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Abstract-The gene identzjication problem is the problem of interpreting nucleotide sequences by computer, 
in order to provide tentative annotation on the location, structure, and functional class of protein-coding 
genes. This problem is of self-evident importance, and is far from being fully solved, particularly for higher 
eukaryotes. Thus it is not surprising that the number of algorithm and software developers working in 
the area is rapidly increasing. The present paper is an overview of the field, with an emphasis on 
eukaryotes, for such developers. 

INTRODUCTION 

In a rapidly moving field it is often easy to trace 
individual threads of work, but difficult to gain an 
overview. The first purpose of this review is to 
provide a concise directory to both standard and 
newer techniques, and so allow new developers to 
more quickly come to the point where they can make 
their own original contributions. 

The second purpose is to give some perspective on 
the structure of the field and current research direc- 
tions. This includes summarizing the high points of 
progress to date in each of several areas, evaluating 
what seem to be the most productive current lines of 
inquiry, and attempting to predict where the most 
useful developments will come from in the future. 
While large parts of this perspective are shared by 
many practitioners in the field, the overall analysis 
necessarily represents the personal views of the 
author. 

A number of related reviews exist. A few of the 
more recent works on sequence analysis in general are 
Adams et al. (1994), Doolittle (1990), Gelfand (1995), 
Gindikin (1992), Gribskov & Devereux (1991), 
Griffin & Griffin (1994), Konopka (1994a) and Wa- 
terman (1989a, 1995). On-line bibliographies of pub- 
lications relevant to analysis of nucleotide sequences 
are maintained by A. Bairoch (SEQANALREF; 
URL http://expasy.hcuge.ch on the World-Wide 
Web) and M. Gelfand (FANS-REF; ftp to 
imb.imb.ac.ru; in directory BIBLIO). Staden (1990) 
and Gelfand (1990b) give overviews of the gene 
identification problem. Fickett & Tung (1992) 
review recognizable statistical regularities in 
protein coding regions. Doolittle (1986) and Gish 
& States (1993) discuss the interpretation of simi- 
larity schemes in the context of gene identi- 
fication. 

The present review is primarily a guide to current 
techniques relevant to future development, rather 
than being a guide to current tools. The review is 
mostly restricted to published work, though unpub- 
lished developments may be mentioned briefly. In 
most sections, coverage is limited to techniques that 
are either widely used, or which seem to us to be 
particularly important for future developments. 
Although the number of papers cited is already large, 
there are doubtless many others that should have 
been included. Experimental approaches to gene 
identification are assuming an increasing importance. 
These will not be covered here, but the computational 
developer must stay abreast of the rapid develop- 
ments in experimental techniques as well. For a recent 
overview see Church et al. (1994). 

The paper begins with a definition of the problem. 
The main body of the paper consists of an overview 
of computational tools and techniques broken into 
six (somewhat arbitrary) categories: 

l Sequence similarity search 
0 Statistical regularities in exons 
l Signals: introduction 
l Signals: basal gene biochemistry 
0 Signals: regulation of gene expression 
l Gene syntax and integration of information. 

In each of these categories the state of the field is 
summarized. In the last two sections, some higher 
level issues are considered. 

DEFINITION OF THE PROBLEM 

Sequence (old or new) to biochemistry 

A framework for much of the work in compu- 
tational analysis of nucleotide sequences may be had 
by seeing this work as directed towards the eventual 

103 



104 James W. Fickett 

goal of automatic annotation: automatically produc- 
ing a draft feature table that is as complete, accurate, 
and interesting as possible. Sequence “features”, in 
the common usage of the term, include many kinds 
of information; the core problem in automatic anno- 
tation is to describe the sequence in functional terms. 
Concretely, this means to discover all biochemically 
active sites in a region of a DNA/RNA molecule, 
and describe the associated reactions and reaction 
products. 

The ability to predict the biochemistry of a new 
sequence-one under design, say, by a pharmaceuti- 
cal company-in a specific context, is of just as much 
interest as the ability to discover the function of 
naturally occurring genomes. One very important 
long term goal of nucleotide sequence analysis, then, 
is to generalize from the biochemistry of natural 
genomes to give rules for designing new genes and 
genomes. 

proaches in Borodovsky et al. (1994a, b). Template 
methods attempt to compose more or less concise and 
elegant descriptions of prototype objects, and then 
identify genes by matching to such prototypes. A 
good example is the use of consensus sequences in 
identifying promoter elements or splice sites. Lookup 
methods, on the other hand, attempt to identify a 
gene or gene component by finding a similar known 
object in available databases. An excellent example of 
a lookup method is searching for genes by trying to 
find a similarity between the sequence under analysis 
and the contents of the sequence databases. 

The current gene identification problem 

Although the identification of protein coding genes 
is clearly influenced by the knowledge of other signifi- 
cant features of the sequence, the difficulty of consid- 
ering the automatic annotation problem as a logically 
integrated process has caused the gene identification 
problem usually to be considered independently of 
most other sequence analysis. Most of the rest of the 
paper will follow this tradition. 

Much of the work that comes out of a mathemati- 
cal or computational background (including pattern 
recognition in particular) focuses on deriving proto- 
type descriptions from the data. This approach often 
makes important contributions to our understanding, 
but usually leaves out important exceptions and 
ambiguities, most likely because genomes are not 
elegantly designed from scratch, but are a collection 
of contraptions honed by experience. Thus as the field 
has developed, and as molecular biological data have 
increased, lookup methods, which simply rely on 
what is, without attempting to summarize it neatly, 
have gained in importance. 

Eukaryotic gene regulation is complex and is just 
beginning to be understood. It still seems a rather 
difficult goal even to predict from sequence the course 
of the key biochemical reactions of gene expression: 
transcription, splicing and translation. At the present 
time the success of gene identification algorithms is 
measured in terms of the degree to which they correctly 
predict the amino acid sequence of protein products 
and, perhaps, some hint of product function. 

Finally, it should be noted that the field as a whole 
is making a transition from studying primarily com- 
ponents of genes to studying genes and genomes in 
their entirety. Thus the issue of choosing an appropri- 
ate language in which to express and integrate the 
knowledge gained from the component calculations is 
one of the most active areas in computational gene 
identification. 

Sequence similarity search 

COMPUTATIONAL TECHNIQUES 

Overview 

The sections that follow survey the various compu- 
tational techniques relevant to gene identification. In 
the first five sections, methods for recognizing some 
particular aspect, or component, of genes, are cov- 
ered. The last section then covers methods of inte- 
grating all the evidence and components into higher 
level statements about genes. 

One of the oldest methods of gene identification, 
based on sequence conservation due to functional 
constraint, is to search for regions of similarity 
between the sequence under study (or its conceptual 
translation) and the sequences of known genes (or 
their protein products). A recent, large-scale example 
of the application of this method, clearly illustrating 
both its power and its difficulties, may be found in 
Robison et al. (1994). 

There are several higher level issues one should 
keep in mind. One is that the efficacy of many of the 
methods is still being debated, or in some cases, has 
not yet been challenged or tested. Each section will 
summarize what is known about the practical value 
of the techniques covered. 

A clear advantage to searching for genes by simi- 
larity is that, if a significant similarity is found, it is 
likely to yield clues as to the function, as well as the 
existence, of the new gene. In addition, if the search 
is carried out at the amino acid, rather than the 
nucleotide, level, the additional advantage may be 
had of lowered sensitivity to the “noise” of neutral 
mutations. The obvious disadvantage of this method 
is that when no homologues to the new gene are to 
be found in the databases, similarity search will yield 
little or no useful information. 

There is an emerging issue, possibly of fundamen- The question naturally arises, then, of the likeli- 
tal importance, in the development of techniques for hood that the databases will contain a homologue of 
gene identification, which might best be expressed as a gene awaiting discovery. Seely et al. (1990), in an 
the tension between template methods and lookup early attempt to answer this question, took one half 
methods (termed “intrinsic” and “extrinsic” ap- of GenBank release 56 as a test set, introduced 
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“mutations”, “introns” and “intergenic DNA” to 
make the test set resemble new genomic data, and 
searched for genes in this test set by comparing it to 
the remaining half of GenBank as a reference set. In 
this experiment, they found that approximately three- 
quarters of the genes could be clearly identified. Thus 
one might hope that the majority of new genes could 
be found by means of simple similarity searches in the 
database. 

When the complete sequence of yeast chromosome 
III (Oliver et al., 1992) was first reported, 26% of the 
putative protein products (conceptual translations of 
all open reading frames over 300 bp in length) were 
found to have significant similarity with some other 
known sequence. Similarly, in reporting analysis of 
three cosmid sequences from C. elegans, Sulston et al. 
(1992) state that roughly a third of the putative genes 
show clear homology to sequences already in the data- 
bases. Both of these estimates have rather large error 
bounds, as the list of tentative genes depends primar- 
ily on computational, not experimental, evidence. Yet 
these studies do seem to suggest that the conclusions 
of the Seely et al. study are perhaps too optimistic. 
Probably the disparity between the simulation study 
and the results of actual genomic sequencing are due 
to the biased nature of the databases. For example, 
both of the halves of GenBank used in the experiment 
of Seely et al. are much richer in highly expressed 
genes than is a eukaryotic genome in toto. 

One overall lesson from a long line of work 
studying amino acid sequence motifs and blocks from 
related sets of proteins (cf. Gribskov et al., 1987; 
Posfai et al., 1989; Smith & Smith, 1990; Smith et al., 
1990; Henikoff & Henikoff, 1991; Bairoch, 1992; 
Ogiwara et al., 1992) is that database searches seem 
to be much more sensitive if carried out with mean- 
ingful patterns such as motifs or profile matrices. 
When Bork et al. (1992a, b) studied the yeast chromo- 
some III sequence using more permissive cut-off 
scores, multiple alignment methods, and motif 
searches, 42% of the putative genes were found to be 
similar to a known sequence or motif. Later, Koonin 
et al. (1994) revised the list of putative genes and 
again used the most recent and sensitive known 
algorithms, and found that 61% of the putative 
proteins exhibited significant similarities to known 
proteins or motifs. This increase is due in part to 
revisions in the list of putative proteins, in part to the 
databases becoming more complete, and in part to 
improvements in computational methods. 

In another vein, current efforts to sequence (at least 
fragments of) all transcribed sequences from a num- 
ber of genomes (e.g. Adams et al., 1991) concentrate 
much of the genomic information necessary for gene 
identification. Boguski et al. (1994) collected the 32 
human disease gene sequences that have been posi- 
tionally cloned to date and found that 85% of them 
showed homology to an entry in the dbEST collection 
(Boguski et al., 1993) of expressed sequence tags. This 
is a small sample, but the indication still seems strong 

that cDNA sequence collections will be an important 
resource for gene identification. Note, however, that 
for most of the sequences in dbEST, the only infor- 
mation available is that they are transcribed; map- 
ping and functional data will surely come, but are 
presently accumulating much more slowly than the 
sequences themselves. 

How fast will the fraction of genes identifiable by 
similarity search go up? Green et al. (1993) [see also 
Claverie (1993a) and Green (1994)] compare recently 
determined sequences both to each other and to older 
sequences in the databases, and conclude that: (1) 
most ancient conserved regions (or ACRs, roughly 
defined as regions of protein sequences showing 
highly significant homologies across phyla) of the 
protein universe are already known and may be 
found in current databases; (2) roughly 20-50% of 
newly found genes contain an ancient conserved 
region that is represented in the databases [cf. also 
Borodovsky et al. (1994a)]; and (3) rarely expressed 
genes are less likely to contain an ancient conserved 
region than moderately or highly expressed ones. 

Taken together, these results seem to suggest that 
on the order of one-half of all new genes may be 
discovered, and perhaps some functional information 
determined, on the basis of similarity to known 
sequences or motifs, and that this fraction will con- 
tinue to rise. Due to the larger variety in non-ACR- 
containing proteins, however, the rise will likely be 
rather slow. 

Sequencing errors, particularly frameshift errors, 
can be a serious problem for gene identification by 
similarity search. Gish & States (1993) discuss the 
effects of such errors, and the interpretation of 
BLASTX search results. Shavlik (1994) shows how to 
turn the difficulty to advantage, piecing together 
matches from different frames both to locate genes 
and to detect the sequence errors. Claverie (1992) also 
discusses practical aspects of similarity searching, in 
particular providing a means to eliminate the most 
common source of high scoring similarities not due to 
gene function, namely repeats. 

Statistical regularities in exons 

At the core of most gene recognition algorithms are 
one or more coding measures-functions which calcu- 
late, for any window of sequence, a number or vector 
that measures attributes correlated with protein cod- 
ing function. Aggregate properties of such function 
values on coding regions thus form templates for 
exons in general. Common examples of coding 
measures include the codon usage vector, the base 
composition vector, and some type of Fourier trans- 
form of the sequence. These measures, which have a 
long and rich history, have been reviewed, syn- 
thesized, and uniformly evaluated in Fickett & Tung 
(1992) [cf. also Gelfand (1990b)]. The measures tested 
there are the following (for more details and full 
citations see the review; in the definitions that follow, 
the “test-codons” of an arbitrary sample window of 



106 James W. Fickett 

sequence are defined as the successive non-overlap- 
ping trinucleotides of the window, beginning with the 
first base). 

Codon Usage Measure: The 64 element vector 
giving the frequencies, among the test-codons, of 
each of the 64 possible codons. 

Hexamer-n Measure (for n = 0, 1,2): The counts of 
all hexamers offset by n from the starting base of a 
test-codon. (The Hexamer-0 measure gives dicodon 
counts.) 

Hexamer Measure: The frequency count in the 
window of all hexamers. 

Open Reading Frame Measure: The length of the 
longest stretch of sense test-codons in the window. 

Amino Acid Usage Measure: The 21-vector ob- 
tained by translating the sample window of sequence, 
beginning with the first base, according to the appro- 
priate genetic code, and counting the frequencies of 
the 20 amino acids and “stop”. 

Diamino Acid Usage Measure: The 441-vector 
given by translating the window and counting all the 
(overlapping) dipeptides (including “stop” as an 
“amino acid”). 

Stability of Hydropbobicity Measure: First 
define the information value of a codon as 
Eji= ,,3 [Xi= ,,.j(pi x dii)]/nj, where nj is the number of 
sense mutations of the codon, pi is the probability of 
the ith mutation, and dv is the difference in hydropho- 
bicity caused by the mutation. The information value 
of a window, which we take as the Stability of 
Hydrophobicity Measure, is then the average infor- 
mation value of the test-codons in that window. 

Composition Measure: [f(b, i)], where for each 
base b = A, C, G, T and each test-codon position 
i = 1, 2, 3,f(b, 4i) is the frequency of b in position i. 

Codon Prototype Measure: Let p(b, i ) be the prob- 
ability of finding base b at position i in an actual 
codon. Let q(b, i) be the probability of finding 
nucleotide b at position i in a trinucleotide that is not 
a codon. Consider p and q to be 4 x 3 matrices, with 
rows indexed by the bases b = A, C, G, T. Let B be 
the matrix with element (b, i) =p(b, i) - q(b, i). B 
can be considered a linear function on trinucleotides 
in an obvious way: each base b of a trinucleotide may 
be considered a column vector of a 3 x 4 matrix, with 
a 1 in the bth row. Then B of that trinucleotide is the 
dot product of B and the matrix representation of the 
trinucleotide. Elementary calculus shows that, up to 
a multiplicative constant, B is the matrix which 
maximizes the average of the difference B 
(codons) - B (non-coding trinucleotides). We define 
the codon prototype measure to be the sum, over the 
window, of the dot product of B and the test-codons 
of the window. 

Position Asymmetry Measure: Define p(b) = 

Wf(b, i )I/3 and assym(b) = Z,[f(b, i) - p(b)12. 
Then define the position asymmetry measure to be 
[assym(A), asymm(C), asymm(G), aswm(T)l. 

Entropy Measure: Given f(b, i ) as above, define 
entropy(i) = Z,{f(b, i)ln[f(b, i)]}. If the three values 

of entropy (i) are significantly different a coding 
region is predicted, and the one with the largest 
difference from random is predicted to be third codon 
position. We define the Entropy Measure to be 
[entropy(l), entropy(2), entropy(3)]. 

Autocorrelation Measure: Let auto(b, i) be the 
number of pairs of base b with i intervening bases. 
For the measure we correct for the number of such 
pairs expected on the basis of base composition 
alone, giving the matrix [auto(b, i)/ 
(window-length - i - l)(frequency_of_b)2], where 
b=A,C,G,Tandi=O ,... 9. 

Fourier Measure: Let the window be 2 M long. Let 
EQ(x, y) be the function which is 1 if x =y and 0 
otherwise. Define the nth Fourier coefficient (drop- 
ping the constant l/4M2 for simplicity) by: 
K(n) = Zp{Z,[EQ(base m, base m -p)]} enhPiM. 
Then define the Fourier Measure to be 
[X(2/V/2), FC(2A4/3), . . . , FC(2M/9] (i.e. the 
Fourier coefficients of the autocorrelation function 
for periods 2-9). 

Period 9 Measure: Definef(j) = frequency of R(j- 
other-bases)RYR and Period 9 Measure as the vector 
of values [f(5),f(g),f(l1)1. 

Dinucleotide Frame Measure: Make three fre- 
quency distributions of dinucleotides in the window: 
test-codon positions 1 & 2, positions 2 & 3 and 
positions 3 & 1. The indicator will be the three 
chi-squared values measuring bias of these distri- 
butions from the overall dinucleotide distribution of 
the training set (coding and noncoding). 

Word Measure: Divide the window into successive, 
non-overlapping words of length 2, and also into 
words of length 3. The measure is the pair of chi- 
squared values comparing the frequency distributions 
of these words with the uniform distribution. 

Run Measure: Lets S, , S,, . . S,4 be the non-trivial 
subsets of the set {A, C, G, T}. For each Si construct 
a new sequence by replacing each base in Si with 1 
and replacing each base not in S, with 0. Using this 
sequence define ru to be the number of runs of 1 of 
lengthj, forj = 1,2, 3,4, 5, and let r, be the number 
of runs of 1 of length greater than 5. The run measure 
will be the set of values [rii]. 

Dinucleotide Bias Measure: Let f(w), for any poss- 
ible word w, be the frequency of w in the sample 
window. Now for each dinucleotide ab let bi- 
as(ab) = [f(ab) -f(a)f(b)]/‘(a)f(b). The Dinucle- 
otide Bias Measure will be the bias values for the 16 
dinucleotides. 

Repeat Measure: Take all hexamers which occur, 
on average, more than twice every 4096 bases to be 
in the “repetitive” set. Using only the counts of these 
hexamers (324 in human, 247 in E. coli), in the 
coding and non-coding reference sets, gives the Re- 
peat Measure. 

In brief, the benchmark used is defined as follows. 
Homogeneous (fully coding or fully non-coding) win- 
dows of fixed size were taken from the international 
nucleotide sequence collection. The data corpus was 
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split in half, and the first part was used as a training 
set. Discriminant analysis (in two forms: classical 
linear discriminant analysis, which requires inversion 
of the covariance matrix, and Penrose discriminant 
analysis, which does not) was used to define a linear 
function of the measure which discriminates coding 
from non-coding. A threshold was then set to equal- 
ize the error rates on the coding and non-coding 
training sets. Then the performance of the algorithm 
so defined was evaluated on the other half of the data 
as test set. The average accuracy on the coding and 
non-coding parts of the test set was taken as the 
overall accuracy of the measure. The whole process 
was carried out both for a region-specific definition of 
coding and for a phase-specific definition. 

There is a great deal of redundancy in the suite of 
measures proposed to date. In some cases two 
measures are sensing very similar things (e.g autocor- 
relation and Fourier). In many cases one measure is 
derivable from, or a specialization of, another (e.g. 
compositions can be derived from codon usage 
counts). Figure 1 shows which measures can be 
derived from others. 

The tree in the right half of the figure contains most 
of the measures currently used. It is remarkable that, 
without exception, measures higher in this tree have 
higher accuracy than those below (and derived from) 
them. That is, in every case, if we derive an exon 
recognition function directly from a measure by using 
the Penrose discriminant, the result is higher accuracy 
than if we try to extract information from the 
measure in some clever way, and apply the Penrose 
discriminant procedure to the result. 

Of the measures not in the main tree at the right 
of the figure, the period 9 measure and the word 

Autocorrelation Run ORF Word Period 9 

measure yield rather poor results, and the autocorre- 
lation measure is essentially equivalent to the Fourier 
measure. The first main result of the review, then, is 
that of the measures tested, future algorithms should 
probably be based on Fourier, run, ORF and in- 
phase hexamer counts. 

Combining several measures does improve accu- 
racy. The highest score of any measure in the region- 
specific prediction of coding function on 108 base 
human windows was 76.6%. But Uberbacher kindly 
applied the Coding Recognition Module of GRAIL 
(Uberbacher & Mural, 1991) to the 108 base human 
test set (using only the first 100 bases of each win- 
dow), and when a threshold was set to equalize 
sensitivity and specificity the resulting accuracy was 
79%. For phase-specific discrimination we combined 
the six measures just discussed, again using classical 
linear discriminant analysis, and obtained 87.8% 
accuracy on human 108 base windows (compared to 
84.9% for the most accurate individual measure). 
This last combination was also applied to human 54 
base windows, giving 82.4% accuracy (compared to 
80.7% accuracy for the highest individual measure). 

The second main result is that a measure which 
seems to embody little biological understanding- 
counts of in-phase hexanucleotides-is in fact the 
most effective one. In-phase word count measures 
have a long history. The first use we know of the 
codon usage measure in a published algorithm is in 
Staden & McLachlan (1982). Separate word counts 
of different lengths for each phase were considered by 
Borodovsky et al. (1986ac). These papers considered 
words of length 1,2 and 3 (limited data were available 
at that time). More recently the same author 
(Borodovsky & McIninch, 1993) has extended his 

;’ Dicodon & Hexamer-I,2 

I 
Fourier 

Hexamer 

Diamino 

Dinucleotide frame I 
Codon 

Stability hydrophobicity 

Position Asymmetry ’ 

Fig. 1. Derivability of coding measures. Each measure is derivable from any measure above it and 
connected to it by a line. The dotted line shows that the Fourier measure is essentially equivalent to, 

though not formally derivable from, the autocorrelation measure. 
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work to include words of length 6. (Claverie et al., 
1990) was the first published use of in-phase hexamer 
count measures. 

Since the time of the above survey, other measures 
have been proposed. Snyder & Storm0 (1993) use the 
average complexity of octamers [measured by en- 
tropy in the sense of information theory; cf. Konopka 
& Owens (1990), which takes a somewhat different 
approach towards entropy than does Almagor 
(1985) reviewed in Fickett & Tung (1992)]. Solovyev 
& Lawrence (1993), extending the in-phase hexamer 
approach in a direction that takes on some character- 
istics of similarity search, report that in-phase oc- 
tamers and nonamers give an even higher accuracy. 
(Ossadnik et al., 1994) suggest a measure based on 
fluctuations in purine/pyrimidine window content (in 
a rather large window; >800 bp suggested by the 
authors). Often, when new coding measures are intro- 
duced, it is difficult to tell whether the measures are, 
in themselves, better or worse than existing ones, or 
whether, on the other hand, the context in which they 
are applied gives better performance. It would be 
interesting to apply the benchmark of Fickett & Tung 
(1992) to these new measures. 

In a related vein, experimentalists often use the 
length of an open reading frame as primary evidence 
for the existence of a gene, particularly in organisms 
like yeast, where splicing is rare. In Fickett (1994, 
1995) means are introduced for quantitative evalu- 
ation of the strength of such evidence. 

We will likely continue to see incremental improve- 
ments in coding measures. First, Guigo & Fickett 
(1995) have shown that dependence of most measures 
on C + G content is high, and that mere base compo- 
sitional differences can cause larger fluctuations in the 
values of coding measures than the differences be- 
tween coding and non-coding regions. So tailoring 
the measures to differing base compositions may well 
improve accuracy. In this regard Xu et al. (1994) have 
adopted the strategy (not separately evaluated) of 
measuring hexamer counts for “high” and “low” CG 
content reference sets, and then using linear interp- 
olation to make a set of counts intended to be 
appropriate for the CG content of the test sequence. 

Second, it will probably be useful to systematically 
distinguish between several classes of sequence, rather 
than just “coding” and “non-coding”. Konopka has 
long proposed a general framework of “functionally 
equivalent” classes of sequences [for a concise intro- 
duction see Konopka (1992)], and early showed that 
introns, in addition to lacking typical features of 
exons, also have features of their own, for example a 
tendency to show a two-base periodicity in the occur- 
rence of certain oligonucleotides (Konopka & 
Smythers, 1987; Konopka et al., 1987; ). Guigo & 
Fickett (1995) show that intergenic DNA has very 
different statistical properties than gene flanking se- 
quences. Krogh et aI. (1994a) found it profitable 
to explicitly model intergenic DNA in E. coli (see 
below). 

Finally, one wonders whether the many variables 
of some of the above coding measures (for example 
the 4096 variables of each hexamer measure) are all 
making important and independent contributions to 
discrimination. It might be, for example, that the 
signal-to-noise ratio of the measure could be im- 
proved by pruning out the less informative variables. 

The means by which the information in a coding 
measure is reduced to a single score, or a yes/no 
answer, has varied greatly. In the case of in-phase 
hexamers, for example, Claverie et al. (1990) weight 
the observed count of each hexamer by the ratio of 
its frequency in coding regions to that in all DNA. 
Farber et al. (1992) use a neural net with 4096 inputs 
to derive a discriminant. Borodovsky & McIninch 
(1993) derive two non-homogeneous (frame-depen- 
dent) 5-step Markov models, one for the coding 
regions of each strand, and a homogeneous model for 
non-coding regions, calculate the probability of ob- 
serving a window under each of the seven corre- 
sponding hypotheses, and then use Bayes’ theorem to 
derive the posterior probability of each hypothesis 
given the window. (It is worth noting that in most 
algorithms, the method is applied separately to the 
two strands, and the results combined in a post- 
processing step. In the work of Borodovsky and 
McIninch, on the other hand, the seven relevant 
hypothesis+oding in each of six possible frames, or 
non-coding-are directly compared in one step.) 
Thomas & Skolnick (1994) consider seven classes of 
nucleotides: those in the three codon positions, those 
in intergenic regions, and those that are in introns 
breaking the coding sequence at each of the three 
possible codon positions. Assuming a one step 
Markov model for the state variable, and that the 
probability distribution of the bases at each position 
of the sequence depends only on the bases and states 
in the immediate vicinity, they use Bayes’ theorem to 
make a maximum likelihood estimate of the state at 
each base of a given sequence. There is very limited 
information on which of these methods (or the many 
others that have been used with these measures, other 
measures or combinations of measures) is best. The 
general feeling among developers is that the differ- 
ences are usually small, but comparative objective 
testing would be very valuable. 

Signals: introduction 

The coding measures considered above are all 
closely related to patterns of codon usage. In what 
has now become common usage, Staden (1990) 
termed the use of such measures “gene search by 
content”. Of course codon usage is merely a side 
effect of the biochemistry of organisms. It will be 
more enlightening when we are able to recognize the 
locations in a genome where the gene expression 
machinery interacts with the nucleic acid, and so 
recognize the genes in a way parallel to the action of 
the cell. This approach Staden termed “gene search 
by signal”. 
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Any portion of the DNA whose binding by another 
biochemical plays a key role in transcription is vari- 
ously called a signal, a binding site, or a sequence 
element. Regions on a genome that correspond di- 
rectly to regions on an mRNA or pre-mRNA with 
analogous function in splicing or translation are also 
referred to by the same terms. 

The collection of all specific instances of some 
particular kind of signal, for instance, the set of all 
intron donor sites in human genes, will normally tend 
to be recognizably similar. In the early days of 
sequence analysis it was hoped that this similarity 
could be captured adequately by a consensus se- 
quence. That is, one aligns all the specific sequences, 
and then takes the most commonly occurring base at 
each aligned position to form the consensus. Then, it 
was hoped, the actual sites would be differentiated 
from spurious sites simply by distance (e.g. number 
of bases different) from the consensus. This approach 
turned out to be too simple, though the consensus 
sequences at various sites are still useful for their 
mnemonic value. 

It is now most common to summarize the com- 
monalities in (that is, form a template for) a particu- 
lar signal by recording the frequencies of each 
nucleotide at each aligned position, rather than 
simply recording the most frequent one. That is, the 
individual sequences are aligned, and the frequency 
of each base b at position i is tabulated as f(b, i). 
Then a position weight matrix m is derived from x 
most often by m(b, i) = log[f(b, i)/p(b)], where p(b) 
is the genomic frequency of base b [reviewed in 
Storm0 (1990)]. Any sequence to be tested for signal 
function is represented analogously, with s(b, i) = 1 
if the ith base of the sequence is b, and 0 otherwise. 
Then the test value of a sequence is the dot product 
of these two matrices, C,Jm(b, i) x s(b, i)]. (Because 
of the form of representation of the information, this 
approach is sometimes called, among computational 
biologists, the “matrix method”.) 

This approach is justified by several theoretical 
studies of protein-DNA binding [e.g. Berg & von 
Hippel (1988); von Hippel (1994) and references 
therein], and a number of experiments in which a 
DNA signal sequence is systematically varied and the 
activity of the variants measured [e.g. Mulligan et al. 
(1984), Takeda et al. (1989) and Barrick et al., 
(1994)]. 

Overall, we may summarize the results of these 
studies as follows. The activity of a signal sequence 
is determined by the proportion of the time that the 
sequence is bound, which in turn depends on the 
abundance of the binding molecule (typically protein 
or RNA) and its binding specificity, that is, the degree 
to which the binding molecule “prefers” the signal 
sequence to pseudosites. In comparing the activity of 
different signal sequences for the same binding mol- 
ecule, or in attempting to distinguish the signal 
sequences from pseudosites, we may take as constant 
all factors affecting the availability of the binding 

molecule (overall abundance, the frequency of pseu- 
dosites, and the average affinity of the pseudosites), 
and the deal simply with the binding energy of the 
binding molecule to the site at hand. The first major 
result from experiment is that this binding energy is 
often closely approximated by simply summing the 
contributions of the individual base positions, as if 
they were independent. This of course means that 
activity can be predicted reasonably well by some 
matrix calculation as described above, though it does 
not determine the form of the matrix. 

If we assume that thef(b, i)/p(b), as defined above, 
is representative of the ratio of bound to free reaction 
concentrations for base b in its interaction with a 
specific site on the binding molecule, then the logar- 
ithms in the position weight matrix are proportional 
to the free energies of binding for each base. This is 
one way of justifying the particular form of the 
position weight matrix. Alternatively, one may note 
that the sum in the dot product above is, from a 
statistical point of view, just the log likelihood ratio 
of the test sequence being found given: (1) the 
hypothesis that the sequence comes from a set in 
which the bases at position i have probability distri- 
bution f(b, i), and (2) the hypothesis that the se- 
quence comes from a set in which the bases occur 
with frequencies p(b). 

In many cases, the dot product of the position 
weight matrix with the sequence seems to be a 
relatively good predictor of signal activity. In Barrick 
et al. (1994) for example, 185 clones with randomized 
ribosome binding sites were selected, and for each the 
activity was measured and the binding site sequenced. 
A matrix was first determined by multiple linear 
regression. The regression matrix predicted actual 
activity with a correlation coefficient of 0.89 (when 
cases with alternate start codons were eliminated, this 
rose to 0.92). Further, when a position weight matrix 
was calculated from natural sites, the correlation 
coefficient between the two matrices was 0.88. 

However, position weight matrices do not always 
work well, and it must be recognized that a number 
of simplifying assumptions underlie their use. The use 
of position weight matrices ignores the availability of 
the DNA or RNA (the effects of chromosome pack- 
aging and secondary structure), non-independence 
between bases (important, for example, in confor- 
mational changes due to base stacking), different 
versions or conformations of the binding molecule 
and interactions between multiple binding molecules. 

Non-independence between bases may be taken 
into account by a relatively simple extension of the 
position weight matrix, namely using a larger matrix 
where columns correspond to the various possible 
oligomers at various positions, rather than to individ- 
ual bases. One example of this approach may be seen 
in the work of Thomas and Skolnick already cited 
(the uniformity of their approach makes “retraining” 
the algorithm very easy). Another will be seen below 
in the work of Solovyev, Salamov and Lawrence. Of 
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course, the longer the oligomers, the more data are 
needed to reliably calculate the matrix. 

The use of position weight matrices in recognizing 
key elements of eukaryotic genes, namely splice sites 
and promoter sequences, has to date led to relatively 
limited success. All of the above limitations of the 
method probably play a role here. However we would 
hazard the guess that the main factor is the coopera- 
tivity among multiple binding molecules. It is rare in 
eukaryotes, for example, for large numbers of genes 
to have precisely the same complement of proteins 
involved in the initiation of transcription. We will 
return to this point below. 

Where applicable, the consensus and position 
weight matrix methods have the advantage of being 
relatively simple and well understood. Assessing the 
significance of search results has been treated in 
Waterman (1989a, b) for approximate matches to a 
consensus pattern, and in Claverie (1994a) and 
Goldstein & Waterman (1994) for searches using 
position weight matrices. 

A wide variety of other methods, difficult to sum- 
marize in a limited space, have been proposed to 
recognize signal sequences in genomes. Most of these 
have not come into wide use, and the reader must be 
referred to Gelfand (1995) and the on-line bibliogra- 
phies mentioned above for more details. One method 
which has seen fairly extensive use is that of neural 
networks. When the network has only one layer, it 
produces a linear discriminant function that is usually 
fairly close to the position weight matrix derived by 
the methods described above. However, when the 
network has multiple layers, with hidden units, the 
function encoded is more complex. The use of neural 
networks in the analysis of nucleotide (and amino 
acid) sequences was reviewed in Hirst & Sternberg 
(1992). The neural network algorithms reviewed 
showed better performance than more statistical ap- 
proaches in a number of cases. However, it is not 
altogether clear whether the improvement was due to 
integration of several kinds of evidence (discussed 
below) or to the neural network means of integration. 

One difficulty with neural nets, and in fact with 
machine learning methods in general, is the distance 
between the understanding in the machine and the 
understanding in the human expert. Most such algor- 
ithms are designed to begin from a randomized state,: 
that is, without the benefit of any knowledge already 
gained by experiment or other methods. And, when 
the algorithm has finished the training state, it is 
typically rather difficult to retrieve the “understand- 
ing” that has been captured. In this regard, Shavlik 
et al. (1992) have made interesting progress by devel- 
oping neural net methods that can start from an 
intelligible base of rules and, after training, can return 
a refined set of rules. 

Many methods of sequence signal recognition re- 
quire a set of sequences with functional sequence 
elements already precisely located and aligned. How- 
ever, it is often the case that experimental work has 

only approximately located the sequence element, 
and that the best alignment is unclear. Thus several 
groups have developed methods to optimize the 
localization of the sequence elements, the alignment, 
and a weight matrix or other discriminant, simul- 
taneously; see for example Cardon & Storm0 (1992), 
Lawrence et al. (1993), Borodovsky Jt Peresetsky 
(1994), Krogh et al. (1994). These methods have to 
date been applied primarily to other problems, but 
show significant promise for the identification of 
eukaryotic signal sequences. 

Signals: basal gene biochemistry 

Gene signal recognition work to date has dealt with 
the problem of recognizing the signals common to 
essentially all genes. For example Bucher (1990) has 
defined weight matrices to partially characterize four 
elements common to most eukaryotic pol II pro- 
moters: the TATA-box, cap-signal, CCAAT- and 
GC-box. These were derived from the Eukaryotic 
Promoter Database (Bucher, 1988). In Cavener & 
Ray (1991) sequences flanking translational initiation 
and termination sites have been compiled and statisti- 
cally analyzed for various eukaryotic taxonomic 
groups. The polyadenylation reaction is relatively 
well understood now (Wahle & Keller, 1992), and 
information on translation termination sites has been 
collected in the Translational Termination Signal 
Database (Brown et al., 1993). Yada et al. (1994) use 
discriminant analysis to derive a position weight 
matrix to recognize the polyadenylation signal. All of 
this information is useful in helping to recognize the 
beginnings and ends of genes, however compu- 
tational methods for such recognition are in their 
infancy, and will require significant further develop- 
ment to attain high reliability. 

Consensus sequences for splice junctions have been 
recognized for many years (Breathnach & Chambon, 
1981). A comprehensive collection of splice junctions 
and weight matrices, commonly referred to, may be 
found in Senapathy et al. (1990). Consensus se- 
quences alone give rather unsatisfactory results. The 
best successes to date in predicting splice junctions 
come from integrating several kinds of evidence. 
Shapiro & Senapathy (1987) combine base frequency 
information at the splice site with a check for an open 
reading frame on the correct side, and an evaluation 
of a potential polypyrimidine tract near the acceptor. 
Including a requirement for related patterns [e.g. a 
branch point within a specified distance upstream of 
the acceptor, and no AG dinucleotide between these 
two sites (Oshima & Gotoh, 1988; Gelfand, 1989)] 
seems to improve accuracy. At true splice sites, 
coding measures should give values characteristic of 
coding regions on one side of the splice, and values 
characteristic of non-coding regions on the other. 
Thus in Nakata et al. (1985) and Brunak et al. (1991) 
information concerning splice sites per se, for 
example positional frequencies and binding energies, 
are combined with the values of coding measures on 
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either side of each potential splice site, to give im- 
proved splice site prediction. Solovyev et al. (1994b) 
give an excellent overview of the literature and a 
careful synthesis of existing techniques. They report 
what appears to be the most accurate algorithm for 
human sequences to date, using triplet counts [due to 
Mural et al. (1990)] at significant positions near the 
branch point and splice junctions, octamer counts on 
either side of the junction, counts of G, GG and 
GGG downstream of potential donor sites, and 
counts of T and C upstream of potential acceptor 
sites, all combined using linear discriminant analysis. 
Taking the sets of GT and AG dinucleotides as the 
set of all potential splice sites, Solovyev et al. report 
96% sensitivity and 97% specificity for donors, and 
96% sensitivity and 96% specificity for acceptors. 
(These methods are combined, using linear discrimi- 
nant analysis, with oligonucleotide-based recognition 
methods for coding regions and the beginnings and 
ends of genes to produce an exon recognition algor- 
ithm FEX.) 

In as many as 90% of the vertebrate mRNAs, the 
first AUG codon is the unique initiation site, and in 
the exceptional cases a number of factors have been 
elucidated that govern the probability of translation 
initiation at a particular ATG. These include neigh- 
boring nucleotides, leader length, distance to other 
ATGs, ORF length and secondary structure (Kozak, 
1991). 

Signals: regulation of gene expression 

The complexity of gene regulation naturally in- 
creases greatly with the number of tissue and cell 
types in an organism. Thus, although some universal 
commonalities have been identified in the known 
genes of some prokaryotes, it would now appear 
unlikely that any simple characterization will be 
found for the gene promoters of Homo sapiens (or, 
probably, of any other differentiated metazoan 
species). Thus, although the regulation of eukaryotic 
gene expression has attracted relatively little attention 
to date from developers of gene identification algor- 
ithms, such algorithms will, in the future, almost 
certainly take into account the complex signals for 
transcription initiation of specific classes of genes. 

Utilizing this sort of information will bring an 
added advantage, in that specific transcription el- 
ements provide important clues to gene function. 
This is an opportune time to begin making use of 
information on gene regulation, for a remarkable 
amount of information is now appearing, with new 
papers daily, on gene-specific, tissue-specific, stage- 
specific and stimulus-specific transcription signals. 

Several collections of sequence elements for tran- 
scription factors have appeared, including the Tran- 
scription Factor Database (Ghosh, 1990), the 
collections in Locker & Buzard (1990) and Faisst Jr 
Meyer (1992) TRANSFAC (Knueppel et al., 1994; 
Wingender 1994), TFDB (Mizushima & Hayashi 
1994) and TRRD (Kel et al., 1995). The first three of 

these are no longer maintained. These collections, in 
addition to incorporating the sequences of individual 
signal instances, sometimes include consensus se- 
quences or weight matrices. 

It is not clear at this point to what extent consensus 
sequences or weight matrices can differentiate true 
from false transcription elements. This remains a 
research area, as does the problem of how best to use 
the transcription element information in gene identifi- 
cation algorithms. One promising approach is re- 
ported in Prestridge (1995): in the calibration step, 
consensus sequences are used to recognize putative 
transcription factor binding sites in a training set of 
promoter and non-promoter regions, and ratios of 
densities for putative binding sites in promoters and 
non-promoters are recorded for all transcription fac- 
tors in TFD. In application, the density ratios of 
putative transcription factor binding sites (again rec- 
ognized by means of consensus sequences) are 
summed, and this score is combined with the Bucher 
weight matrix score of any putative TATA box. 
When the score threshold is set so that 70% of 
promoters are recognized correctly, one false positive 
is recorded about once every 5600 bases. [An earlier 
paper (Prestridge & Burks, 1993), found that the 
simple density of putative transcription elements is 
not discriminatory.] 

Gene syntax and integration of information 

It is well known that gene expression in vivo 
involves considerable interaction and interdepen- 
dence among various components of the transcrip- 
tion and translation machinery. Examples include 
coordinate binding of multiple transcription factors 
and mutations in a 5’ splice site resulting in the 
skipping of an upstream 3’ site. Thus it is not 
surprising that programs incorporating some overall 
model of gene structure give increased accuracy even 
for the recognition of individual gene components. In 
the case of intron splice sites, the integrated methods 
discussed above give roughly a factor of 10 improve- 
ment over recognition by consensus or matrix 
methods. Another example is seen in Einstein et af. 
(1992) where it is shown that 60% of exons under 
50 bp missed by the original GRAIL e-mail server 
may be detected by a logical analysis of splicing and 
frame. 

A number of programs have appeared in the last 
few years that are integrated in the sense of taking 
gene structure into account to predict exons 
[SORFIND (Hutchinson & Hayden, 1992, 1993); 
FEX (Solovyev et al., 1994a, b)] or genes [GM (Fields 
& Soderlund, 1990; Soderlund et al., 1992); the 
Gelfand program (Gelfand, 1990a; Gelfand & Royt- 
berg, 1993); GeneID (Guigo et al., 1992; Knudsen 
et al., 1993); GenViewer (Milanesi et al., 1993); 
GeneParser (Snyder & Stormo, 1993); GRAIL II 
(Uberbacher ef al., 1993; Xu et al., 1994); GenLang 
(Dong & Searls 1994) [cf. also @earls, 1992)]; and the 
program of Krogh et al. (1994)]. 
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(There are other gene prediction algorithms not yet 
published. In one prominent case, the analysis of the 
C. elegans genomic sequencing group [cf. Wilson 
et al. (1994)] makes use of an algorithm GeneFinder 
developed by P. Green.) 

The goal. In writing any new algorithm, the single 
most important decision is often, of course, the choice 
of a precise goal. Today, the goal of a gene identifi- 
cation algorithm is usually taken as obvious. Though 
there are minor differences, mostly associated with 
whether or not only optimal solutions are shown, 
developers take the essential goal to be the assembly 
of all components of a gene and the reporting of an 
integral gene to the user. 

In the long run it will be important to extend this 
goal to meet the practical needs of more complex 
situations. Current algorithms typically expect to 
find all components of each gene and, sometimes, of 
only one gene. In practice, however, a sequence 
presented for analysis may have no genes, partial 
genes (particularly in the case of very large genes, 
such as human dystrophin, which is over 2Mb 
long), multiple genes, genes embedded in the introns 
of other genes [cf. Levinson et al. (1990)], or genes 
with multiple expression patterns. Unusual mechan- 
isms such as genome rearrangements (as in the 
immunoglobulins), trans-splitting and RNA editing 
(as in some organellar genes) and the use of un- 
usual tRNA species, are rarely dealt with. Thus it 
will be necessary to develop algorithms that 
can produce a feature table of relevant gene 
features in whatever combinations they happen to 
occur. 

In addition, it is now widely recognized that an 
important part of the goal must be to recognize when 
a small change in sequence will result in a large 
change in function. This is important for recognizing 
non-functional alleles of “disease genes”, pseudoge- 
nes, and genes in first pass sequence data [cf. Claverie 
(1993b), Krogh et al. (1994) and Fields (1994)]. 

Kinds ofintegration. Gene identification algorithms 
typically begin by attempting to evaluate possible 
component objects or aspects of genes, proceed to 
integrate these into exons, and finally integrate 
the exons into genes. At both the exon level and the 
gene level there are two very different kinds 
of integration involved. The first is primarily biologi- 
cal, taking into account the syntax of genes, for 
example typical spacing of components and the par- 
titioning of the primary transcript into alternate 
exons and introns. The second is primarily logical 
and statistical, taking into account the relative 
importance of different kinds of evidence, and 
the combining of scores into overall measures of 
optimality in gene models. We will take these up in 
turn. 

Syntactical integration. All integrated gene identifi- 
cation programs make use of the high level syntax of 
genes resulting from our basic understanding of 
transcription, splicing, and translation. Taking 

“exon” in the coding sense, rules similar to the 
following are normally used: 

l The first coding exon begins with the start codon 
and ends with a donor site (or the stop codon, if 
there are no internal exons). 

l Any internal exons begin with acceptor sites and 
end with donor sites. 

l The last exon begins with an acceptor site (or the 
start codon) and ends with the stop codon. 

l The primary transcript consists of the transcrip- 
tion initiation site, a SUTR, alternating exons 
and introns, the 3’UTR, and the transcription 
termination site. 

c When the introns are excised and the combined 
exons read in frame, no internal stop codons are 
found. 

In addition to this syntax of order, there is also 
some information on distance, as for example ap- 
pears in known size distributions for exons and 
introns [cf. Naora & Deacon (1982), Hawkins (1988) 
and Smith (1988)]. 

Although this basic syntax is clear enough, biology 
is of course far more complex, and less well under- 
stood, than these simple rules would imply. Such 
facets of gene syntax as alternative splicing, overlap- 
ping genes and promoter structure remain beyond the 
reach of the current generation of algorithms. 

In many of the algorithms available today, the 
rules of gene syntax are implicit in the structure of the 
algorithm, but no “gene grammar” is explicitly listed. 
Two groups have, however, taken a more linguistic 
approach, making an explicit grammar the foun- 
dation of the algorithm. 

Searls suggested, some years ago, that a linguistic 
approach to the analysis of features in DNA se- 
quences could be beneficial [for an overview, see 
Searls (1992)]. This approach is first applied to the 
identification of protein coding genes in Dong & 
Searls (1994), where a formal, definite clause gram- 
mar of genes is described. Partial scores are passed 
up the parse tree, and combined by rules stored 
as part of the grammar. A training procedure is 
used to alter the score combination rules in order 
to optimize accuracy. Standard parse tools are 
used to find correct and high scoring parses of a 
sequence. 

Krogh et al. (1994) use a Hidden Markov Model 
(HMM) to integrate gene components into overall 
gene models for E. coli sequences. In essence, this 
means that they construct a probabilistic finite auto- 
mation that assigns a probability to every possible 
parse of a sequence into promoter, start, coding, stop 
and intergenic regions. The Expectation Maximiza- 
tion algorithm is used to estimate the parameters of 
the HMM. Then the Viterbi algorithm is used to find 
the most probable parse of the sequence. 

Logical integration. A variety of evidence is typi- 
cally employed in computer searches for protein 
coding genes, One of the critical choices in algorithm 
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design is the choice of method for combining these 
different types of evidence. 

Gelfand (199Oa) was the first to explicitly discuss 
the question of providing a natural framework for the 
integration of coding measures, matrix scores of 
signals and overall syntactical requirements. The 
approach chosen was basically statistical. To avoid 
dependence of score on the length of the gene, raw 
scores are taken as the average donor score, the 
average acceptor score, and the average TESTCODE 
window score (Fickett, 1982) over the exons. Then all 
scores are put on the same scale by expressing them 
in standard deviation units about the means of their 
observed distributions. The sum of these normalized 
scores is the score for the gene. 

Several other authors have also taken a fundamen- 
tally probabilistic/statistical approach. The discrimi- 
nant analysis approach of Solovyev et al. (1994a, b) 
is of course statistical. Storm0 & Haussler (1994) 
suggest a general probabilistic framework in the 
situation where one is partitioning a sequence into 
two classes of intervals (e.g. exons and introns), has 
a number of scores for each possible classification of 
each possible interval, and is combining these scores 
as a linear weighted sum. They suggest interpreting 
the scores and the sum as log probabilities. They then 
give efficient algorithms for scaling the scores so that 
the probabilities will sum to one, for calculating the 
probabilities, for choosing the weights in order to 
maximize the probability of given (“training set”) 
sequence parses, and for finding the top ranked 
optimal and suboptimal parses. [Compare also States 
& Gish (1994) where codon bias is integrated into 
BLAST searches using a likelihood approach.] 

A particular advantage of the HMM approach of 
Krogh et al. (1994) is that it naturally provides a joint 
probability distribution over sequences and parses of 
those sequences. The HMM thus provides a very 
natural vehicle for considering the possibility of 
introducing a sequence correction to get a more 
probable parse. 

The salient advantage of taking a probabilistic 
point of view is that it may be possible to assign a 
natural meaning to the scores. It would seem to be 
very desirable to apply the probabilistic point of 
view consistently to the sequence interpretation prob- 
lem, in a way that allowed one to provide answers for 
such questions as “how likely is it that at least one 
exon of this predicted gene is completely correct?“, 
“how likely is it that the correct gene and this 
predicted gene have at least 90% of the translated 
protein in common?” or, “how likely is it that this is 
in fact the most commonly used translation initiation 
site?‘. 

Applying probabilistic notions consistently is, 
however, very difficult because of our limited knowl- 
edge. Most authors, therefore, have taken what might 
be termed a machine learning approach, in which 
scores of various aspects of putative genes are mean- 
ingless numbers, and the rules for combining these 

numbers may therefore be manipulated at will to 
improve the accuracy of prediction. The advantage of 
this point of view, successfully exploited by a number 
of investigators, is that purely empirical machine 
learning techniques may be used to improve the 
algorithms by which scores are combined. Thus for 
example both Guigb et al. (1992) and Snyder & 
Stormo (1993) use a neural net to revise the weights 
by which different atomic measures are combined, 
Dong & Searls (1994) use an ad hoc training pro- 
cedure to revise the score-combining rules associated 
with each node of the parse tree, and Salzberg (1995) 
uses a decision tree algorithm to combine information 
from several coding measures. In these cases it is 
reported that machine learning algorithms combine 
information in a way that significantly improves 
performance. 

Orthogonal to the choice of a probabilistic or a 
machine learning approach to the interpretation of 
scores, there is also the issue of organizing one’s 
evidence. Most gene identification algorithms recur- 
sively construct gene models from partial subassem- 
blies. For instance, atomic components may be 
scored first, then exons constructed and scored, and 
finally genes assembled from exons and a final score 
assigned. Further, most evidence gathered by gene 
identification algorithms fits neatly into this recursive 
hierarchy. Thus Dong & Searls (1994) elegantly sum- 
marize the basic approach of most investigators by 
attaching the scoring rules directly to nodes of the 
gene parse tree. 

Unfortunately, however, not all of the evidence 
that one needs to take into account is directly related 
to a subassembly of the gene. For example, if the 
translated protein from a candidate gene contains a 
region similar to a known protein motif, and this 
region corresponds to parts of each of two exons, it 
is not obvious how this should affect either the scores 
of the exons or the score of the gene overall. Dong 
and Searls solve this problem by specifying a gram- 
mar in which not all components of a parse are 
components of the gene; for example, one parse 
component is the average exon quality. Another 
common approach is to append postprocessor rules 
to the main algorithm. Thus GRAIL (Uberbacher 
et al., 1993; Xu et al., 1994) incorporates a number 
of heuristic rules for finding the boundaries of exons, 
and Krogh et al. (1994) complete independent analy- 
ses of the complementary DNA strands, and then 
combine them by means of a small set of rules. 

Ejkient computation. The number of possible 
genes to construct, score, and rank, even in a se- 
quence of a few kilobases, is quite large. Snyder & 
Storm0 (1993) and, independently, Gelfand & Royt- 
berg (1993) introduce dynamic programming algor- 
ithms to efficiently find optimally scoring solutions. 
Guigo et al. (1992) introduce the idea of exon equiv- 
alence-using one exon to represent a class of 
roughly equivalent exons-as an alternative (and 
possibly coordinate approach). 
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Despite significant advances in sequencing technol- 
ogy, it still takes longer to produce a sequence than 
it does to submit it to the analysis of even the slowest 
gene identification algorithms. What may be an even 
more serious bottleneck is the human attention re- 
quired to interpret and integrate the output from the 
several kinds of important computational analyses. 
Thus in addition to efficient computation, significant 
attention should be devoted to the problem of build- 
ing algorithms to truly integrate all the evidence for 
gene location and function, and to give accurate 
answers to biologically meaningful questions. 

Summary. As will be clear from even this short 
overview, the area of whole-gene recognition is mov- 
ing rapidly, with advances being made on several 
fronts. Divergent, and sometimes even conflicting, 
innovations are being made by different groups. 
Particular techniques are rarely evaluated in iso- 
lation, and each pair of programs usually differs in 
many aspects. Thus there is no one best program, nor 
is there likely to be one soon. 

Accuracies of the above programs are somewhat 
difficult to compare, as benchmark sets and testing 
methodology are not yet standardized. Roughly 
speaking, the accuracy of most of the above programs 
is reported so: when a new (not seen before by the 
algorithm) sequence is chosen that contains all of one 
gene and its flanking regions (and no other genes or 
partial genes), and this sequence is presented to the 
algorithm, the predicted gene will typically largely 
overlap the known gene, in such a way that about 
S-90% of the predicted coding bases are in the known 
gene, and about 8590% of the known coding bases 
will be in the predicted gene. That is, the predicted gene 
will look very much like the known one, but there will 
usually be significant differences as well. 

There are, however, hints that this performance 
may not extend to genes typical of the genome (rather 
than of the database). For example Lopez et al. 
(1994) report that when GRAIL is used on long, 
recently determined sequences, the accuracy is signifi- 
cantly lower than on the original test set. It is quite 
possible that similar results will be found for other 
tools. 

THE DEVELOPMENT PROCESS 

This paper is concerned primarily with algorithm 
design. However it is important to mention briefly 
some closely related issues. 

Data 

It is beyond the scope of the nucleotide sequence 
databases to maintain a reflection of current biologi- 
cal understanding in the features recorded on all 
known sequences. Thus the algorithm developer must 
be aware that annotation in the databases is often 
incomplete and sometimes incorrect. 

One solution to this difficulty is to take a set of a 
few tens of sequences, verify the annotation in detail 

for this set, and then use it for algorithm development 
and evaluation. The advantage of this approach is, of 
course, that one can be personally assured of the 
quality of the data. A disadvantage is that the variety 
in such a set is rather limited, and algorithms devel- 
oped in this way may not generalize well to new data. 

Another solution is to accept the databases as they 
are, perhaps removing some large classes of entries 
likely to confuse one’s study (for example, entries 
with no annotation, STS sequences or duplicates) and 
take the incompleteness of annotation into account in 
interpreting results. 

A compromise between these two approaches is to 
take advantage of one of a number of specialized, 
curated databases of intermediate size. One such, of 
particular relevance to the development of gene 
identification algorithms, is the collection of Func- 
tionally Equivalent Sequence sets (including, for 
example, a number of specialized collections of exons 
and introns) described in Konopka (1994a). 

Evaluation 

When only a few techniques had been developed 
for gene identification, it was often sufficient to 
demonstrate the value of a new technique in a few 
special cases. However, extensive benchmarking is 
now widely appreciated, and an innovative technique 
that is objectively shown to be of value in a large 
number of cases also stands a better chance to be 
widely adopted. It is also increasingly important to 
know the performance of new techniques not only on 
the “mainstream” genes common in the public data- 
bases, but on genes with unusual base composition, 
on rarely expressed genes, and on single pass, error- 
prone sequences. 

The evaluation of integrated algorithms is complex 
because there is no one best interpretation of the 
question, “how correct is this prediction?“. Guigo 
et al. (1992) made an important advance by 
suggesting that accuracy of integrated algorithms be 
evaluated on a nucleotide basis. They report the 
counts of three classes of nucleotides: those in the 
known coding region and the predicted coding re- 
gion; those in the known, but not the predicted 
coding region; and those in the predicted, but not the 
known coding region. These numbers are combined 
in the set-theoretic correlation coefficient (Cramer, 
1946; Matthews, 1975) between the set of true coding 
nucleotides and the set of predicted coding nucleo- 
tides. Since the correlation coefficient depends not 
only on the algorithm, but also the data set, develop- 
ers should always give the raw numbers as well as the 
summary coefficient. Evaluation is also difficult be- 
cause there is as yet no consensus on the form of the 
algorithm output, and different forms (e.g. a set of 
coding regions, a set of exons, a single most likely 
gene, a ranked list of possible genes, etc.) are not 
completely comparable. 

Performance of algorithms is, of course, in part 
dependent on the quality and contiguity of the 
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sequences presented. Claverie (1994c) evaluates the 
performance of GRAIL when raw, single sequencing 
runs are analyzed, and suggests that it is unlikely for 
the use of first pass, fragmented data, in itself, to lead 
to failed detection of genes. Kamb et al. (1955) 
evaluate XPOUND (Thomas & Skolnick, 1994) on 
400 bp sequences containing coding segments of var- 
ious known sizes and positions. They conclude that 
in performing 100 sequencing reactions on randomly 
selected fragments of a Pl clone, followed by 
XPOUND analysis, between 50 and 75% (depending 
on the types of sequencing errors) of all genes present 
in the Pl would be detected. 

Benchmarking is also a significant issue for users, 
who need to know not only how good the algorithm 
is, but how to interpret a particular score. In the case 
of SORFIND, which predicts internal exons, 
Hutchinson & Hayden (1992, 1993) divide the range 
of the output score into four ranges, and for each 
report the actual frequency with which the algorithm 
correctly reports exons in that score range. The 
situation becomes more complicated when the output 
consists of genes (or feature tables) rather than exons. 
By considering many suboptimal solutions, Snyder & 
Storm0 (1992) attempt to give the user a feel for 
which parts of a predicted gene are most likely to be 
correct. 

Singh & Krawetz (1994) compare the performance 
of four coding measures and the GRAIL e-mail 
server on one E. coli and four human genes. This sort 
of objective, third-party, comparative performance 
measurement is very valuable and unfortunately rare. 
It is to be hoped that further, and more comprehen- 
sive, studies will appear. 

Communication of results 

Since a large number of reasonably good tech- 
niques are already in existence, every developer must 
be aware that in order for an important innovation 
to spread, it needs to be described clearly, in enough 
detail that other investigators can easily duplicate the 
work. This has, of course, become more difficult as 
algorithms have grown more complicated. Yet the 
developer who is able to completely specify the 
algorithm in print will find others much more willing 
to adopt proposed techniques. 

Interface 

It is a remarkable fact about the field of gene 
identification today that many, perhaps most, of the 
best algorithms are not widely available. This is first 
of all simply because many developers have not had 
the time to develop an intuitive interface for those 
whose primary business is experimental biology. In- 
deed, one of the most important factors in the 
widespread use of GM and GRAIL is the effort that 
its developers have put into interface development 
and community education. 

A second limitation on availability is less obvious 
but no less real. This is that most algorithms today 

are organism specific, in implementation even if not 
in concept. To overcome this problem research on the 
degree of generality of various techniques is needed. 
For example, are in-phase hexamer counts, the single 
most useful coding measure, fairly stable only within 
species? Or can discriminant vectors for this measure 
be meaningfully calibrated for all mammals, or even 
for some wider group, in one step? If most techniques 
are highly specific to relatively small parts of the 
taxonomic tree (similar remarks apply to classes of 
genes), then a way needs to be found to allow the 
typical computational support person in larger bio- 
logical laboratories to tailor existing algorithms to a 
particular context. 

SUMMARY 

There has been a great deal of progress in gene 
identification methods in the last few years. At least 
in the case of sequence data from mammals, C. 
elegans and E. coli, the older coding region identifi- 
cation methods have given way to methods that can 
suggest the overall structure of genes. And for all 
organisms, computational methods are sufficiently 
accurate that they give practical help in many projects 
of biological and medical import. 

Yet there is still room for significant improvement. 
Many of the better algorithms are not widely avail- 
able. Investigators studying organisms other than 
those mentioned above may find that only the older 
algorithms are available to them. For the more 
advanced algorithms, it is still the case that predicted 
genes, while largely overlapping expressed natural 
genes, are typically incorrect in a number of details. 
Further, it is not clear that current algorithms, devel- 
oped on the very atypical gene sample available in 
current databases, will perform as well on genes more 
typical of the biological universe as a whole. Essen- 
tially all current algorithms depend heavily on codon 
usage bias, but it has been shown that this bias is less 
informative in genes with low-level expression 
(McLachlan et al., 1984; Sharp et al., 1988; States & 
Gish, 1994). 

Perhaps the single greatest opportunity in the 
development of gene identification algorithms is to 
include more detailed biological knowledge, relying 
less on techniques that attempt to provide a single 
elegant description valid for all cases. The description 
of (say) human genes inherent in any of the current 
gene recognition programs could be written down in 
a few pages. Given the extent to which evolution is 
opportunistic and haphazard, and given the preva- 
lence of exceptions to essentially all general principles 
in molecular biology and biochemistry, it seems 
most unlikely that essential aspects of any genome 
will be described in such simple terms. Greater em- 
phasis should probably be placed, then, on lookup 
methods over template methods; more richness 
is needed in the modeling of eukaryotic gene regu- 
lation; and, in general, a trend may be expected 
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towards gene identification algorithms becoming in- 
terfaces, with a general model of gene syntax, to a 
large number of databases of specific facts. First steps 
in this direction may be found in Borodovsky 
et al. (1994a, b), Claverie (1994b) and States & Gish 
(1994). 

The single most important area where specific 
aspects of genes are important, even to discover the 
coding regions, is control of gene expression. Further, 
control of gene expression is very closely connected 
to product function. Thus, in addition to providing 
greater accuracy, bringing gene identification algor- 
ithms close to models of underlying biological 
mechanisms will also bring them closer to answering 
what is, in the end, the more important questions: not 
just “Where are the genes in this sequence?“, but 
“How do they determine the biochemistry of the 
cell?‘. 
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