides (i) a test
for the uniformity of distance assignment through positional
checking of substitution probabilities, (ii) reliable assignment
of the topology of divergence by partitioning distances into
segments according to vertical coincidences in an alignment
and the construction of geometries that correlate these
segments, (iii) statistical analysis of all distance subclasses
and assessment ofthe accumulated "noise" that may blur the
basic topology of divergence, and (iv) an estimate of the
relative temporal order of divergence based on both the basic
topology and its superimposed noise.

Row and Column Statistics of Aligned Sequences

For any pair of aligned sequences the (Hamming) distance is
defined as the number of positions that are occupied by
different nucleotides. In this way, for any set of n aligned
sequences, the associated system of distances induces the
structure of a metric space defined on this set. In comparative
sequence analysis, distance is considered to be a measure of
temporal evolutionary separation, tacitly supposing that

substitution probabilities are uniform and time invariant at all
positions. Neither assumption is realistic.

Nucleotide substitution at a particular position depends (i)
on the mutation rate of that particular nucleotide and (ii) on
the probability of selective fixation of the mutation after it has
occurred. Transitions-i.e., changes within a base class of R
(purines) or Y (pyrimidines)-are usually found more fre-
quently than transversions-i.e., changes that alter the base
class. Kimura (1) has devised an equation that takes different
rates into account; it has been generalized (2) to apply to any
possible kind of substitution. However, this kind of muta-
tional specificity is a small part of the metric nonuniformities
usually encountered. Variability may range from total inva-
riance at some positions to hypervariability at others. It is
predominantly related to the acceptance of mutations, which
depends on functional constraints in a subtle manner.
To demonstrate the consequences of metric nonuniformi-

ties, let us consider parallel divergence. A set of n sequences
based on four different symbols is assumed to have separated
from a common precursor at zero time and subsequently
evolved in parallel. Time is related to a mutation distance A
that measures all accepted mutations (including parallel and
reverse) in a sequence comprising v positions. Supposing
uniform substitution rates, we have three separation dis-
tances (3): (i) the average distance of individual pairs i and k,

dik = 3v/4{1 - exp(-8A/3v)}; [1]

(ii) the average distance of individuals from the precursor
at A/v = 0 (i.e., zero time)

dio = 3v/4{1 - exp(-4A/3v)}; [2]

(iii) the distance between the master (m) or consensus
sequence and the precursor

dmo =

v/2 erfc{[ n/6 1/2
{11 + 3 exp(-4A/3v)} {1 - exp( - 4A/3v)}

x [3 exp(-4A/3v) - (3/2n)1/2}, [3]

where erfc {x} means complementary error function:

2
J exp( - t2)dt.

r1/2 X

The master or consensus sequence has the nucleotide that
appears most often at each position. Fig. 1 shows computer-
simulated curves for d;,, d3,, and dmO as functions of A/lv for
n = 30 sequences of length v = 30.
What is surprising about these curves is how well the

master sequence resembles the initial sequence even when
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FIG. 1. Average pair distance dik, average distance of individual
from initial sequence dK and distance between initial and master
sequence d,,,0 as functions of relative mutational distance A/v.

Curves represent computer simulations for n = 30 and v = 30 and
follow undistinguishably the analytic expressions. A, Experimental
values of tRNA families (reduced to sets of 30 sequences, each
composed of 30 independently variable positions). The three lower
triangles give the spread of experimental distances of three master
sequences (deviations from average), indicating finite d,,,o values and
thereby contradicting the model of positionally uniform divergence.

the pair distances are near the limit of complete randomiza-
tion. As long as dMO = 0, we may therefore replace the
unknown do by the (detectable) dim-i.e., the average dis-
tance between individual and master sequences. Hence, we
have two measurable parameters dik and dim that allow us to
calibrate a A/v value for parallel divergence.
Now we consider two extreme types of nonuniformity of

substitution. First, suppose that A of the v positions in all n
sequences appear to be totally invariant (beyond the tail of
the Gaussian distribution that gives the fraction of positions
that by chance have not changed). The curves, according to
Eqs. 1 and 2 and dio - di,, would now level off at

3 3
-v = (v- -A) = ,d [4]
4 4 2dim dik'

Second, let us assume p hypervariable positions that are
entirely randomized. Now dino cannot be zero; we rather
would expect a dno value of 3/4p. The distance d0o itself is not
measurable. However, if dino were equal to zero, then master
sequences taken from related families of sequences should
turn out to be identical. The experimental values presented in
Fig. 1 indicate that both invariant and hypervariable positions
are present in tRNA families-possibly in addition to several
degrees of "normal" variability-and that at least unweight-
ed Hamming distances therefore do not reveal the true
divergence.

Is there a way to check for metric (non)uniformity?
Distances result from adding up the differences between two
sequences. This gives a number and irretrievably loses all
positional information. To make use of positional information
we have to analyze the alignment vertically rather than
horizontally. In vertical analysis (3, 4), the abscissa gives the
number of nucleotides in a column that are not identical
with the consensus nucleotide and the ordinate gives the
number of positionsft8) in the alignment corresponding to the
abscissa value (8). The simulation starts at A/v = 0, where
all n sequences are still identical. We have simulated parallel
divergence by using uniform substitution probabilities and we
recorded the obtained vertical distributions at different in-
stances A/v. The initial singular peak quickly turns into a
Gaussian that travels along the abscissa until-for large A/v
values (here, A/v = 1)-it reaches a limiting position near
Y2n, valid for RY sequences, or 3/4n for AUGC sequences.
(Tree-like divergences do not yield simple Gaussians and
depend on tree shapes.)

Fig. 2 illustrates the distribution obtained for 40 tRNAs
from Halobacterium volcanii. The result, typical for all tRNA
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FIG. 2. Column divergence statistics of a family of 40 tRNA
sequences (R, Y) ofH. volcanji (5). The distribution f(S) refers to the
present state of divergence S. It does not resemble a Gaussian form,
as would be expected for uniform substitution probabilities. The peak
at abscissa value zero indicates a large fraction ofconstant positions.
The 30 variable positions in these sequences show all degrees of
variance up to complete randomization.

families (with parallel divergence), is self-explanatory: There
is no uniform metric! However, from the diagram we are at
least able to identify invariant, normally variable, or hypervar-
iable positions.
Having demonstrated the limitations of distance space

analysis, we now ask for an approach that takes into account
both horizontal and vertical kinship relationships.

Sequence Space and Distance Metric

The concept of sequence space was introduced in coding
theory by Hamming (6). Maynard-Smith (7) and Rechenberg
(8) proposed its application to proteins and nucleic acids. The
idea is implicitly involved in the quasi-species model devel-
oped by one of the authors (9) in cooperation with Schuster
(10) and has been treated explicity in connection with
problems of value landscapes (11-13).
We begin with binary sequences, where sequence space, of

dimension v, locates points attributed to each one of the 2'
possible sequences of length v in such a way that all kinship
neighborhoods are correctly represented.

In Fig. 3 the concept is developed iteratively for dimen-
sions one to four. If iteration is repeated v-fold, the final
diagram would show a hypercube of dimension v having 2V
sequences located on its corners and v2'I-' edges connecting
nearest neighbors.A A neighborhood may also include points
that can be reached directly by a k-error mutation jump. In
nucleic acids, easily realizable values for k may range from 3
to 10 depending on population size and sequence length. The
features of sequence space that distinguish it from geometric
spaces amenable to our apprehension and that prove to be
important for understanding the nature ofevolution are (i) the
enormous "volume" encompassing 2" discrete points, (ii) the
tremendous connectivity providing direct access from any
point to Jk = 1 (K) neighboring points of distance ok, and (iii)
the shortness of detour-free paths between any two points in
the hypercube. Their length never exceeds the dimension v.

If four symbol classes (i.e., four nucleotides) are consid-
ered, the dimensionality increases to 2v accounting for 4" =

22v possible sequences oflength v. A sequence is identified by
two successive binary decisions: (i) assignment of the base
classes R and Y to each position, requiring a v-dimensional
hypercube; and (ii) assignment of the specific base, requiring
for each point in the first hypercube a subspace that again is
a hypercube of dimension v. Application of the sequence

*Note that the Hamming distance on the hypercube {0,1}" c R' of
{0,1} sequences coincides not with the Euclidean metric in R' but
with the "city block metric," which measures distances as every
one would do in Manhattan according to the number of blocks one
has to cross to get from A to B.
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FIG. 3. The iterative buildup of sequence space, starting with one position. Each additional position requires a doubling of the former diagram
and to connect corresponding points in both diagrams (which represent nearest neighbors). The final hypercube of dimension v contains as
subspaces ( )2,k hypercubes of dimension k.

space concept to evolution requires the introduction of a
value topography. Value landscapes have rugged fractal
structures, causing populations to accumulate on ridges and
peaks in the mountainous regions (12, 13), which is the deeper
reason for the metric nonuniformity commonly found in
comparative sequence analysis.

Statistical Geometry

Statistical geometry as such can be exemplified with mere
distance relationships. Two sequences define one distance;
three can always be fitted into a tripod diagram, because they
yield three explicit equations for the three unknown seg-
ments. The tripod, however, may be unrealistic, because the
precursor, the tripodal node, may not have existed. The truth
then emerges by adding a fourth sequence. Four sequences
define six distances and hence match a diagram that, in
general, has six segments, as shown in Fig. 4a. The three
types of segments can be obtained from

AB + CD = a + b + c + d + 2x = S (small)

AC + BD = a + b + c + d + 2y = M (medium)

AD + BC = a + b + c + d + 2x + 2y = L (large),

as 2x = L - M, 2y = L - S, and a + b + c + d = S + M
- L.
The diagram reduces to an ideal bundle if both x and y are

zero and to a tree-like dendrogram, with finite branching
distance y, if only x is zero. The general "net" form in Fig.
4a is due to the presence of reverse and parallel mutations,

By

with x being a measure of deviation from tree-likeness.
(Likewise, x and y together measure the deviation from ideal
bundle-likeness.) For partly randomized bundles, x and y are
nonzero and of similar magnitude, with x (by definition) being
the smaller of both parameters.
Why do we call this method statistical geometry? There are

(4) different quartets that can be formed from a set of n
sequences (e.g., 27,405 for n = 30 sequences). Hence, the
averages of x, y, and ¼14(a + b + c + d) for a set of n
sequences usually are statistically well-defined parameters.
If a tree is constructed by compromises that yield an optimal
fit, and x/y average values of -0.5 or higher are found, one
should be suspicious. Randomization then has proceeded so
far that a tree cannot be discriminated from a bundle. On the
other hand, one can prove mathematically (ref. 14; see also
ref. 15 and references therein) that, if in a set of more than
four sequences all x values are zero while 9 is nonzero, the
total set has an exact tree-like topology. Unfortunately,
statistical geometry based on distance only is not very
sensitive in differentiating topologies, the main shortcoming
being neglect of positional information. As explained above,
such information is available from order relationships in
sequence space.

In sequence space formally the procedure is analogous to
that in distance space: For each quartet of sequences, we
analyze the optimal network connecting the four sequences
in sequence space and try to reconstruct a geometry that is
representative for the whole family of sequences. We begin
with the case of binary (R, Y) sequences (Fig. 4b). There are
eight distinguishable classes of positions in three categories:
0, all four sequences having equal occupation; 1, one se-
quence differing from the three others (a, f3, 'y, 8); and 2, two

A

3d ¼

B

FIG. 4. Representative geometries of quartet combinations of sequences in distance space (a), RY sequence space (b), and AUGC sequence
space (c).
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sequences having pairwise equal occupation (1, m, s). The last
category can be realized in three different ways, defining
three box dimensions, which we order according to their length:
l = large, m = medium, s = small. We may assign distance
sums referring to the three categories: d1 = a + P + y + 8, d2
= 1 + m + s, defining do as v - d, - d2. Ideal bundles require
1, m, and s to be zero for the whole set, while ideal trees possess
a nonzero I, but all m and s values are equal to zero. If the
average valueT is large compared to both mi and s (the average
being taken over all quartets), the distribution is tree-like; if l +
s 2m, the distribution represents a bundle that is partly
randomized; if, in addition, m ¼-{a + (3 + Y + E},
randomization has proceeded so far that the set is equivalent to
a highly interwoven net. The relative magnitudes ofl, s, mi, and
¼4{1++ + + 8} allow a much more sensitive assignment of
topologies and degrees of randomization than distance dia-
grams. Moreover, sequence space diagrams yield more reliable
conclusions about randomization than distance diagrams do (cf.
Fig. 5 a and b).
For a large set of sequences, there is a very sensitive

method to distinguish trees from bundles even if randomiza-
tion has proceeded appreciably. We go back to the alignment,
mix randomly all symbols in vertical columns without ex-
changing any positions horizontally, in which case the master
sequence remains unchanged as well as dik and dim. If the
parameter l + s - 2mi decreases toward zero with increasing
mixing, and if this decrease is significant as compared to its
fluctuations, residual tree-likeness was present. (Before it
was destroyed by mixing.)
As the next step, we consider sequence space diagrams

with four symbols specifying true base sequences (Fig. 4c).
Now there are five categories of distance segments, equiv-
alent to the five poker combinations: 0, four ofa kind; 1, three
of a kind; 2, two pairs; 3, one pair; 4, no pair. Counting
numbers of positions in each category defines the distance
sums d1 to d4 with do being v - d, - d2 - d3 - d4. There
are multiple contributions to d1, d2, and d3, with d1 being the
sum of the four protrusions where either A, B, C, orD differs

C/
18

A

A

24,5 ~~~~ ~~37
sb4,5~ ~ ~ 3724

B1 ,Z

from the rest, d2 comprising the three box dimensions (each
separating one of the three pair combinations), and d3
summing up the six possible combinations with one pair (of
which five combinations always separate one sequence from
any of the three others). Fig. 4c represents an idealized
geometry of a randomized parallel divergence in which the
distance categories d1 to d4 are represented by their aver-
ages-i.e., not distinguishing the individual contributions.
An ideal tree requires all segments-except the four protru-
sions belonging to class 1 and one of the three box segments
of class 2-to be zero (4, 16, 20). Fig. Sc, for influenza virus,
exemplifies such a case of an almost ideal tree, where two of
the box dimensions as well as the triangular planes are very
small. A fairly randomized distribution, a family of40 tRNAs
of H. volcanii, is shown in Fig. Sd. The polyhedral form
(categories 3 and 4) dominates.

Fig. 6, in which the five distance categories are plotted as
functions of A/l, reveals the gain in sensitivity. [The curves
were obtained by computer simulations that agree with
analytical forms reported elsewhere (21).] While distance
plots generally level off for A/v > 0.5 (this holds for dik, dim,
and ¼14{a + b + c + d}as well as for x and _) and hence do
not allow one to assign reliable A/v values to corresponding
experimental distances, there is now a range of A/lv for each
of the five distance categories up to Al/p 1, where certain
segments, and in particular certain ratios of segments, re-
spond sensitively.

Further refinement is possible and, in evaluating experi-
mental data for tRNAs, turned out to be crucial. The four
symbol sequence space analysis rests on the assumption that
base changes have equal probabilities, which is not true.
Transitions may occur more frequently than transversions.
Distinguishing transition and transversion probabilities de-
fines eight distance categories dik, where index i refers to the
above classification (0 to 4) in AUGC space, while index k
refers to classification (0 to 2) in RY space (i.e., counting
tranversions only). The eight resulting categories are doo, d1o,
d11, d20, d22, d31, d32, and d42. The relationships react

hAC

'D

B ' ©3
FIG. 5. Examples of diagrams of statistical geometry. (a and b) Four individual 5S rRNAs in RY notation (16-18): A, Bacillus pasteurii; B,

Halobacterium salinarium; C, Anacystis nidulans; D, Methanococcus vanielli. (a) Distance space. (b) RY sequence space. The apparently ideal
dendrogram (a) is fictitious. The range of uncertainty of nodes is revealed more reliably in b. (c and d) Average diagrams of AUGC sequence
space. (c) Average quartet divergence (since 1933) of 16 sequences of the 890 nucleotides composing the neuraminidase gene of influenza A virus
(19). (The dimensions are not drawn in true proportions.) (d) Average quartet divergence of 40 tRNA sequences of H. volcanii (M.E., B.
Lindemann, M. Tietze, R.W.-O., A.D., and A. von Haeseler, unpublished data).
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FIG. 6. The five distance categories of quartets in AUGC
sequence space as functions of relative mutation distance A/v (in
percent). (Computer simulation for n = 30 sequences with v = 30
positions and uniform probabilities of substitution.)

sensitively to different substitution probabilities and hence
allow a clear assignment of data.

Discussion and Conclusions

The methods of statistical geometry introduced in this paper
are not just alternatives to existing methods of comparative
sequence analysis, they rather represent a new approach.
During the past 20 years, since the publication of the
landmark paper by Fitch and Margoliash (22), the construc-
tion of phylogenetic trees from sequence data has become
routine (23-27). The various methods differ essentially in
their constraints on optimization [such as maximum parsi-
mony (24) or operator invariants (26)], while for the optimi-
zation procedure efficient mathematical tools [such as sim-
ulated annealing (28, 29) or simulated evolution (30)] exist.
Our method addresses different questions entirely: it is not
meant to compete with but rather to complement existing
methods. First and above all it is designed to analyze
sequence families with parallel divergence (e.g., tRNAs).
However, it also provides useful interpretive guidelines for
the various tree constructing techniques, which usually start
from quartets of sequences (20). Their aim is not to improve
the matching of trees but to check the predicative power of
data. Scores of how well a tree construction fits distance data
have long been in use (31). The distance, as such, by its
stochastic and cumulative nature, has an inherent and irre-
ducible uncertainty. Hence, it is necessary to have an
independent check on the assumptions of quantitative anal-
ysis-e.g., metric uniformity or assessment of topology and
estimates of the strength of the conclusions drawn. This is
particularly relevant if comparative sequence analysis is
applied to early divergences such as the differentiation of the
genetic code. At high degrees of randomization, data can be
adjusted to fit nearly any topology. It is therefore important
to know how strong the conclusions are. The advantage ofthe
sequence space method is that its statistical nature, referring
to very large sets of data, allows reliable assessment of
averages and higher moments; the emphasis on relative
distance segments rather than on absolute overall distances

allows for internal calibration of divergence. Further advan-
tages obtained by combining horizontal and vertical relation-
ships are the sensitivity of analysis at larger degrees of
randomization and the possibility of taking different substi-
tution rates, caused by chemical or positional constraints,
into account. Statistical geometry may be generalized further
(21) to include correlations among more than four sequences
and to account for more than 4 symbols (e.g., for the 20
symbols of proteins).
The method has been applied to a large set of tRNA data

yielding clues to the early evolution of the genetic code
(M.E., B. Lindemann, M. Tietze, R.W.-O., A.D., and A. von
Haeseler, unpublished data). It may as well prove useful for
a study of other gene families such as viruses, interferons,
homeoboxes, or related genes in the immune system.

We thank P. Richterfor fruitful discussions and W. C. Gardinerfor
reading and critically reviewing the manuscript.
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