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ABSTRACT

We present a computational model of DNA-binding
by p70 in Escherichia coli which allows us to extract
the functional characteristics of the wider promoter
environment. Our model is based on a measure for
the binding energy of p70 to the DNA, which is
derived from promoter strength data and used to
build up a non-standard weight matrix. Opposed
to conventional approaches, we apply the matrix to
the environment of 3765 known promoters and
consider the average matrix scores to extract the
common features. In addition to the expected
minimum of the average binding energy at the
exact promoter site, we detect two minima shortly
upstream and downstream of the promoter. These
are likely to occur due to correlation between
the two binding sites of p70. Moreover, we observe
a characteristic energy landscape in the 500bp
surrounding the transcription start sites, which is
more pronounced in groups of strong promoters
than in groups of weak promoters. Our subsequent
analysis suggests that the characteristic energy
landscape is more likely an influence on target
search by the RNA polymerase than a result of
nucleotide biases in transcription factor binding
sites.

INTRODUCTION

In the first step of the prokaryotic transcription cycle,
the sigma factor associates with the RNA polymerase
(RNAP) core enzyme. The resulting complex, the RNAP
holoenzyme subsequently binds to the promoter to initiate

transcription. The core promoter elements in prokaryotes
are two conserved hexamers located around 35 and 10 bp
upstream of the transcription start site (TSS) separated by
a variable spacing of 15–21 bp. The kidney-shaped sigma
factor confers sequence specificity on the RNAP core
enzyme in order to enable detection of the two promoter
regions (1). In addition to the main sigma factor (s70),
alternative sigma factors are available in the cell to enable
expression of specific sets of genes (2). Compilation of
Escherichia coli promoters showed that only few s70-
promoters match the consensus sequence (TTGACA in
the �35 region and TATAAT in the �10 region) in all
positions (3). The promoter strength, i.e. the promoter’s
ability to initiate transcription of the corresponding gene,
is mainly determined by the binding energy between the
RNAP holoenzyme and the promoter, which depends on
the DNA sequence and the spacing (4). Apart from the
homology to the consensus sequence and regulation
through transcription factors, the strength of a promoter
is further determined by the presence or absence of a third
recognition site — the UP element, first reported in (5).
The UP element is an AT-rich region located upstream
of the �35 promoter region, that is recognized by the
a-subunit of the RNA polymerase. The consensus
sequence was found to consist of a 11-bp distal region
ranging from �57 to �47 as well as a 4-bp proximal
region ranging from �44 to �41 and is able to increase
promoter strength more than 300-fold (6).
Weight matrices constitute an important tool for

the detection and analysis of protein-binding sites
and have already been applied for promoter analysis.
They assign a score to each position of a sequence
depending on its distance to the consensus sequence.
It is generally believed that target site detection is
mainly based on the binding energy between the
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protein and the DNA (4,7). Berg and von Hippel showed
in (8) that the logarithms of the nucleotide occurrence
frequencies are proportional to their binding energy
contribution. However, large-scale analyses have only
become possible through the increase of microarray
data, which provided the means to compare the strength
of thousands of promoters under the same experimental
conditions. Kiryu et al. (9) used support vector
regression to derive a relation between promoter
sequences in E. coli and their strength from microarray
data. They showed that not at each position the nucleotide
occurrence frequencies in the E. coli promoter regions
correspond to the nucleotides’ effect on the binding
energy between sigma factor and DNA and, thus, the
promoter strength.
In the following, we present an approach of modeling

the DNA-binding of E. coli s70 based on promoter
strength data calculated from microarray experiments
in (9). Our computational method is based on a weight
matrix that results in a measure for the binding energy
between s70 and the promoter region. Its application to a
set of 3765 known s70-promoters using a sliding window
approach reveals a characteristic average energy landscape
around the transcription start site. Moreover, we observe
that the energy landscape is not exhibited by weak
promoters but becomes distinct with increasing promoter
strength. Subsequently, we verify that the observations are
specific for the surrounding of promoters through
comparison with random target sites. A discussion of
the observed energy landscape follows, detailing possible
interpretations, namely sequence evolution, nucleotide
biases caused by transcription factor binding sites and a
putative influence on the kinetics of promoter search by
the RNAP holoenzyme.

MATERIALS AND METHODS

In general, the binding energy E(s) between sigma factor
and the promoter can be written as

EðsÞ ¼
X6
k¼1

eðnk,kÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
�35 region

þ
X12
k¼7

eðnkþs,kÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
�10 region

þ �ðsÞ|{z}
Spacing

, ð1Þ

where e(n, k) denotes the partial binding energy between
the nucleotide n 2 fA;C;G;Tg and the binding site of the
sigma factor associated with promoter position k. Thus, nk
and nkþs refer to the nucleotides at positions k and k+ s,
respectively, of a given DNA sequence. The term �(s) is the
contribution of the spacing s between the promoter
regions to the binding energy. This adds the energy the
sigma factor needs to stretch or to squeeze in order
to detect promoters with non-ideal spacing (i.e. other
than 17 bp) (10,11). In Equation (1), we assume the
contribution of nucleotides to be independent of their
neighboring nucleotides, which is in most cases a reason-
able approximation (12,13).

Weight matrix

The values e(n, k) are used to build up a [4� 12] weight
matrix W containing the contribution of the 12 nt to the
binding energy:

W ¼

eðA,1Þ eðA,2Þ . . . eðA,11Þ eðA,12Þ

eðC,1Þ eðC,2Þ . . . eðC,11Þ eðC,12Þ

eðG,1Þ eðG,2Þ . . . eðG,11Þ eðG,12Þ

eðT,1Þ eðT,2Þ . . . eðT,11Þ eðT,12Þ

2
6664

3
7775:

The values k 2 ½1; 6� reference the positions in the �35
region and k 2 ½7; 12� reference those in the -10 region.
The values of e(n, k) used in W are extracted from (9),
where Kiryu et al. derived a measure for the nucleotide-
dependent contribution to the binding energy by applying
support vector regression on gene expression data.
The partial binding energies were defined such that
positive values indicate a strengthening effect on the
overall binding energy, whereas negative values imply a
weakening effect. However, since in chemistry binding
energies underlying stable interactions are generally given
by negative values and, thus, high negative overall energies
should indicate candidate target sites (7), we multiply all
values by �1. Figure 1 shows the obtained values for each
position k 2 ½1; 12� in the two promoter regions (left) as
well as for each spacing s 2 ½15; 19� (right). It has to be
mentioned that the values were obtained after various
normalizations of the microarray fluorescent intensities
and hence have no physical unit (H. Kiryu, personal
communication). Nevertheless, in the following, we denote
the obtained measure by the term binding energy given
without unit. It can be seen in Figure 1 and is reported
in (9) that the -35 consensus sequence based on binding
energy contributions (AAGAAT) differs from the �35
consensus sequence based on nucleotide occurrence
frequencies [TTGACA, (3)].

Algorithm

We apply the weight matrix W using a sliding window
that is shifted in single-nucleotide steps over the DNA.
As mentioned before, the sigma factor is capable of
stretching or squeezing and hereby adapting to different
promoter spacings s in order to bind to the energetically
most favorable site. Therefore, the binding energy E(i) at
position i is obtained by minimizing the energy score
E(s, i) calculated according to Equation (1) over the
spacing s:

EðiÞ ¼ min
s2½15;19�

½Eðs,iÞ� ¼ min
s2½15;19�

"X6
k¼1

eðniþk�1, kÞþ

þ
X12
k¼7

eðniþkþs�1, kÞ þ �ðsÞ

#
, ð2Þ

where niþk�1 and niþkþs�1 reference the nucleotides at
positions k and kþ s, respectively, of the sliding window,
which is situated at position i with respect to the
transcription start site (see illustration in Figure 2).
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We limit the spacing to s 2 ½15; 19� since most of the
promoters fall in this range (3).

Opposed to other methods, we apply the described
algorithm on average, i.e. not for promoter detection of
individual sequences but to a set of N known promoters of
s70 and calculate the arithmetic mean (average) of the
resulting values El(i) for each position i, where the index
l references the l-th promoter (l 2 ½1;N�). Additionally,
we apply the algorithm to 10 000 random sequences of
length 31 (i.e. enabling all possible spacings) considering
pðAÞ ¼ pðTÞ ¼ 0:246 and pðCÞ ¼ pðGÞ ¼ 0:254 as esti-
mated from the entire E. coli genome, which yields
a mean value of Eran ¼ �0:4423 [calculated according
to Equation (2)]. Since it is convenient to set the average
energy as 0 (7), we normalize the energy measure obtained
through averaging over all El (i) accordingly:

EðiÞ ¼
1

N

XN
l¼1

ElðiÞ � Eran: ð3Þ

In considering average values, we can eliminate the
noise of individual sequences in order to extract the
common energy landscape of all s70-promoters. Due to
the normalization by Eran in Equation (3), positive values
of EðiÞ indicate a below-average binding strength, while
negative values refer to an above-average binding strength
between sigma factor and DNA sequence.

RESULTS

We download the E. coli s70-promoters from the NCBI
database (strain K 12; promoters extractable from the
400 datasets AE000x.1, x 2 ½111; 510� (accessible via
Genbank entry ‘u00096’), http://www.ncbi.nlm.nih.gov)
that classifies promoters into computationally predicted
and experimentally documented. Figure 3 shows the
modeled average binding energy EðiÞ calculated according
to Equation (2) and (3) (see Algorithm section) for all
3765 predicted and documented promoters in a range of
200 bp around the promoters aligned to the transcription
start site (TSS, i=0).

Additional minima before and after the promoter

Figure 3 shows three significant minima of the binding
energy compared to the surrounding and to the average
binding energy EðiÞ ¼ 0 of random sequences. The most
significant minimum at around �35 reflects the actual
recognition of both promoter regions, whereas those

Figure 1. Partial binding energy contributions as extracted from (9) and modified. Left: partial binding energies e(n, k) of nucleotides for each
position k 2 ½1; 12� of the promoter (k 2 ½1; 6� reference the positions of the -35 region, k 2 ½7; 12� those of the �10 region). Color scheme: Black=A,
dark gray=C, light gray=G, white=T. Right: Contribution �(s) of the spacing s 2 ½15; 19� between the promoter regions to the binding energy.

Figure 3. Average binding energy EðiÞ [calculated according
to Equation (2)] of 3765 known s70-promoters aligned to the
transcription start site (TSS). EðiÞ ¼ 0 corresponds to the energy Eran

of random sequences. EðiÞ shows three significant minima at positions
�58 (A), �35 (B) and �12 (C).

Figure 2. Graphical illustration of the parameters k, s and i from
Equation (2). niþk�1 and niþkþs�1 reference the k-th nucleotide and
ðkþ sÞ-th nucleotide, respectively, of the sliding window situated at
position i with respect to the transcription start site (TSS, position 0).
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at �58 and �12 occur due to correlation between the �35
sequence and the �10 sequence; at position �58, the �10
part of the weight matrix (modeling the sigma factor) is
overlapping the �35 promoter region (Figure 4A).
The same applies for the minimum at �12, which occurs
due to correlation between the �35 matrix part and
the �10 promoter region (Figure 4C). The absolute
minimum at �35 indicates the actual detection site and
hereby the appropriate modeling through our algorithm
(Figure 4B).
It should be mentioned that the strength of the

binding is not only reflected by the depth of the minima,
but by their area due to the flexibility of the promoter’s
position with respect to the TSS. While the position of
the �35 region can vary by around �3, the position of
the �10 region is restricted within around �1. Therefore,
since Figure 3 shows the average binding energies of
3765 promoters, the minimum at �58 is broad but flat,
whereas those at �12 is deep but narrow. The minimum at
�35 is broad and deep at the same time and, thus,
reflects — as expected — the strongest binding between
sigma factor and promoter. At position �58, the �35 part
of the sigma factor overlaps possibly present UP elements,
thus, a part of the broadness and depth of the peak at -58
is likely to be caused by their AT-richness. Around 3%
of the genes coding for mRNAs were shown to have
a UP element close to the consensus (6). Another at least
30% are expected to have a UP element further from
the consensus. If the two minima occur due to correlation
between the promoter regions, they are expected
to have the same strength. Since this is the
case if taking not only the depth but also the area into
account, the influence of the UP element is probable to
be minor.

Characteristic energy landscape in a wider surrounding
of the promoters

In order to investigate the energy landscape in the vicinity
of the promoters, we apply our method to a wider range
around the transcription start site. Figure 5 shows the

average binding energy EðiÞ of all 3765 promoters in
a range of 800 bp aligned to the TSS (position 0). The
decline beginning at 300 bp before the promoter and the
constant incline of the binding energy in the 200 bp
after the promoter are remarkable. It is obvious in
comparison with the energy EðiÞ ¼ 0 of random sequences
that the average binding energy deviates significantly
from the random case in a range of �500 bp around the
promoter. (A), (B) and (C) in Figure 5 show again
the three minima at �58, �35 and �12 that were observed
in Figure 3.

Correlation with promoter strength

In the next step, we investigate whether the energy
landscape observed in Figure 5 is present in all s70-
promoters or only occurs in certain sets with specific
promoter strength. Therefore, we split the 3765 promoters
in subgroups according to their strength as measured by
the sigma factor’s binding energy El(i) to the l-th promoter
sequence calculated according to Equation (2) (see
Algorithm section). Here, i 2 ½�38;�32� depending on
the position of the l-th promoter with respect to the
TSS. In order to maintain a sufficient statistical basis, we
divide the promoters into four groups with approximately
900 promoters each. Figure 6 shows the resulting plots
sorted from weak (top) to strong promoters (bottom).
It can be seen that the characteristic energy landscape is
not observed for weak promoters, whereas it becomes
distinct for stronger promoters. It is generally assumed
that the binding energy at the promoter itself determines
the rate of detection and hereby the expression rate of
the respective gene (4,7,9). However, to our knowledge,
a dependence of the promoter strength on the wider
surrounding has never been reported.

Verification of the results

In order to verify that the characteristic energy landscape
is unique for the surrounding of promoters, we perform
the following statistical test: we randomly permute the
values in each column of our weight matrix W as well as

Figure 4. The two side-minima at positions �58 and �12 observed in
Figure 3 are likely to occur due to correlation between the two
promoter regions. (A): At position -58, the -10 part of the weight
matrix W is overlapping the �35 promoter region. (B): The minimum
at �35 reflects the actual recognition of both promoter regions. (C): At
position �12, the �35 part of the weight matrix W is overlapping the
�10 promoter region.

Figure 5. Average energy landscape EðiÞ in a wider range around
the 3765 known s70-promoters aligned to the transcription start site
(TSS, position 0). EðiÞ ¼ 0 again corresponds to the energy Eran of
random sequences.
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the values of the vector �(s) and hereby create a modified
consensus sequence representing a new target site.
Afterwards, we apply this new matrix W0 and the new
vector �0ðsÞ to the complete E. coli genome to search

for the 3800 positions with minimum energy, i.e. those
3800 positions that are closest to the consensus sequence
of W0 and the consensus spacing of �0ðsÞ. In the next step,
we consider 500 bp around each of the 3800 positions,
align these ranges to their target sites and calculate the
average energy landscape (mean values) as detailed in the
Algorithm section. According to the procedure described
there, we scale the resulting energy values by subtracting
the average energy obtained for 10 000 random sequences
[pðAÞ ¼ pðTÞ ¼ 0:246, pðCÞ ¼ pðGÞ ¼ 0:254] of length 31.
To guarantee a sufficient statistical basis, we perform
12 000 out of � 4:4� 1018 possible random permutations.

Characteristic energy landscape. In order to show that the
decline before and the incline after the promoters is not
a general characteristic observed around similar, aligned
DNA sequences, we perform a linear regression on the
first 250 bp and the last 150 bp of the energy landscapes
obtained for the 12 000 permutations. High absolute
gradients of these two regressions would indicate the
existence of a decline and incline as observed around
promoters in Figure 5. However, the gradient before
promoters is significantly lower than those before random
target sites, while the gradient after promoters is
significantly higher than those after random target sites
(Supplementary Data, Figure 1).

Side-minima. We stated in the Additional Minima section
that the two minima before and after the actual promoter
detection occur due to correlation between the �35 region
and the �10 region. To corroborate this statement, we
investigate the side-extremals observed around the
random target sites obtained through permutation of
W and �(s). The results show that our algorithm is not
biased to produce minima around the promoters,
but instead we obtain maxima in case the two sequences
are negatively correlated or minima in case they are
positively correlated (see Supplementary Data, Figure 2).
This fact confirms our statement in the Additional
Minima section that the two promoter regions are on
average highly positively correlated. Since minima of the
energy landscape indicate strong binding between the
sigma factor and the DNA, these positions might have
implications on the process of promoter detection by s70.

Energy landscape around experimentally verified
promoters. The presented results are based on a dataset
composed of experimentally documented and computa-
tionally predicted s70-promoters. Since the inclusion of a
high number of computationally predicted promoters
might cause biases, we verify the occurrence and strength
of the characteristic energy landscape using a set of 651
experimentally verified s70-promoters from RegulonDB
(version 5.7) (14). The resulting average binding energy
exhibits the same characteristic landscape as observed for
the dataset downloaded from the NCBI database (see
Supplementary Data, Figure 3), merely with more noise-
like fluctuations due to the smaller sample size.

Specificity for s70-promoters. In the next step, we
apply our algorithm based on the matrix derived from

Figure 6. Average energy landscapes EðiÞ obtained if clustering the 3765
known s70-promoters according to their strength into four groups with
approximately 900 sequences each (top: weak promoters, bottom:
strong promoters).
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s70-promoters to a set of 230 promoters of the six
alternative sigma factors s19 (2 sequences), s24

(61 sequences), s28 (20 sequences), s32 (33 sequences),
s38 (81 sequences) and s54 (33 sequences) to test our
results for their specificity to occur around s70-promoters.
The promoter positions are downloaded from RegulonDB
(version 5.7) using all promoters that are annotated
including their position and their respective sigma factor.
Because of the small sample size, the resulting energy
landscape is noisy, but it exhibits a similar trend compared
to Figure 5 (data not shown). This is, however, expected
due to the strong relation between s70 and some of
the alternative sigma factors: while s70 and s32 show
similarities in detection of the �35 promoter element (15),
s70 and s38 even recognize the same consensus sequence
and share genes (16). In fact, these two sigma factors
account for nearly half of the used dataset. To come to
a conclusive result regarding specificity of the energy
landscape for s70, it would thus be necessary to subdivide
the dataset. Unfortunately, this is not possible with only
230 promoters on-hand, since the sample size for each
sigma factor would become too small.

DISCUSSION

In the Verification of the Results section, we showed that
the characteristic energy landscape is unique for promo-
ters and is not exhibited around random target sites.
Therefore, there has to be a sequence similarity between
the surroundings of the 3765 promoters. In general, the
energy landscape is inversely related to the AT-richness,
since more than 90% of the consensus sequence of
our weight matrix W is A or T (Figure 1). Interestingly,
the landscape moreover indicates a continuous increase of
sequence similarity to the promoter consensus when
approaching the promoter site from either side. In the
following, we present three possible explanations for the
characteristic landscape based on both aspects, i.e. on an
underlying nucleotide bias as well as on increasing
sequence similarities to the promoter consensus sequence.

Sequence evolution

One possible reason for the increasing similarity to the
consensus is that the vicinity of any similar, aligned
target sites might show sequence similarities resulting from
sequence duplications during E. coli evolution. It has been
shown in (17) that the most likely mechanism developing
such repeats in different species including E. coli is the
slipped strand mispairing (SSM). Another major source of
sequence polymorphisms in E. coli are the bacterial
interspersed mosaic elements (BIMEs) that are also
involved in a variety of regulatory functions like transcrip-
tion termination, mRNA stabilization and translation
control (18). However, the density of repeats in E. coli is
among the lowest in bacteria (19). Moreover, it was shown
by the permutation analysis in the Characteristic Energy
Landscape section that the characteristic energy landscape
is specific to promoters and is not observed around
target sites obtained through permutation. Therefore,
neighboring repeats are unlikely to be the only reason

for the development of the energy landscape. Instead,
it has to be — at least partly — based on specific
properties or demands of the promoter regions and seems
to be no common feature of the E. coli genome.

Transcription factor binding sites

Another possible explanation for the characteristic energy
landscape lies in transcription factor binding sites (TFBSs)
located around the TSS that might have an influence on
the nucleotide content and, thus, on the energy landscape
in the respective region. For this purpose, we download
2015 TFBSs of E. coli from RegulonDB (14) that were
extracted from literature with experimental evidence.
The distribution of TFBSs around the transcription start
site approximately follows the shape of the observed
energy landscape (see Supplementary Data, Figure 4).

To investigate whether the distribution of TFBSs has an
influence on the nucleotide content, we determine the
ratios of observed nucleotide content versus expected
nucleotide content [pðAÞ ¼ pðTÞ ¼ 0:246, pðCÞ ¼ pðGÞ ¼
0:254] in all TFBSs. To eliminate the influence of their
genome surrounding, we embed the TFBSs at their
correct position into random sequences. Figure 7 shows
the resulting ratios in these 2015 sequences for the
nucleotides A and T. The horizontal line marks a ratio
of 1, i.e. the case that the observed nucleotide occurrence
equals the expected occurrence. The figure shows an over-
representation of A and T in TFBSs in the surrounding
of the transcription start site, while G and C are under-
represented (data not shown).

In the next step, we have to evaluate the influence of
the observed nucleotide bias in TFBSs on the binding
energies calculated through our algorithm. For this
purpose, we generate 3800 random sequences using the
calculated nucleotide probabilities (depicted in Figure 7)
for each position. Afterwards, we apply our weight matrix
W and the vector � to these 3800 sequences as described
in the Algorithm section. Figure 8 shows a comparison
between the average landscape observed around promo-
ters and the average landscape of the 3800 generated
sequences. It can be seen that the nucleotide bias caused
by the TFBSs is in part responsible for the characteristic
landscape, however, does neither explain all of its decrease
in energy at the transcription start site nor the wide range
of low energies (500 bp).

Influence on the kinetics of promoter search

The RNAP holoenzyme is believed to find the promoters
by randomly binding to the DNA and subsequently
moving along it by sliding, intersegment transfer and
hopping (20). The sliding process (also known as one-
dimensional diffusion) has been a focus of research for
decades: after publication of the general theory by Berg,
Winter and von Hippel in the 1980s (21), it could not be
visualized until 1999 (22–24). Since then, two opinions
evolved about the nature of one-dimensional diffusion.
According to the first, DNA-binding proteins perform
a random walk along the double-helix, i.e. they decide at
each position with the same probability for a step to the
right or to the left (22,25). In contrast to that, the second
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theory is based on a sequence-dependent binding energy
of the protein that influences the sliding, i.e. it states
that the direction and velocity of the process depend on
the currently bound sequence (26–28). If the latter
proves true, our observed energy landscape would have
implications on the kinetic parameters of the RNAP
holoenzyme’s search for the promoter sites (J. Weindl
et al., manuscript in preparation).

It should be mentioned that the kinetic interpretation
would not contradict the share of TFBSs in the energy
landscape. It just raises the question which of the two
causes influenced evolution of the respective region first:
whether transcription factors had to adopt to sequences
that enable an influence on the kinetics or whether the
influence on the kinetics is a side product of TFBS
evolution.

Conclusions

We presented a model of DNA-binding by s70 during
promoter detection in E. coli. We used a position-specific
weight matrix based on promoter strength data from (9) to
obtain a measure for the sequence-dependent binding

energy between the sigma factor and the DNA. In contrast
to applications described in the literature, we applied the
matrix to a set of 3765 known promoters (aligned to the
transcription start site) and evaluated the resulting average
values. Hereby, we eliminated the strong fluctuations of
individual sequences and obtained the energy landscape
common to all s70-promoters. Our algorithm proved its
appropriate modeling through a significant minimum of
the average binding energy at the promoter position.
Additionally, we detected two minima of binding energy
shortly before and after the actual promoter position
based on correlation between the two promoter regions.
Subsequently, we applied the algorithm to a wider range
around the promoter regions revealing a characteristic
energy landscape in the 500 bp surrounding the promoter.
Thereafter, we clustered the promoters according to
promoter strength to investigate whether the characteristic
energy landscape is specific to a certain set. Indeed, we
found that it is only distinct around strong promoters,
whereas the landscape of binding energies around weak
promoters corresponds to those of random sequences.
Afterwards, we verified the uniqueness of the energy
landscape for the surrounding of promoters using random
permutations of the weight matrix. Finally, we discussed
three putative interpretations of the energy landscape.
First, since the landscape reflects similarities between the
promoter and its surrounding, it may be a result of
sequence duplications during evolution. Second, transcrip-
tion factor binding sites may have an impact on the
nucleotide content and hereby influence the energy land-
scape. Third, changing binding energies might have an
influence on the kinetics of the RNA polymerase
holoenzyme during promoter search. Based on the
assumption that the latter has a sequence-dependent
component, the energy landscape has implications on
velocity and direction of the sliding process. After
evaluating the random permutations, we were able to
mostly exclude the first explanation (sequence duplica-
tions). We could not conclusively infer which of the
second and third interpretations holds true, however, our
results should give indications for further research
and experiments. Nucleotide biases caused by transcrip-
tion factor binding sites are likely to contribute to the

Figure 7. Ratios of observed occurrence versus. expected occurrence of the nucleotides A (left) and T (right) in 2015 E. coli transcription factor
binding sites downloaded from RegulonDB (14).

Figure 8. Comparison between the average binding energies around
3765 promoters as observed in Figure 5 (dotted line) and the average
binding energies of 3800 random sequences generated based on
the nucleotide biases caused by TFBSs as calculated from Figure 7
(solid line).
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energy landscape but cannot explain all of its character-
istics. In any case, it stays open whether they influenced
the evolution of the promoter surrounding first or just
had to adapt to constraints posed by kinetic aspects.
Another point of future investigations is to clarify the
specificity of the observed energy landscape for s70. Since
only an insufficient number of promoters recognized by
alternative promoters is currently available, the obtained
results allowed no final conclusion. Due to the similarity
of main sigma factors in prokaryotes (2,29), the results are
expected to apply in the same way to other prokaryotic
organisms.

SUPPLEMENTARY DATA

Supplementary data are available at NAR Online.
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