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Abstract- We consider the problem of estimating the parame-
ters of a convolutional encoder from noisy data observations, i.e.
when encoded bits are received with errors. Reverse engineering
of a channel encoder has applications in cryptanalysis when
attacking communication systems and also in DNA sequence
analysis, when looking for possible error correcting codes in
genomes. We present a new iterative, probabilistic algorithm
based on the Expectation Maximization (EM) algorithm. We
use the concept of log-likelihood ratio (LLR) algebra which will
greatly simplify the derivation and interpretation of our final
algorithm. We show results indicating the necessary data length
and allowed channel error rate for reliable estimation.

I. INTRODUCTION

We address a problem strongly related to cryptanalysis and
data security. In a reverse engineering context, an observer
wants to extract the transmitted information from a received
data stream without knowing all the parameters of the trans-
mission. The observed signal may have been corrupted by
noise during transmission. Even without employing advanced
protocols from cryptology, modem communication systems
are hard to decipher if the parameters of the different elements
of the transmission chain are not or only partially known.
Research on the reverse engineering of a channel encoder, as
a special subproblem, has been conducted for communication
systems [1], [2], [3], [4] and also for DNA sequences [5],
looking for possible error correcting codes in the genetic code.
Most of these approaches concentrate on linear block codes.
In this paper, we derive a new algorithm for the estimation
of encoder parameters of a convolutional code from a noisy
data stream. This problem has been considered before by
Rice [3] and later by Filiol [2], where an algebraic estimation
procedure has been proposed. A candidate is recovered from a
subsequence of bits that is hopefully unaffected by noise and
then tested for significance on the whole observed sequence.
However, if no noisefree subsequence exists for which the pa-
rameters can be algebraically recovered, the method will fail.
A method for the reconstruction of punctured convolutional
codes has also been presented by Filiol [6]. Here, we introduce
an iterative, probabilistic approach based on the Expectation
Maximization (EM) algorithm. The EM algorithm is a strong
tool that has proven useful in many communications and signal
processing problems such as blind channel estimation [7]
and system identification [8], which are related to the one
considered here. In fact the problem is essentially the same
as estimating an unknown hidden markov model, which is

typically done with the Baum-Welch algorithm [9]. However,
here we investigate systems where computations are carried
out in a finite field which requires different methods from those
developed for traditional blind estimation scenarios. The latter
implies that an approach has to combine concepts from both,
coding theory and blind signal processing. In a similar way,
the EM algorithm has been applied to the synthesis of linear
feedback shift-registers from noisy sequences [10]. However,
here we use the concept of log-likelihood ratio (LLR) algebra,
introduced in [11], which will greatly simplify the derivation
and interpretation of our final algorithm. We achieve this by
transforming the problem into the LLR domain, a natural step
when looking at it from a coding perspective.
The paper is outlined as follows. In Section II, we will
specify and formalize the problem. Section III introduces the
application of the EM algorithm and Section IV shows the
transformation to the LLR domain and the derivation of the
estimation algorithm. Section V discusses simulation results
before we conclude with Section VI.

II. PROBLEM STATEMENT

We assume that an information stream u
[Uo, Ui, ... , ut, ... .I, ut C A is encoded with a convolutional
encoder of memory M. Here we will consider only
codes defined over GF(2) with elements A {+1,-1,
where +1 is the "null" element under the D addition. We
present our approach for codes of rate I and we exclude
encoders with feedback. However, the algorithm can be
generalized to any rate k. In Figure 1, the situation for
the ith output of the convolutional encoder is shown.
The parameters g(i) = [g(i), .. , g(i)] determine how the
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Fig. 1. The ith output of the convolutional encoder, v( , is transmitted over
an additive, memoryless channel resulting in the observation y(i)
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information symbol ut and the content of the memory
elements [ut 1, . . , Ut M], at time t, are mapped to the
encoded symbol v<t of output i, i = 1,... ,n. Throughout
this paper, we assume that the received symbol y(i) is

observed through a BSC, i.e. (i) = v (i)TiM. The state
of the encoder st will be defined as the concatenation of
the current input symbol with the content of the memory
elements, i.e. st [sto, ... Istm] = [Ut, Ut 1, ,Ut M.
Then we can write

M
y() EeStk gki t() 1

k=O

where multiplication and addition are in GF(2). Note that the
ith output only depends on the ith parameter subset g(') but
that the outputs are not independent as each output at time t
is determined by the same encoder state st. Such an encoder
is specified by the vector g = [g(l),... Ig(n)] An(M+e),
which are the parameters we want to estimate from the
observation y = [y(l), . , y(n)], where y(i) = [YiI, I, yT)]
and the length of y is nT. The likelihood for the observation
p(y; g) depends on the deterministic parameter g. 1

III. MAXIMUM LIKELIHOOD ESTIMATION VIA
EM-ITERATION

The Expectation Maximization (EM) Algorithm is a pow-
erful concept for iteratively approaching the maximum likeli-
hood solution in what are called incomplete-data problems [8].
Let y be the observed data that depends on the unobservable
data x and a deterministic parameter 0 that we want to
estimate. The so called missing data x is modeled as a random
variable. Instead of obtaining the maximum likelihood for
0 only from the observed data, the complete data (X, y)
is incorporated in an iterative procedure [8]. With a fixed
current estimate on the parameter, 6[k], the expected value
Q(0, 0[k]) of log (p(x, y; 0)) is evaluated with respect to x
and conditional on y in the so called E-Step. In the M-step
of the algorithm, Q(0, 0[k]) is maximized with respect to 0 to
yield a new estimate 0[k+1] in iteration k + 1

0[k+1] =argmax {P(XjY;0[k])p(X Y; 0))} (2)
0

x

Q(0,0[k])

The following theorem guarantees that in well behaved prob-
lems the sequence of EM iterates converges to a stationary
point which is a global maximum, in which case this yields
the unique ML estimate of 0.

Theorem 1: Let ly(0) = log (p(y;0)), then jY(0[k+1])I (6[k]) > Q(6[k+1];6[k]) _ Q(6[k];6[k]) with equality iff

'D (p(xy;0[k+l]) lp(Xy;0[k])) = 0, where 'D(. I) is the
Kullback-Leibler distance.

'We will denote the dependency of a pdf p(x) on a deterministic parameter
0 by p(x; 0) whereas we will write p(xIO) when we mean to express the
conditional pdf of x on a random variable 0.

The proof and further properties of the EM algorithm are
discussed for example in [8], [9].
In our problem setting, we identify y as the observed and s as
the missing data. The unobserved state at time t, st, is mapped
to the observation Yt = [41(l) (n). The joint distribution
of (s, y) depends on the parameter g of the convolutional
encoder (see [9], [10])

p(s, y; g) = p(so)Hp(st+1I St)P(Yt St; g)
t

The transition to the next state does not depend on g and
the same holds for the distribution of the initial state p(so).
Hence, applied to our problem, the maximization in (2) can
be written as

9[k+1] = arg max{ p(st IY; g[k] ) log(p(yt Ist; g))} (3)
9 t, St

Note, given the state st, the n outputs y(i) of the convolu-
tional transducer are independent from each other and only
influenced by the respective subset of parameters g(i):

n
log (p(yt Ist; g)) = log(p(y4() Ist; g(l)))

i=l
(4)

So far, we considered g as an element from a discrete
parameter space. However, the EM based approach requires
the parameter space to be continuous. In [10], this has
been achieved by introducing a probabilistic model. Here,
we will transform the parameters into the LLR space, which
will greatly simplify the calculations applying log-likelihood
algebra [1 1].

IV. TRANSFORMATION INTO THE LOG-LIKELIHOOD
DOMAIN

A. Application of Log Likelihood Ratios

Instead of regarding the encoder parameters as discrete
values, we will work with probabilities. In the context of
iterative decoding it has proven useful to work with log-
likelihood ratios and to apply log-likelihood algebra [11]. We
will see that it is also a natural choice for our problem. In
general, a log-likelihood ratio L(x) for the binary random
variable x with pdf p(x) = [p(x = +1), p(X = -1)] is
denoted as L(x) = log (X A+i) and the soft bit x, which
is the expected (average) value of x, can be shown to be
x = E{x} = tanh(). Throughout this paper, we will
abbreviate the log-likelihood ratio and the soft bit of the
parameter g(i) as

( o) (plg ) +1) and g- ()
\p(g$) )

tanh (
2) (5)

Furthermore, we denote L = [L(1), L(), .., L(n)] =

[L*()I.. L(n)] as our parameter vector. In our EM approach
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we now consider Q(L, L[k]) and the objective function in (3)
is transformed into

E7 p(st Iy; L[k] ) log(p(yt Ist; L)), (6)
t, St

which is now maximized for L C Rn(M+1), i.e. in a continu-
ous space. In order to find an analytical solution, we relax the
strict maximization of (6) and require only Q(L[k+l], L[k]) >
Q(L[k], L[k]), which, according to Theorem 1, suffices to
increase the likelihood in iteration step k + 1. This approach is
commonly referred to as the generalized EM algorithm [9]. An
increase of Q(., -) is achieved by a steepest ascent approach,
i.e. the maximization is replaced by

L('),[k+l] =L(i),[k] + ,OQ(L, L[k]) 7m m OL(2' (7
m

where ,t is a suitable chosen step size. The gradient is
evaluated at L() [k]
As we mentioned before, most of the terms in Q(L, L[k]) do
not depend on L and as a result, only equation (6) has to
be considered for the derivative of the Q-function. With the
independence property from (4), this yields

DQ(L, L[k])
aLm

: Zp(st Iy; L[ k]) x
t, St

log (p(1) |st; L()))
mL' (8)

We identify p(st ly; L[k]) as the a posteriori probability
distribution for the state of the encoder at time t, given
all observations and the current guess of the LLRs. This
distribution is of great interest in coding and signal processing
and a number of computationally efficient forward-backward
recursions have been developed to calculate this distribution,
(an overview is provided e.g. in [9]). For the evaluation of (8),
we still have to find an analytical expression for the derivative
of the conditional log-likelihood of ft('). At this point, the
choice of log-likelihood ratios for the parameters turns out
to be an elegant solution. Remember that, assuming a BSC
channel model, y(') is a modulo 2 sum (Eq. (1)). We make
use of the boxplus operator ff, a result from LLR algebra [11].
In the LLR domain, (1) is transformed to

M

L(yt) *st) D L (i) ffl L(T)kOk=0
Stk=1

2tanh-1 ( I tanh( k ) tanh(L(2)) (9)
k=o

'stk =_I

For the BSC channel model with transition probability E we
set L(0j) =log ( 1 £ ) . Note that L(') st) inherently depends
on the parameter L(') which shall not explicitly appear in
the notation for the sake of simplicity. Introducing LLRs
allows for a convenient way to process soft channel values

and different expressions of L(y4()lst) for the Gaussian or
the multiplicative fading channel can be derived [11]. This is
an obvious advantage of our probabilistic approach compared
to the algebraic solution presented in [2] and is expected to
lead to better results alike decoding methods that process soft-
values outperform their algebraic counterparts [11]. In the
following, we concentrate on the BSC channel model.

B. Analytical Derivation of the Gradient
In order to derive an analytic solution for (8), we have to

evaluate an expression of the form

a
DOm log (p(y; 6)),~ (10)

a derivative of a log-likelihood that depends on a parameter
vector 0 with respect to a single parameter 0m.

Lemma 1:
Dlog(p(y=±1;0))

Om

Above statement can be easily verified substituting
e±L(Y;0)/2

P(Y = ±1; 0) = eL(y;O)/2 + e-L(y;O)/2 ' (12)

in (10) and carrying out some simple calculations. In the log-
domain, Eq. (10) now reads as

log (p(y = ±1; 0)) =

±eTL(y;O)/2 aL(y; 0)
eL(y;O)/2 + e-L(y;O)/2 0om (13)

In our problem, we identify L(y; 0) with L(y4(') Ist) that is a
boxplus-sum as shown in equation (9) the derivative of which
can be given as

aL(y(i) st)
aLt?

L f L(i) f L(T0)
k,Stk=-

rk,St., 1=gI E{ (g$
_ g(iQ) 2}

1-(Ti I g(i))2 i2

,stk =1

(14)

(15)

Eqn. 15 is obtained by using the derivative of the hyperbolic
tangent and its inverse. Equation (15) depends only on soft bits
and the variance of gT) and we used the relation E{(gm)-
gm$)2} 1 (g$)2 = 2L(). The numerator (divided

by gm$) measures the reliability of all the other parameters
about the mth parameter. The denominator is a measure of
uncertainty when the mth parameter is included. This ratio
is weighted with the variance of (') which is between zero
and 1. The higher the uncertainty about g(4) the higher its
variance. For the estimation update in (7), the gradient is
evaluated at L()[ Our algorithm starts with an initialization
of L[O]. Setting the LLRs of the parameters close to zero
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indicates maximum uncertainty. The choice of a good initial
estimate is an important step in EM techniques as only local
convergence is guaranteed. However, we will only consider
the case where no a priori knowledge on the encoder structure
is available. One EM iteration is performed by multiplying
the terms obtained from the considerations in (13), (15) with
the probabilities p(st y; L), summing up over all possible
states and times. The gradient (8) is then used to update the
parameter estimates according to (7), where a suitable step size
,t has to be chosen. Iterations are performed until a certain stop
condition is met.

V. SIMULATION RESULTS

The visualization of the iterative estimation of the pa-
rameters of a rate 4 nonsystematic encoder with M = 4
([53, 51, 63, 73] in octal form) is shown in Figure 2. The
encoded stream was sent over the memoryless BSC channel
with transition probability U= 0.1. It was assumed that the
partitioning of the stream yielding y(l), . . ., y(4) is known at
the receiver. 1000 noisy bits were observed per output, i.e. we
expect 100 wrong bits per output. Full maximum likelihood
estimation would mean to evaluate and compare 220 likelihood
values. In Figure 2(a) and 2(b) we see the progression of the
LLRs of the parameters g(l) and g(4) over 20 EM iterations.
On the y-axis, we show the LLRs multiplied with the true
values, i.e. Lm) = L(')g( . Positive values indicate the correct
estimation of a parameter, whereas at iterations where a
negative value is shown, a hard decision would lead to a false
estimate. We can observe that several parameters start to move
in the wrong direction, reaching even high reliability values.
However, after a certain number of iterations, they start to
move back in the correct direction. Around iteration 19 the
LLRs predict the correct encoder. As the absolute values of the
LLRs reflect the reliability about an estimate, we stop iterating
when there are no unreliable values left in L[k]. Figure 2(c)
shows the log-likelihood log (p(y; L[k+l])). noise levels in
case of systematic convolutional encoding. The streams were
encoded with a rate 4 memory M = 4 optimal distance
profile code with generator polynomial [g(2), ... , 9)]
[56, 62, 72] [12]. Correct convergence means that the L in-
dicate high reliability (here defined as IL(') > 2 Vm, i) and
the true g is obtained after hard decision. Figure 3(b) shows
the mean number of iterations until reliablility is achieved
and the maximum number of iterations performed was set
to 50. We observe high rates of convergence even at high
noise levels for a relatively small number of observed coded
bits. For example with 400 coded bits at a noise level E <
0.05 we were always able to recover the correct encoder.
However, in an attacking scenario we think that it can be
assumed that an attacker has long data streams available and
it is not expected that the encoding scheme changes every
few bits. For the same reason, we ignore the computational
complexity which is not expected to be of great relevance for
the attacker. Considering nonsystematic encoders, we observed
poor convergence rates with the setup presented. In this case,
the success heavily depends on the start value and the gradient

ascent approach often causes the algorithm to run in a local
maximum immediately. Global maximization techniques such
as simulated annealing or stochastic optimization [13] are
expected to significantly improve the algorithm in this case and
will be investigated in the future. Even though the restriction
to systematic encoders is yet a disadvantage compared to
the algebraic method presented in [2], we believe that the
probabilistic approach has several advantages:

1) a priori information about the parameters is easily in-
corporated by adapting the initial ratios. In this way,
knowledge on the design rules of convolutional encoders
(see for example [12]) could help to choose good starting
values. For instance every good convolutional encoder
will have L(i) = -oc and LM() = -oc. In a similar
fashion, constraints on the state sequence imposed by
tail-biting codes could be incorporated in our algorithm.

2) The probabilistic approach can be extended to AWGN
or fading channels and thus will be able to process the
soft values coming from the channel.

3) With the results from [10], it will be possible to consider
convolutional encoders with feedback, a situation which
has neither been addressed in [2] nor, to our knowledge,
in other publications.

4) The algebraic method requires information about the
noise level for statistical hypothesis testing. Our EM
approach allows for the co-estimation of the noise level
as an additional parameter.

VI. CONCLUSION

We considered the problem of estimating the parameters
of a convolutional encoder given only the noisy observations.
Algebraic methods to tackle this problem have been considered
before [3], [2]. Here, we presented an iterative, probabilistic
approach based on the EM algorithm. Our approach is similar
to the one presented by Moon for the synthesis of linear
feedback shift registers in [10]. However, we used LLRs
and applied log-likelihood ratio algebra, which better suits
the underlying coding nature of this problem. We showed
that this leads to simple derivations of the algorithm and
allows for the processing of soft values. Furthermore, our LLR
based approach provides a reliability measure on the obtained
estimates. Alternatively, soft bits could be used to model the
parameters. We ran our method on distorted data streams
and showed that high rates of correct reconstruction can be
achieved even at high noise levels assuming a systematic
encoder. The algorithm shows poor convergence rates for non-
systematic encoders as the gradient ascent approach runs the
algorithm into local maxima. Global maximization techniques
such as simulated annealing or stochastic optimization will
be investigated in the future to overcome this problem. Even
though our method is yet restricted to systematic codes, we
believe that it could have several advantages compared to the
algebraic approach as discussed at the end of Section V. We
presented our approach for codes of rate n and excluded the
possibility of feedback from our considerations. However, in
principle it is possible to apply our method to codes of any rate
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(a) LLR estimates on g(l) vs. iterations. (b) LLR estimates on g(4) vs. iterations. (c) Progression of log(p(y; L[k+l])) vs.
iterations.

Fig. 2. Sample of a successful estimation after 20 iterations of a rate 1, M = 4, nonsystematic encoder from 4000 observed coded bits and E = 0.1.4,
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Fig. 3. Percentage of correct convergence and mean number of required iterations for different numbers of observed coded bits and noise levels in case of
systematic convolutional encoding.

k and the extension to the cases with feedback or puncturing
n

should be possible with the results from [10], [6].
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