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T
he main contribution of engineering to biology and med-
icine has mainly been as yet ancillary, e.g., providing
instrumentation in fields like imagery and assisted diag-
nosis, which enables investigating reality far beyond the

range accessible to the senses alone, thus widely improving the
vision and control that biologists, physicians, and surgeons can
have on living things. We shall outline here another potential
contribution of engineering that is completely different and has
few precedents, that of providing a theoretical framework and
conceptual tools to biologists. This article is intended to show
that engineering concepts can help account for the prominent
role of information in life phenomena.

Living beings are open systems which exchange matter,
energy, and information with the outer world, with each oth-
ers, and in the process of their own operation. They receive
information from the outer world, and information circulates
inside themselves and between individuals at any scale, from
the molecular level to that of ecosystems and beyond.
Moreover, they are constructed and maintained using the
genetic information they receive from their ancestors since the
very beginning of life, some 3.5 billion years ago or maybe
even earlier. In its historical development, biology slowly inte-
grated the sciences of matter and energy, namely chemistry
and physics, which enabled it to go far beyond the mere
description of the living world, thereby acquiring a truly scien-
tific status. Last but not least, the less obvious importance of
information in the life phenomena has been recognized much
later than that of matter and energy. Modern biology assigns
an ever increasingly important role to information, but the sci-
ence relevant to it, information theory, has not been integrated
into biology yet as were chemistry and physics much earlier. It
is indeed a much younger science since its birth can be dated
to 1948 when Shannon’s papers were published [1]. Its strong
connection with communication techniques, its mathematical
formalism, and some conceptual difficulties made its impact
on other sciences rather limited. For several decades, it looked
as a rather abstract matter with little impact even on communi-
cation techniques for its lack of proper implementation means.
However, with the tremendous development of the semicon-
ductor technology (which also started in 1948!), the applica-
tions of information theory are by now countless. As a striking
example, mobile telephony would simply not exist without

information theory and the coding techniques it generated.
The many succcessful applications of information theory
now provide strong experimental proof of its validity in the
field of communications. Although it became the most pow-
erful conceptual tool avaible in this field, it remains almost
unknown outside the communication engineers’ community.
It shaped much of the present way of living, but few people
realize this even though everybody makes daily use of its
engineering products.

That information theory is largely unknown in the biolo-
gists’ community does not mean that the importance of
information in the living world is overlooked. An increas-
ing number of biological papers are devoted to many forms
of information recording and transfer, and the word infor-
mation has become ubiquitous in the biological literature.
However, it is used most often with a loose meaning. Many
biologists  seem to ignore that the scientific concept of
information generated a science having reached maturity.
We believe that no real progress will result from the recog-
nition of the prominent role of information in life phenome-
na unless information theory is integrated into biology as
physics and chemistry had been. 

Among the many domains of biology where information
plays a prominent role, we shall restrict ourselves to the com-
munication of genetic information through the ages. Starting
from the very fundamental question How is genetic informa-
tion faithfully communicated?, we hypothesize that nature
developed error-correcting codes since the origin of life. As
powerful tools available to communication engineers, error-
correcting codes are, paradoxically, reliable communication
over unreliable channels. Some of the most important results
of information theory are statements about these codes, espe-
cially concerning the attainable limits of their performance.
It turns out that aside from answering the above question, our
hypothesis also sheds light on the process of biological evo-
lution and on the structure of the living world. We first for-
mulated it and discussed its biological impact in [2].
Subsequent papers were devoted to refine this hypothesis
and to better understand its consequences. We also tried to
identify the error-correcting means involved and to under-
stand how they are implemented [3]–[5]. Besides the interest
of this topic of its own, we also think of it as exemplifying
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the mutual benefits that a collaboration between information
theorists and biologists could provide.

Genetics was at its beginnings a rather abstract science.
Later, the discovery by Avery et al. [6] that DNA is the bearer
of genetic information, and the subsequent discovery of its
double-helix structure by Franklin, Watson, and Crick [7], [8],
gave a chemical content to the concept of gene. In 1979,
Chargaff wrote  a paper entitled “How Genetics Got a
Chemical Education” [9], where he complained that genetists
were so reluctant to accept the consequences of the discovery
that DNA was the actual bearer of genetic information (35
years earlier) that a more appropriate title of his paper could
have been “How Genetics Refused to Get a Chemical
Education.” On the interrogative mode, the title of this article
is an allusion to Chargaff’s. Besides the chemical structure of
DNA, we believe it is time to consider the abstract framework
of information theory as appropriate to genetics. 

There is another reason why this title is relevant. It stresses
the need for an education; that is, genetists should make an
effort to assimilate a topic that is rather foreign to their tradi-
tional culture. A superficial knowledge of the results of infor-
mation theory does not suffice. Only a deep enough
understanding of the topic itself, including its paradoxes, can
be fruitful since adaptation is required before information the-
ory can be of any use in genetics (and, more generally, in biol-
ogy). The problems of terminology then become of paramount
importance, since the same words are often used with different
meanings in genetics and in information theory. As an exam-
ple, the “genetic code” is not truly a code in the information-
theoretic sense. Extreme attention must therefore be be paid to
the property of vocabulary. 

The Faithful Communication of Genetic
Information: A Crucial Question

A Model of Genetic Communication
When we first attempted to study evolution at the light of
information theory, we found that high-quality popularizing
books dealing with genetics and biological evolution, especially
those authored by Dawkins [10], [11], contain a very simple
model of genetics and biological evolution: the genome is
made of deoxiribonucleic acid (DNA), a long unidimensional
polymer bearing nucleic bases (or nucleotides), which are
small molecules of only four different types, denoted A (ade-
nine), T (thymine), G (guanine), and C (cytosine). Each nucle-
ic base acts as a symbol of the quaternary alphabet {A, T, G,
C}, and the genetic message consists of a sequence of such
molecules. The genome can be replicated. Each genome is
housed inside a phenotype which shields it against outer per-
turbations which would destroy it if left unprotected. The
development of the phenotype is controlled by the DNA mes-
sage itself, which directs a succession of protein syntheses
through the “genetic code” (we use quotes here and in the
sequel as a reminder that this is a mapping rather than a code
in the engineering meaning). This succession of protein syn-
theses results in the construction of a phenotype through an
extremely complicated and still poorly understood process.
The phenotypes are subject to natural selection, so the only
remaining genomes host surviving phenotypes.

We may thus think of the communication of genetic infor-
mation through the ages as a recording and copying process.
An initial written message has been copied several times, its

copies themselves have been copied, and this process has been
repeated. It reminds how texts written in antiquity were made
available to us thanks to generations of monks. In a sense,
however, this metaphor is misleading. Ink strokes on parch-
ment are macroscopic objects involving a huge number of
molecules so they may be expected to strongly resist degrada-
tion. Contrasting with any man-made memory element, the
bearer of the genetic message is a single DNA molecule.
Belonging to the submicroscopic world, it may be thought of
as highly vulnerable to degradation by mechanical, chemical,
and radiative agents, and since it is relevant to quantum
physics, it can be described only in terms of probabilities.
Contrary to any expectation, the genetic message has however
unmatched longevity since for instance the HOX genes which
determine the organization plan of living beings are shared by,
e.g., humans and flies, which diverged from a common ances-
tor hundreds of millions of years ago. Explaining this very
paradoxical longevity, which is the cornerstone of molecular
genetics, has been our major goal.

DNA should be shielded by membranes, rather obviously,
because a protection against mechanical constraints and
chemical reactants is necessary. But radiations of cosmic or
solar origin, or due to natural radioactivity, are pervasive
threats against DNA integrity. At a still more fundamental
level, the DNA molecule is a quantum object which cannot
bear a precisely defined message unless it is protected
against its own indeterminism. Protection against radiations
and indeterminism cannot be provided by outer devices like
a membrane but must be intrinsic to the genome itself. As a
consequence, the idea that the phenotype is the sole target of
natural selection is not tenable. The genome must itself be
subject to it with regard to its capacity to resist errors (here
we encounter a statement formulated by some biologists who
introduced the concept of “genome phenotype,” a seeming
oxymoron [12]). The problem of natural selection should be
restated to include the hypothesized existence of an error-
correcting system intrinsic to the genome.

Reformulating the Model
When a phenotype is destroyed in the process of natural selec-
tion, the genome it hosts disappears. But a genome also ceases
existing if an error transforms it into another one. Therefore,
survival of any genome implies that its replication be as reli-
able as possible, aside from it hosting a well-fitted phenotype. 

Although they properly recognized the importance of main-
taining the genome integrity in the evolutive success of a
species, biologists did not realize how difficult it is to perform
at the scale of geological times. Dawkins wrote about the
needed accuracy of replication [10], pp. 16–17:

We do not know how accurately the original replicator
molecules made their copies. Their modern descendants,
the DNA molecules, are astonishingly faithful compared
with the most high-fidelity human copying process.

He expresses his astonishment about such a high reliability
but does not question the ways to obtain it nor the conse-
quences which may result from their use. Communication engi-
neers know that the answer lies in the use of error-correcting
codes and that the price to pay for correction ability is redun-
dancy, which should be high enough to make the transmission
rate less than the channel capacity, a fundamental limit set by
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information theory. It is why we suggested that information
theory could be relevant to biological evolution [2]. 

Resuming in [3] the argument of [10], p. 24, we considered
the two antagonistic properties of fecundity and permanency
as being both beneficial to the genome conservation.
Fecundity refers to the rate at which the genome replicates
itself. We named permanency the ability of a genome to
remain strictly identical to itself whether it has been replicated
or not, thus combining the two properties of longevity and
copying-fidelity that Dawkins distinguished. The material for
making copies of the genomes is available in limited quantity
so only the most successful ones in maintaining and replicat-
ing themselves will survive. This is the most basic form of
natural selection. The most abundant, hence eventually surviv-
ing, genomes will then be those which optimally combine per-
manency and fecundity. Clearly, the balance between these
two properties can be very different from one species to anoth-
er, and the selective success can mainly rely on a high fecun-
dity (as for viruses and bacteria) or on a high permanency (as
for very complex beings like animals and plants). 

For a given replication mechanism, the shorter the genome,
the higher the fecundity. However, the genome size has a
lower limit because it must specify the machinery and process
for its own replication (we exclude here the smallest genomes,
those of viruses, which are devoid of a replication machinery
of their own and must use that of host cells to replicate them-
selves). The attainable survival ability, which results from
fecundity alone, therefore, has an upper limit. Simultaneously
starting the replication process at several places would proba-
bly not successfully increase fecundity for short genomes,
because complicating the replication process would need a
longer genome for specifying its machinery, with a presum-
ably detrimental effect on the overall replication speed. Only
already long genomes could benefit from such a strategy, inso-
far as the genome part devoted to specify the replication
machinery is small with respect to the remainder.

If error-correcting codes are used in the genome replication
process, they are themselves products of evolution. Due to their
key role in the genome conservation and the efficiency of the
Darwinian process, we may safely assume that natural selec-
tion made them evolve to come very close to the limit of what
is possible, so the error correction means that we hypothesized
are endowed with the properties of theoretically optimal codes,
hence exhibiting the seemingly paradoxical behavior of a
decreasing error rate as the codeword length increases (see
below). Then, increasing the length of a genome increases its
permanency. Moreover, no upper limit is set to the genome
length, so increasing it appears as a way for a genome to end-
lessly enhance its ability to survive natural selection. 

To summarize, permanency as just defined measures the
ability of a genomic message to survive in its physical, chemi-

cal, and biological environment, including that of resisting
radiations and its own indeterminism. Therefore, the survival
of a genome does not only depend on the ability of the pheno-
type it hosts to exploit its physical and ecological environ-
ment, escaping predators and resisting pathogenic agents, but
also, and more fundamentally, on the error-correcting means it
developed. This just generalizes the concept of natural selec-
tion to encompass the most pervasive and ubiquitous threats to
the genome integrity. At variance with the traditional view
that the phenotype is the sole target of natural selection (as in
Dawkins’s model recalled above), this point of view extends
the concept of natural selection to the genome itself. 

Aging, Mutations, and Variability 
of Genome Conservation
A very strong argument for the need of genomic error-correct-
ing means (perhaps the most convincing one) is the fact that
mutations, i.e., errors in the genome replication due to chemi-
cal agents or radiations, are responsible for aging and certain
diseases like cancers. Had the error rate in communicating
genomic information noticeable effects at the scale of the life-
time of an individual, the accumulation of errors during peri-
ods million times longer would simply make genetic
communication—hence life—impossible.

Moreover, if we look at the litterature on chromosomes and
cellular division and the literature on the performance of DNA
replication, the former appears as describing messy, involved,
and unreliable mechanisms; however, outstanding faithfulness
of DNA replication is reported in the latter. This sharp contrast
strongly suggests that mechanisms needed for correcting repli-
cation errors actually exist. Based on the duplication, in com-
plementary form, of the sequence of nucleotides in the
double-helix structure and the assumption that damages on
one string can be corrected in terms of the other one, many
“proofreading” mechanisms are known. However, they can at
best ensure that the copy is faithful to the original. In other
words, they can correct the errors which occur within the
replication process but not those that may affect the original
itself. Faithful copying thus does not adequately describe the
function of replication. The needed property, which only error-
correcting codes can provide, is resilience to casual errors.

The error rate of DNA replication is reported to be of about
10(−9) per nucleic base and per replication for higher animals.
It is greater 10(−3) per year and even more, which amounts to a
rate per replication some hundred times larger than that of high-
er beings) for some genes of viruses and bacteria. This large dif-
ference between more or less complex living beings is itself
difficult to understand without hypothesizing that more efficient
error-correcting means exist in higher living beings than in bac-
teria and viruses. And this assumption itself is consistent with
the difference of the corresponding genome sizes and the result

The word information has become

ubiquitous in the biological literature.
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of information theory alluded to above that the longer the
encoded message, the more efficiently errors can be corrected.

Although a high longevity is an advantage for a particular
genome, replication errors are necessary for the evolution
process as a whole. They should be as rare as possible in order
to keep the identity of a particular genome, but they play a
major role in evolution since each error which changes the
information borne by the genome generally results in a change
in the corresponding phenotype, referred to as a mutation
(except for “synonymous” ones which transform a codon into
another one, which specifies the same amino acid). One may
think of mutations as randomly exploring the set of possible
phenotypes, the chosen phenotypes being further filtered by
natural selection.

We developed the basic ideas originally expressed in [2]
into two main directions: first, analyze the consequences of
the hypothesis that error-correcting codes are involved in the
genome replication process and compare them with known
features of the living world; second, try to identify the error-
correcting mechanisms that nature implements. Another goal
was to convince genetists that information theory and error-
correcting codes could be useful to their discipline. Indeed, lit-
tle progress in the two directions mentioned above could be
expected without the active collaboration of biologists, espe-
cially as regards experimental works which are crucially needed
in order to validate or refute hypotheses. This goal is far from
being reached, and it is why the research presented here
remained as yet speculative. 

As regards the first direction, no contradictions were found
between the hypothesis that natural genomic error-correcting
means exist and the properties of the living world. On the con-
trary, it seems to account for a number of facts, especially of
evolution, that conventional theories fail to explain. The sub-
sidiary hypothesis that nature uses nested codes (to be defined
below) moreover explains that a hierarchical taxonomy is pos-
sible. In the second direction, the concept of soft code, which
both weakens and widely extends the engineering concept of
error-correcting code, also to be defined below, enables asso-
ciating error-correcting properties with constraints on DNA
and proteins, thus suggesting that many potential genetic
error-correcting systems actually exist. The problem becomes
having a precise understanding of whether and how they are
implemented, i.e., how the dependence induced by the con-
straints between the nucleic bases is actually used to regener-
ate the genome. (Incidentally, we found that in the absence of
an explicit encoding process, regeneration better describes
what in engineering terms is referred to as decoding.) Before
we develop these topics, we must give an insight on error-cor-
recting codes: what they are, how they work, and what their
main properties are.

An Outlook on Error-Correcting Codes

Introduction and Geometrical Representation
Error-correcting codes appear in the engineering literature as a
highly mathematical topic, which gives little hold on intuition.
However, we believe that their understanding does not need a
big mathematical apparatus, as examplified by [13], which
describes the most successful codes yet known, the turbo
codes, in nonmathematical terms. We now try to state the
principles behind error-correcting codes in simple words,
using a geometrical representation that is very helpful in get-

ting an intuitive insight and that is also mathematically rigor-
ous. We shall also provide an introduction to the concepts of
regeneration and soft code that are used below.

Let us first define an alphabet of size q as a collection of q
different symbols which may be any signs or objects that can
be unambiguously distinguished, like letters, digits, electric
voltages, signal forms, molecules, etc. The smallest size of an
alphabet is q = 2, and the main properties of codes can be
understood if we assume, as we shall do most often in this
section, that the alphabet is binary with its symbols denoted
by 0 and 1.

Let us now define a word of length n as a sequence of n
symbols from an alphabet of size q. Each of its symbols can
assume q distinguishable values, so the total number of pos-
sible different words is qn (2n in the binary case). It will be
very convenient to interpret an n-symbol word as defining a
point in an n-dimensional space, each of its coordinates
being one of the n symbols. For instance, if q = 2 and n = 3,
there are 23 = 8 different possible words, each representing
a vertex of a cube. The useful values of n are much larger,
but there is no difficulty in extending this definition to
n > 3. Inside this n-dimensional space, we may define the
Hamming distance d between two words as being the num-
ber of coordinates where their symbols differ. For instance,
if n = 7, the distance between 1101000 and 0110100 is
d = 4. An error-correcting code is a subset of all possible n-
symbol words such that the minimum distance between any
two of its words is larger than 1. Two n-symbol words may
differ in a single coordinate, so an error-correcting code is a
strict subset of the set of all n-symbol words. The property
that no n-symbol word belongs to the error-correcting code
is referred to as redundancy. In the case where n = 3, we
may define a code as containing only words with an even
number of symbols “1” (of even weight), namely, 000, 011,
110, and 101. The minimum distance between two of its
words is d = 2. A code with the largest possible minimum
distance for n = 3, i.e., d = 3, only contains two words, for
instance 000 and 111. 

In a communication system using an error-correcting code,
only words belonging to this code may be transmitted. As an
example, consider a binary code used over a channel where an
error consists of changing a 1 into a 0 or vice-versa. Then the
channel errors result in a received word, which possibly dif-
fers from the transmitted one and is at a Hamming distance
from it equal to the number of errors which occurred, say e, to
be referred to as the weight of the error pattern. For a binary
symmetric channel, i.e., where an error occurs with a constant
probability p < 1/2, independently, on each symbol of the
word, the probability of an error pattern of weight e is simply
Pe = pe(1 − p)(n−e) which, for p < 1/2, is a decreasing func-
tion of its weight e. (Assuming p < 1/2 does not restrict gen-
erality, since the labeling of the received symbols by 0 or 1 is
arbitrary, so it can be chosen such that this inequality holds.)
In order to determine the codeword which has most probably
been transmitted, we may use as a rule: Choose the codeword
the closest to the received word. This rule is expressed in very
simple geometrical terms thanks to the definition of a distance
in the n-dimensional space; its implementation will be
referred to as regeneration. 

The mere statement of this rule enables us to understand
the most important properties that an error-correcting code
must possess in order to be efficient. Its words must be far
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from each other, so they should be very few as compared
with all possible n-symbol words (its redundancy should be
high). But the words should also be as evenly distributed in
the n-dimensional space as possible, since any concentration
of codewords would reduce their mutual distances with
respect to the case of a more even distribution. For a given
amount of redundancy, endowing a code with this property is
by far the most difficult task in the design of an error-cor-
recting code, although its necessity is quite intuitive and its
statement is easy. 

Errorless Communication Is Possible
Over a Noisy Channel
It was convenient in the above examples to consider small val-
ues of the word length n. Let us now go to the other extreme
and assume that n is very large. Then, the law of large num-
bers tells that the weight of an error pattern is very probably
close to its average, namely np (in other words, the frequency
of errors measured in a large sample is with high probability
close to the error probability). In geometrical parlance, the
received point is with high probability close to the “surface”
[an (n − 1)-dimensional volume] of the n-dimensional sphere
of radius np centered on the transmitted word. If the radius np
is smaller than half the minimum distance d between any two
words (simply referred to as the minimum distance of the
code), then clearly the received word is with high probability
closer to the truly transmitted word than to any other, so the
above regeneration rule succeeds with high probability.
Moreover, the probability of a regeneration error vanishes as n
approaches infinity. On the contrary, if np > d/2, a wrong
codeword is often closer to the received word and the regener-
ation rule above generally fails. As the word length n
approaches infinity, the probability of a regeneration error
approaches 1. The regeneration rule thus fails with low proba-
bility if p < d/2n but with high probability if p > d/2n. The
transition between the two behaviors is the sharper, the larger
n. Notice the paradox: For a given probability p of channel
error, increasing the word length n also increases the average
number of erroneous symbols in the received word.
Nevertheless, increasing n decreases the probability of a
regeneration error provided p < d/2n. If this inequality holds,
errorless communication of a message through an unreliable
channel is possible. This result is in itself paradoxical, and
nobody imagined it could be reached anyway before its possi-
bility was proved by information theory. It started the
researches on error-correcting codes. We hypothesize that the
faithful communication of genomic information precisely uses
this possibility, with the genome replication actually consist-
ing of its regeneration as just described. 

Designing Optimal or Nearly Optimal 
Error-Correcting Codes
No general solution is known to the problem of designing an
optimal error-correcting code for arbitrary values of n, p, and
the alphabet size q, so the search for such a code may look
hopeless. It is, however, possible to approximately (exactly as
n approaches infinity) solve a closely related problem. In geo-
metrical terms, choosing M points at random within the n-
dimensional space, M an arbitrary integer, results in a code
close to the optimum, regardless of the channel error probabil-
ity p. Shannon used such random coding in the proof of the
fundamental theorem of channel coding [1], which asserts that

“errorless” communication is possible if, and only if, the infor-
mation rate R is less than a limit referred to as the channel
capacity C. The information rate is defined as R = (logM)/n,
where M is the number of codewords, and the logarithms are
to the base q. The capacity C depends on the channel error
probability. (The definition of the information rate follows
from the fact that, without redundancy, qk different k-symbol
messages can be written with an alphabet of size q, so the
availability of M codewords is equivalent to that of all k-symbol
messages, with k = logM . Little generality is lost if we
assume that k is an integer. The redundancy rate is defined as
1 − R.) For instance, the capacity of the binary symmetric chan-
nel considered above is C = 1 + plogp + (1 − p)log(1 − p),
where the logarithms are to the base 2. “Errorless” means that,
provided R < C, a vanishing probability of error can result
from using adequate (but not explicitly specified) codes as n
approaches infinity. Further elaboration of this fundamental
theorem led to stronger results which, loosely speaking, tell
that an arbitrarily chosen code is good with high probability.
In a more adamant style: All codes are good. The problem of
almost optimum error-correction coding seems, therefore, to
be solved and, moreover, in an unexpectedly simple way. 

It seems, but it is far from being so because a formidable
problem remains. Remember that implementing the regenera-
tion rule above implies to find the codeword the closest to the
received word. In the absence of any structure, a code is an
arbitrary set of M n-symbol words. There is no other way for
implementing the rule than to compare each of the M code-
words with the single received word to be regenerated. The
problem is that for useful values of the codeword length (i.e.,
n) that are large enough to make the probability of a regenera-
tion error small enough, M is huge. For example, a binary
code with n = 1, 000 and R =1/2 contains M = 2500 ≈ 10150

words. Implementing regeneration when an arbitrary code is
used thus bumps against a complexity barrier. This problem
cannot actually be solved unless the code is given some struc-
ture intended to alleviate the regeneration complexity. 

A large number of codes and code families having a strong
mathematical structure were invented, and the literature on
such error-correcting codes is plentiful (see, for instance, [14]
and the impressive bibliography it contains). However, the
results obtained were invariably far from the promise of the
fundamental theorem of channel coding. Most experts believed
that finding good codes having a tractable structure was hope-
less due to an intrinsic incompatibility of goodness and struc-
ture. This widely shared opinion was summarized in the folk
theorem: All codes are good, except those we can think of. 

It turns out that this opinion was by far too pessimistic.
For instance, we noticed in 1989 that the sole criterion used
in order to design a good code was to endow it with a mini-
mum distance as large as possible. We criticized this
dogma and suggested that a better criterion could be to look
for randomlike codes with the distribution of distances
between their words close, in some sense, to that of random
codes (regardless of their actual minimum distance) but con-
structed according to a deterministic process [15], [16].
(Analogously, easily generated pseudorandom sequences,
which mimic random sequences, are known and widely used
in simulation.) Codes designed according to this criterion
should have performance close to the optimum.

Soon after it was proposed, in 1993, the pessimistic opin-
ion above was definitively ruined with the advent of turbo
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codes [13], [17], [18]. Turbo codes actually meet the ran-
domlike criterion, although they were not explicitly
designed to this end [19]. Their implementation is compara-
tively simple and well within the possibilities of current
technology. Besides being the best codes presently avail-
able, turbo codes perform so close to the theoretical limit
(the channel capacity) as to render them almost optimal, at
least from a practical point of view. 

Introducing Soft Codes
It would be naïve to believe that error-correcting codes of
natural origin would closely resemble those produced by
human engineering. We think that they should be more flexi-
ble and versatile than man-made codes. We propose to both
weaken and extend the concept of error-correcting code to
better fit the specific needs of genomic error correction.

Broadly speaking, there are two alternative ways for speci-
fying an error-correcting code. First, give a construction rule
that associates with any k-symbol message an n-symbol word,
with n > k to provide the necessary redundancy. Second,
define constraints that are exclusively satisfied by the words
of the code. Again, imposing constraints restricts the code to
a subset of all n-symbol words, hence providing redundancy.
In whatever way a code of length n is defined, it possesses the
dichotomic property that any n-symbol word belongs or does
not belong to it. The codes used in engineering are generally
defined by their construction rule (which is implemented in
the encoding operation) from which specific constraints are
easily derived and used in the decoding (regeneration)
process. Both the construction rule and the constraints are
expressed in deterministic mathematical terms. For extending
the concept of code to genetics, we propose starting from the
specification of a code by its constraints. We assume they can
be expressed as incompatibilities or forbidding rules or in
probabilistic terms, aside from being possibly expressed as
deterministic mathematical equalities. For example, con-
straints can be imposed on the DNA strand by folding proper-
ties or induced by constraints on the proteins (the synthesis of
which the DNA directs). In this extended meaning, the codes
will be referred to as soft codes. We introduced this concept
in [3] and assumed that the hypothesized genomic error-cor-
recting codes are of this kind. We tried to somewhat refine its
definition in further papers [4], [5]. With constraints
expressed in probabilistic terms, the dichotomic property that
a word belongs or not to a given code is lost. The main para-
meters of a code, like its minimum distance, then become
random variables. 

What little we lose in precision when considering soft
codes, we gain very much in flexibility and generality since
any constraint which directly or indirectly affects the DNA
molecule implies some error-correcting ability. These con-
straints result in dependency between the symbols of the
words, so the knowledge of certain symbols enables
reassessing the probabilities of others. Since many such
genomic constraints exist, the problem is to identify the
means which implement regeneration rather than to find nat-
urally implemented encoding processes. Encoding has
become implicit but the actually crucial problem is regenera-
tion (decoding, in engineering words). The optimum regener-
ation rule stated above then becomes: Choose the string of
nucleotides obeying the genomic constraints the closest to
the one to be replicated.

To illustrate the soft code concept, we used in [5] exam-
ples from the error-correcting technique, showing that it is
relevant to the analysis of decoding processes. We shall try
below to identify genomic soft codes. In order to illustrate
the soft code concept, we now consider an example foreign
to both engineering and molecular biology: natural lan-
guages. These languages involve strings of symbols
(phonemes for the spoken language, letters of some alphabet
for the written one) that are subjected to many constraints.
The properties of the vocal tract severely restrict the combi-
nations of phonemes that can be uttered, thus creating pho-
netic constraints (and inducing morphological constraints in
the corresponding written texts). Among all the combina-
tions of phonemes (or letters) that obey such constraints,
only a small fraction are words of a given natural language.
Let us refer to this constraint as lexical. The words of a lan-
guage can themselves be combined according to syntactic
rules specific to it, although they are possibly rooted in the
human brain structure. At a still different level, meanings are
associated with the words of any language and combining
words according to the syntactic rules results in propositions.
Correct propositions as regards these rules can be devoid of
any meaning if they fail to obey semantic constraints (e.g.,
“the cat swept the red theorem” is both syntactically correct
and meaningless). The constraints of fundamental nature due
to properties of the vocal tract or the human brain, plus the
conventional ones which are shared among a linguistic com-
munity, restrict the allowed strings of phonemes or letters to
a very small subset of all unconstrained strings made of the
same phonemes or letters. In other words, any natural lan-
guage is a highly redundant soft code. 

But what about error-correction capabilities? A conversa-
tion is such a trivial experience that we do not wonder at its
success. Indeed, it almost always results in literal under-
standing even in the presence of a high noise level as in a
street, a car, or a plane. Moreover, even in quiet acoustical
surroundings, individual phonemes are identified with a
large error rate although meaningful sentences made of the
very same phonemes are unambiguously understood. We
may thus think of the literal understanding of a language as a
decoding process. Furthermore, a language is defined by dis-
tinct constraints acting at several hierarchical levels. For
instance, phonetic constraints, which are due to the structure
of the vocal tract, are more fundamental than constraints spe-
cific to a given language, which are social conventions inher-
ited from history. We shall refer below to such a structure as
a system of nested soft codes. Our daily experience thus wit-
nesses the error-correcting ability of a natural language,
although the precise decoding or regeneration mechanisms
involved are essentially unknown. They are implemented in
the human brain but escape consciousness. 

Going back to DNA coding, errors resulting from substitu-
tion of a wrong nucleic base to another one should not only
be considered but also those due to erasures, deletions, and
insertions. We shall nevertheless limit ourselves to the sub-
stitution errors because this case has been extensively stud-
ied by engineers, although deletions and insertions are at
least as important in genetics. Error-correcting codes against
this type of errors can be designed with properties similar to
those of codes against substitution errors but they were much
less studied. Similarly, in the absence of a thorough study of
soft codes, we may assume for convenience that the main
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properties of error-correcting codes are not fundamentally
altered and thus remain approximately relevant to the biolog-
ical soft codes, although the main parameters which deter-
mine the performance of a conventional code, for instance,
its distance distribution and especially its minimum distance,
become random when transposed to a soft code. The conse-
quences of using soft codes as error-correcting means will
thus not be significantly different from those of conventional
codes as discussed above. Besides being convenient, this
assumption may be fairly close to reality, as a consequence
of the law of large numbers, if both the code lengths consid-
ered are large and the overall code is specified by many inde-
pendent constraints. 

Having stated the necessary basic concepts, we are now
able to more precisely formulate the hypotheses regarding
genomic error-correcting codes, then compare the conse-
quences which can be derived from them with known biolog-
ical facts, and even use them as predictive tools to help
deciding on debated issues. 

Hypotheses and Their Consequences

Main Hypothesis
Our main hypothesis has been already stated: it consists of
assuming the existence of error-correcting means that behave
like the theoretically optimal ones, i.e., provide a regeneration
error probability that decreases as the code length increases and
vanishes as it tends to infinity. A necessary condition for their
existence is the presence of redundancy. The number of differ-
ent genomes of some given length n would be 4n in the absence
of redundancy. Even for the shortest genomes, those of viruses,
n is at least of several thousands, so 4n is a number so large that
it defies imagination. In contrast, we may evaluate the total
number of past and present species to about 109 ≈ 415 , so a
genome made of 15 nucleic base pairs would suffice to specify
all past and extant species. A comparison with the actual
genome lengths (ranging from a few million base pairs for bac-
teria and up to 1 billion base pairs and more for plants and ani-
mals) shows that the actual redundancy rate is very high, so the
genomes can be far apart from each other in terms of the
Hamming distance. That it is actually so explains a striking fea-

ture of the living world, namely, that in their own space,
genomes are very sparse, so discrete species exist. Uniquely
specifying each individual within each of these species would
require several tens of nucleotides more, resulting in a genome
length less than 100 base pairs.

The existence of some kind of error-correcting codes in the
genome, at the molecular level or mostly involving short
codes, was also suggested in [20]–[23]. The interesting idea
that introns are made of check symbols associated with the
message borne by the exons was formulated in [24]. The
search for a simple linear code described in [25] was unsuc-
cessful, but this negative result is questionable (see below). On
the other hand, biological error-correcting mechanisms foreign
to the genome replication were discovered (see, for example,
[26]). The role of codes in biology has been stressed in [27].
However, Barbieri’s concept of organic codes results from a
deep reflection on biological facts but does not refer to the
necessity of error correction. 

Subsidiary Hypothesis and Nested Codes
We must introduce a subsidiary hypothesis before proceeding
further. We were led to formulate it because the assumed
genomic error-correction means need to provide an unequal
error-protection. If we look at the features of living beings, we
see that some are conserved with an extreme faithfulness, as
witnessed by the permanency of certain genes like the HOX
genes, but that other features are much more variable. As a
means for introducing genomic variation, sexuality has more-
over been favored by evolution in most of the living species.
To account for these facts, we were led to assume that the
hypothesized error-correcting system consists of nested codes.
Notice that a similar scheme has independently been used by
Barbieri to describe the organic codes [27].

Nested codes can be more easily described in the case of
conventional systematic codes C(n, k), i.e., where a k-symbol
information message is encoded into a longer n-symbol word
where the k-symbol message explicitly appears in a set of k
defined positions. We assume that a first information message
I0 of length k0 is encoded according to a code C(n0, k0). Then,
a second message I1 of length k1 is appended to the codeword
that resulted from the first encoding, and encoding again by a
code C(n1, n0 + k1) is performed. This process is repeated t
times. The last information message It is left uncoded. This
process is depicted in Figure 1 with the fortress metaphor,
where each code is depicted as a wall that encloses its encoded
information message for t = 3.

The component codes of a nested codes system may use dif-
ferent alphabets. Defining nested soft codes is more difficult
since the concept of information message vanishes in this case.
We may think of the nested code concept in more general
terms: the ith encoding creates dependency between the results
of i − 1 previous encodings, regardless of the alphabets and
the codes which are used. Our above example of a natural lan-
guage actually illustrates a system of nested soft codes. As an
example of genomic nested codes, we may think of constraints
induced on the genome by that of proteins as defining a basic
soft code; in eukaryotes, constraints due to the wrapping of
the DNA double strand in nucleosomes are superimposed and
define a more peripheral soft code (see below). Besides
assuming that a genomic error-correcting code is made of sev-
eral nested codes, we furthermore assume that it was built in
successive steps where the codes appeared in the order of the

Fig. 1. The fortress metaphor: A code is represented as a
closed wall that protects what is inside it. I0, I1, I2, and I3 are
successive information messages; I0 is protected by three
codes, I1 by two codes, I2 by a single code, and I3 is left
uncoded.

I0 I3I1 I2
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layers, beginning with the innermost one. In other words, we
assume that the encodings according to codes C(n0, k0),
C(n1, n0 + k1), etc., appeared successively in the geological
times or, referring again to Figure 1, that the walls were con-
structed successively, beginning with the innermost one.
According to this viewpoint, older genetic information is bet-
ter protected than more recent information. When genomic
variability is needed, it should correspond to the periphery of
the nested codes scheme depicted in Figure 1. As a generator
of variability, sexuality should operate at this level. If (as
many believe) it provides a defence against infectious agents,
this variability is necessary to match the high genomic vari-
ability of viruses and bacteria. 

Consequences of the Hypotheses as
Regards Evolution and the Living World
The main arguments to be developed now rely on the assump-
tion of a kind of similarity between living beings and the cor-
responding genomes considered as codewords, especially
regarding their distance properties. In other words, we assume
that the genomic space to some extent provides an image of
the living world as we perceive it, i.e., that of phenotypes.
Although this similarity is rather fuzzy and difficult to make
more precise, we notice that it is implicit in many current bio-
logical approaches where phenotypes are compared in terms
of distances of the corresponding genomes, e.g., for building
phyletic trees. We shall give below further arguments in favor
of this similarity.

In our earliest work on genomic error-correcting means
[2], we believed that a relationship could exist between the
genome length and the permanency of a species. It seemed
that some species known for their very long genomes were
also among the less variable ones (e.g., lungfishes or newts).
The permanency being for optimal codes the greater the
larger the codeword, we thought that the same relationship
was likely to exist between the permanency of a species and
the length of its genome. Implicit in this belief was the
assumption of a constant redundancy rate. The recent
improvements in the knowledge of genomes of many
species make them appear as highly nonhomogeneous, so
this relationship is questionable. The beings with the smaller
genomes, especially the pathogenic agents, are actually
more variable than beings with longer genomes. 

Going back to the assumed similarity of the “phenotypic
space” and the genomic space, and moreover assuming that
genomes use error-correcting means in the form of nested
codes, we may adequately account for the discreteness of
species and the existence of a taxonomic hierarchy. In con-
trast, a world of living beings with uncoded genomes would
not exhibit such a hierarchy and no taxonomy would be possi-
ble. The fact that we live in a world of discrete and taxonomi-

cally ordered species, not in a world of chimeras, is a strong
argument in favor of our hypotheses in the (hopefully provi-
sional) absence of direct experimental proofs. Indeed, a world
of chimeras has been described in [28]: that of bacteria. This
does not contradict the above statements; however, since our
subsidiary hypothesis of time-successive nested codes leads to
identifying the degree of evolution with the number of nested
code levels of the genomes, we may expect that the amount of
coding is less—hence the structure of distinct species is less
strong—in the (ancestral) bacteria than in complex (more
recent) beings like plants and animals.

A rather puzzling feature of the living world also finds a
simple explanation in our hypotheses. It is the trend of evolu-
tion towards increased complexity. We may consider as an
experimental fact that species having a larger genome than the
previously existing ones appeared in many instances during the
process of evolution. It can be interpreted as a consequence of
the hypothesis that error-correcting means exist in the genome.
Indeed, a longer genome is an evolutive burden as regards the
speed of replication but is advantageous as enabling a more
efficient error correction according to the channel coding theo-
rem of information theory, so its net effect can be to increase
the genome permanency (as defined in [3] and above) and,
therefore, to provide an immediate evolutive benefit. An
increased genome length does not necessarily imply an
increase in complexity, but it provides room for it. More com-
plexity in turn enables improving the evolutive fitness of phe-
notypes and, hence, should be favored by natural selection. 

Another simple consequence of our hypotheses is that evolu-
tion proceeds by jumps (i.e., is saltationist), a still debated
issue. It is a straightforward consequence of the distance struc-
ture of an error-correcting code. It implies that natural selection
does not act on close variants of existing beings but on mutants
produced by regeneration errors, hence having a genome at a
distance from the original one at least equal to the minimum
distance of the code. It hints at a non-Darwinian mechanism for
the origin of species, reminiscent of the “hopeful monster”
hypothesized by Goldschmidt. With our subsidiary hypothesis,
this distance itself depends on the code level in the assumed
system of nested codes. Moreover, it accounts for the fact that
evolution proceeds along phyletic trees with more frequent
branchings, the lowest the level inside the nested codes system,
since the probability of a regeneration error is higher the small-
er the distance between genomes. 

Looking for Genomic Error-Correcting Codes
Searching for genomic error-correcting codes in the form of
soft codes amounts to listing the several constraints that the
genome obeys, each of them being a component soft code in
the assumed nested codes system. We shall below consider
first those which are directly associated with structural

Our hypothesis also sheds light on the

process of biological evolution and on the

structure of the living world.
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constraints of DNA, then those induced in DNA by structural
constraints of proteins, and finally constraints which result
from the role of the genome to direct the construction of a
phenotype. Before dealing with these topics, some remarks
concerning the alphabets will be useful.

Identifying the Alphabets
In engineering problems, the alphabet is often given as a para-
meter and is endowed with some a priori mathematical struc-
ture. This is not the case for the hypothesized genomic
error-correcting codes where the alphabets themselves and
their possible mathematical structure have to be determined.
We make alphabets plural here since we consider nested soft
codes, and we already noticed that their component codes can
use different alphabets. 

An apparently obvious choice is that of the quaternary
alphabet {A, T, G, C}, but with what mathematical structure is
it endowed? Liebovitch et al. [25], for instance, answered this
question assuming it to be the ring of integers modulo 4. This
choice is arbitrary and the usual structure considered in the lit-
erature for defining a linear code is that of a Galois field. It is
only when the alphabet size q is a prime that the addition rule
modulo q and that of the Galois field are identical. 

Even with a mathematical structure more appropriate in engi-
neering terms, such an approach is questionable as involving an
arbitrary choice. The connection that the concept of soft code
establishes between the physical and chemical constraints and
the error-correcting properties suggests looking at alphabets
having a physicochemical significance. In this respect, it is
much more relevant to consider that any quaternary symbol
simultaneously belongs to two independent codes over the fol-
lowing two binary alphabets: 1) the alphabet {R, Y}, whose
symbols are the chemical structures of nucleic bases, namely,
purine (two-cycle molecule, A or G) denoted R, or pyrimidine
(single-cycle molecule, T or C) denoted Y and 2) the alphabet
{2H, 3H}, where 2H represents the couple of complementary
nucleotides A-T, which are tied together by two hydrogen
bonds (H-bonds), and 3H the other couple, namely G-C, where
the nucleotides are tied together by three H-bonds. The alphabet
{R, Y} corresponds to nucleic bases of different physical size,
while the second one, {2H, 3H}, indicates how strongly a nucle-
ic base is tied with the complementary one. Then, Forsdyke
interpreted a sequence of quaternary symbols as simultaneously
bearing two independent binary codes, one over the alphabet
{R, Y} and the other one over {2H, 3H} [29]. According to the
second Chargaff parity rule, the first code is balanced, i.e., the
two symbols R and Y have the same frequency, like almost all
codes designed by human engineers. On the contrary, the code
over the alphabet {2H, 3H} is not balanced since the frequen-
cy of its symbols varies from a species to another one and, for
long and inhomogeneous genomes like the human one, from
one region to another inside the genome. It could be interpret-
ed as a kind of density modulation, which perhaps is read at
several scales. The different number of hydrogen bonds of the
two base pairs implies that this density modulation results in a
variation of the bonding energy between the two DNA strands
in the double helix.

Other constraints are naturally expressed in terms of other
alphabets. For instance, constraints induced on DNA by the
structural properties of the proteins for which it “codes” are
likely to involve triplets of nucleic bases, i.e., the codons of
the genetic “code.” An alphabet size of 43 = 64 could be con-

sidered, but dealing with the synonymous codons that “code”
for the same amino acid as a single symbol (resulting in a 21-
symbol alphabet) directly translates the constraints on the
amino acids into constraints on DNA. Genes themselves can
even be considered as the symbols of an alphabet [30], [31].
The successive use of alphabets of different sizes is a means
for implementing nested codes, as already noted.

Soft Codes Associated with
Structural Constraints of DNA
The alphabet which is relevant here is more likely to be {R,
Y} as introduced in the previous section, namely based on the
distinction purine/pyrimidine. The alphabet {2H, 3H} may
also be relevant because the ease of separating the two DNA
strands is an important factor during the replication process.

The experimental analysis of DNA sequences has shown
they exhibit long-range dependence. First of all, their power
spectral density has been found to behave as 1/ f β , asymptoti-
cally for small f, where f denotes the spatial frequency and β is
a constant which depends on the species. Roughly speaking, β
is smaller the higher the species is on the scale of evolution; it
is very close to 1 for bacteria and significantly less for animals
and plants [32]. 

Another study of the mutual dependence in DNA
sequences only considered the binary alphabet {R, Y}. An
appropriate wavelet transform was used to cancel the trend
and its first derivative. The autocorrelation function of the
binary string thus obtained has been shown to decrease
according to a power law [33]. This implies long-range
dependence at variance with, for example, Markovian
processes, which exhibit an exponential decrease. Moreover,
in eukaryotic DNA, the long-range dependence demonstrated
has been related to structural constraints due to the packing
of the double-strand DNA into nucleosomes where it is
wrapped around histone molecules acting as a spool, which
implies bending constraints along the two turns or so of the
DNA sequence in each nucleosome [33]. 

The 1/ fβ behavior of the spectrum and the long-range depen-
dence of the DNA sequence restricted to the {R, Y} alphabet
are, of course, compatible with each other. Moreover, they both
denote (at least if further conditions are fulfilled) the existence
of a fractal structure, meaning that the DNA sequence is in
some sense self-similar. In other words, a basic motif is more or
less faithfully repeated at any observation scale. Therefore, we
may think of the message borne by the DNA strand as resulting
from multiple unfaithful repetition, which could, in principle,
enable the use of many low-reliability replicas of the basic motif
symbols for the purpose of regeneration, in terms of which reli-
able decisions can be taken. This implies a very large redundan-
cy, an obvious property of the DNA message. The existence of
such a regeneration process, possibly approximated by majority
voting, is as yet a conjecture. It is as yet to be determined
whether, and how, nature implements regeneration based on
long-range dependence at some stage of the DNA replication
process [34]. One may wonder why the regeneration process
does not turn this unfaithful repetition into a faithful one by cor-
recting the ‘“wrong” symbols. We may explain why it is not
necessarily so by the existence of other soft codes having inde-
pendent probabilistic constraints within the assumed nested
codes system. Then, the most probable symbol of the actual
DNA message results from a compromise between the con-
straints of the several soft codes in which it is involved.
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Soft Codes Induced by
Structural Constraints of Proteins
Proteins are not fully described by the polypeptidic chain that
the sequence of codons of a gene specifies. They owe their
functional properties to their folding according to a unique pat-
tern, which implies many chemical bonds (especially 
disulphur bridges) between amino acids that are separated
along the polypeptidic chain but close to each other in the 
three-dimensional (3-D) space when the protein is properly
folded. For instance, many proteins with an enzymatic function
fold into a globular shape. Moreover, proteins are most often
made of a number of 3-D substructures (α helices and β sheets,
which are themselves included in higher-order structures
named domains). These substructures impose strong geometri-
cal, steric, and chemical constraints on the sequence of amino
acids, which in turn induce constraints on the corresponding
DNA. Due to the central role of genes in directing the synthesis
of proteins, such constraints are present in the genome of any
living being, whether it is a prokaryote or a eukaryote.

Interpreting a Gene with Exons and Introns 
as a Kind of Systematic Codeword
Forsdyke suggested in 1981 that introns are made of check
symbols associated with the message borne by the exons
[24]. The literature generally states that introns are more
variable than exons, but a counterexample was provided in
1995 by Forsdyke, who experimentally found that the
exons are more variable than introns in genes which “code”
for snake venom [35]. 

It turns out that both the generally observed greater vari-
ability of introns and Forsdyke’s counterexample can be
explained by the assumption that the system of exons and
introns actually acts as a systematic error-correcting code
where exons constitute the information message (which
directs the synthesis of a protein), and introns are made of
the associated check symbols. Interpreted as a regeneration
error, a mutation occurs with large probability in favor of a
codeword at a distance from the original word equal to the
minimum distance of the code or slightly larger. If the exons
“code” for a protein of physiological importance, which is
the most usual case, it may be expected that only mutations
with a few errors within the exons, hence having no or little
incidence on the protein, will survive natural selection. The
total number of errors is at least equal to the minimum dis-
tance of the code. If few errors are located in the exons,
most of them must affect the introns.. 

The situation is completely different in the case of genes
that “code” for snake venom. Rodents are the typical prey of
snakes. Snakes and rodents are involved in an “arms race.”
Some rodents incur mutations that provide an immunity to
snake venom; the population of rodents with such mutations
increases as they escape their main predators,
and the snakes are threatened with starvation
unless mutations in their own genes make their
venom able to kill mutated rodents [35]. The
genes which “code” for snake venom are thus
under high evolutive pressure, since natural
selection favors mutated genes producing pro-
teins as different as possible from the original
ones. In terms of the Hamming distance, much
of the difference should therefore be located in
the exons. With the total number of errors in

exons and introns being roughly constant for a given code,
introns are much less variable. These properties of eukaryotic
genes are precisely those which can be expected from genes
acting as systematic error-correcting codes, but the encoding
and regeneration processes remain unknown. It is not even
known whether the distance properties of these genes are actu-
ally used for error correction. Clearly, discovering the encod-
ing and regeneration mechanisms at work here needs the
active collaboration of biologists.

A Possible Role of “Junk” DNA
Genomes (especially the human genome) often contain very
short sequences (e.g., three bases long), which are repeated
thousands or even millions of times. Such sequences bear
almost no information. Such “junk” DNA may, however,
play a role in an error-correction system as separating along
the DNA strand more informative sequences which, due to
the 3-D structure of the DNA molecule, may be spatially
close to each other and share mechanical or chemical con-
straints (a function which loosely resembles that of inter-
leaving used in the coding technique). 

On the other hand, the most successful encoding scheme
available to engineers is that of turbo codes [17], [18], which
can be interpreted as combining three main functions [36]:
replication (repeating a symbol), interleaving (permuting a
sequence of symbols), and rate-1 encoding (computing output
symbols in terms of a sequence of input symbols), as depicted
in Figure 2. Each of the blocks of this figure performs one of
the three functions which may be expected from a good
encoder, namely, providing redundancy, randomness, and
mutual dependence, respectively. Replication is the sole func-
tion that produces redundancy. The other functions convert
mere repetition into distributed redundancy, which is much
more efficient regarding error correction. We may thus inter-
pret the scheme of Figure 2 as a kind of paradigmatic encoder.
The junk DNA made of a short sequence repeated many times
may play the same role as an interleaver. We may think of it
as separating along the DNA strand sequences which, due to
the 3-D structure of the DNA molecule, are spatially close to
each other and can share mechanical or chemical constraints
(see Forsdyke [24]). Although the efficiency of such a separa-
tor is poor in terms of redundancy (compared with a true
interleaver), we already noticed that the genomes are charac-
terized by a very high redundancy, so genomic redundancy
may be thought of as “cheap.” In engineering, on the contrary,
redundancy often has a cost which limits it to moderate
amounts. We notice, moreover, that it is not too difficult to
imagine how such an encoder has been generated through the
ages, since the separator, if we let it replace the interleaver in
Figure 2, results from a sequence being repeated, which is the
most basic function of DNA.

Fig. 2. A schematic representation of a rate 1/n turbo encoder. The box
labeled n-replicator represents a device which successively delivers n times
its input symbol. The interleaver changes the order of the symbols in its input
sequence, and the rate-1 encoder outputs symbols which combine a num-
ber of its successive input symbols. The n-replicator is the sole of the devices
in the scheme to generate the necessary redundancy.

n-Replicator Interleaver Rate-1 Encoder
Input Output
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Soft Codes from Linguistic Constraints
We stressed above the contrast between the comparative
brevity of the message which is needed for unambiguously
identifying a biological species (and even an individual
inside it) on the one hand, and the length of actual genomes
on the other hand. This contrast has rather obvious reasons
since the genome role is by no means restricted to identify a
living being: biology interprets it as a blueprint for its con-
struction. The genome of any living being actually contains
the recipe for its development and its maintenance. Besides
those parts of the genome which direct the synthesis of pro-
teins, i.e., the genes in a restricted sense, and the associated
regulatory sequences which switch on or off their expres-
sion (i.e., make the gene direct or not direct the synthesis of
the protein it specifies), the genome must somehow describe
the succession of operations which results in the develop-
ment and the maintenance of its phenotype. This demands
some kind of language. Biologists do not yet know it
although some of them claim in newspapers that they “deci-
pher” or “decrypt” genomes. In a sense, many of them deny
its existence when they dub “junk DNA” every part of the
DNA outside the genes and their regulatory sequences: they
declare useless what they do not understand. But, on the
other hand, they consistently use the metaphor of a written
text to explain the role of the genetic message, at least in
popular science books like [11] and many others. This
metaphor is quite convincing, but its consequences in terms
of genome conservation are overlooked. Indeed, any lan-
guage involves many lexical, syntactic, and semantic con-
straints that may be interpreted as soft codes having
error-correcting abilities (as we argued above for human
languages). Moreover, they appear at several different levels
and thus assume the structure of nested soft codes, which
we were led to hypothesize for the genetic message. Of
course, it remains to understand how these error-correcting
abilities are exploited. Current researchers already use tools
of formal linguistics (which shares the concept of depen-
dence with information and coding theory) in order to
describe the genomes and proteins [37], [38] but ignore the
error-correction problem. 

The connection just outlined between linguistics and
error-correcting ability implies that a longer genome is not
only useful to decrease the error probability but also pro-
vides room for more semantics and, therefore, enables spec-
ifying more complex beings. An important and useful tenet
of information theory is the separation between information
and semantics. However, the hypothesized error-correction
mechanisms based on linguistic constraints heavily rely on
the genome being a blueprint for the construction and main-
tenance of a phenotype, so one could consider the error-cor-
rection ability of the genetic message as, at least partially, a
by-product of its semantics. But this is only a facet of the
question. One can equally well argue that this correction
ability is its main feature, since without it no transmission of
hereditary characters would be possible and life could not
have developed. Then, the construction and maintenance of
phenotypes would be a mere projection in the physico-
chemical world of the abstract properties of the genetic mes-
sage that enable error correction. This is a hen-and-egg
problem, as often met in biology. Interestingly, the similari-
ty of the phenotypic and genomic spaces we were led to
assume above may have its roots in this relationship.

Biology and Engineering: A Needed Collaboration
Nature obviously appears as an engineer of very broad com-
petence, and its achievements are outstanding. Therefore,
human engineers should be deeply interested in the products
of nature’s engineering, i.e., living things. Similarly, under-
standing the engineering aspects of life should be a major
concern for biologists. However, the methods used by nature
on the one hand, and human engineers on the other hand,
exhibit a sharp contrast which may explain why biologists
and engineers do not more closely collaborate. At variance
with human engineers, nature does not use purposeful design
but “tinkering,” exhaustive search and natural selection. It
ignores time limitation. Continuity of life is its sole (but very
difficult) major constraint. There is also a broad difference
between nature and engineers as regards spatial and temporal
scales. Engineers design and build objects of large physical
size within a short time, and these objects have short life-
times. The most basic properties of living things depend on
objects at the molecular scale, especially the genome and the
cell replication machinery, and the time scale of nature
extends to that of geology, i.e., up to billions of years.
Having genuine self-repair capabilities, living beings are
moreover much more flexible and resistant to degradation
than the products of human engineering, and nature’s
achievements often outperform what human engineers can
do. It turns out, moreover, that they are understood in almost
any case only insofar as human engineers invented similar
solutions to problems that nature solved eons ago. That the
methods of nature and engineers are so markedly different is
perhaps why we can learn so much from nature. Clearly,
exaustive search is not a good method for purposely design-
ing an object within some prescribed short time, but it guar-
antees the absence of any bias. In constrast, no human
engineer can claim to be completely free from prejudice. 

The main distinctive features of living beings are their
extreme complexity, which is unmatched in the nonliving
world, and (not independently) the fact that, besides matter
and energy, they receive and transmit information and
heavily rely on its transfer and conservation for their con-
struction and maintenance. This last point also has no
equivalent outside the living world and appears as the spe-
cific mark which radically differenciates it from the nonliv-
ing world. It  makes biology especially relevant to
information theory, thus prompting biologists to use infor-
mation theory as a main tool and challenging information
engineers to get interested in biology.

Conclusions
The question of how genetic information is faithfully commu-
nicated clearly needs to be answered. Dealing with the
genome as if it were a permanent object, like those of our
daily lives at our time scale, is not tenable. Information theory
and the experience gained by engineers for designing and
implementing error-correcting codes will help to answer this
question properly. The above speculations were intended to
this aim but could only rely on published biological works.
Many works on the genome were aimed at understanding how
it directs the construction of a phenotype but, unfortunately,
fewer were devoted to the way it replicates itself. It may be
rather futile, however, to question how the genome produces a
phenotype if we do not first understand how the genome pro-
duces a genome.
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If genetics eventually gets an information-theoretic educa-
tion, there is little doubt that unexpected error-correcting
means will be discovered and that our understanding of evolu-
tion, and, therefore, of the living world, will be deeply
improved. The speculations presented here are but provisional
steps in this direction. We may safely predict that, in this field
as in others, nature will reveal itself more inventive and effi-
cient than human engineers. To quote Jerome Wiesner, “No
one is visionary enough to match reality.” The extreme impor-
tance of information in the living world even suggests that get-
ting an information-theoretic education should be widely
beneficial to biology as a whole. 
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