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Abstract: The conservation of genetic information through the 
ages can not be explained unless one assumes the existence 
of genomic error-correcting codes, our main hypothesis. 
Shielding by phenotypic membranes does not protect the 
genomes against radiations and their own quantum 
indeterminism. The cumulated errors then make the genomic 
memory ephemeral at the time scale of geology. Only means 
intrinsic to the genome itself, taking the form of error-correcting 
codes, can ensure the genome permanency. According to 
information theory, they can achieve reliable communication 
over unreliable channels, so paradoxical it may look, provided 
some conditions are met. The experience of communication 
engineers witnesses their high efficiency. As a subsidiary 
hypothesis, we assume moreover they take the form  of `nested 
codes', i.e., that several codes are combined into a layered 
structure which results in an unequal protection: the older and 
more fundamental parts of the genomic information are better 
protected than more recent ones. Looking for how nature 
implements error-correcting codes, we are led to assume that 
they rely on the many physical, steric, chemical and linguistic 
constraints to which the DNA molecule and the proteins  for 
which they code are subjected. Taking account of these 

constraints enables to regenerate the genome provided the 
number of accumulated errors  remains  less than the 
correcting ability  of the code, i.e., after a short  enough  time. 
 
Based on these hypotheses, fundamental results of information 
theory explain basic features of the living world, especially that 
life proceeds by successive generations, the discreteness of 
species and their hierarchical taxonomy, as well as the trend of 
evolution towards complexity. Other consequences are that 
evolution proceeds by jumps and that the genomic message 
originates in random regeneration errors. That basic results of 
information theory and error--correcting codes explain biological 
facts left unexplained by today's biology confirms the necessity 
of our hypotheses. The direct experimental identification of 
genomic error-correcting codes and regeneration means still 
lacks, however, but it would obviously require the active 
collaboration of practicing geneticists.  
 
Keywords: Biological evolution, error-correcting codes, genome 
conservation, genomic channel capacity, information theory, 
nested codes, soft codes. 
 

 
 

 
1 Introduction  

 
The transmission of genetic information through the ages is considered in this paper from the point of 

view of  communication engineering and information theory. A striking discrepancy is observed between 
the statement that mutations, seen as errors in the genome replication due to chemical reactants and 
physical agents like radiations, are mainly responsible for the ageing of living beings, on the one hand, 
and the main tenet of genetics that genomes are faithfully conserved through the ages at the geological 
scale, on the other hand. The times involved are immensely different since the lifetime of individuals is 
extremely short at the geological scale. The next section presents results of simple information-theoretic 
computations which show that if the error frequency is as high as to make mutations have any noticeable 
effect at the scale of a lifetime, then the accumulated errors make the genomic communication simply 
impossible at the geological time scale. This blatant contradiction cannot be solved unless assuming, as 
we did in (Battail, 1997) and in subsequent works, e.g., (Battail, 2004a), that error-correcting codes ensure 
the conservation of genetic information through the ages as making them intrinsically resilient to errors. 
Then the genome conservation implies a regeneration process and not the mere replication of a template, 
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in plain contradiction with the paradigm currently in force in today's genetics. We shall refer to the 
assumption that error-correcting codes make the genetic information resilient to errors as our main 
hypothesis. We are moreover led to make the subsidiary hypothesis that several genomic error-correcting 
codes are combined into a layered architecture, to be referred to as `nested codes', which provides an 
unequal protection in favour of the older and deeper information. Based on these hypotheses, 
fundamental results of information theory about error-correcting codes suffice to explain several basic 
features of the living world: that nature proceeds by successive generations; the discrete character of the 
living world and especially the existence of distinct species; the possibility of their hierarchical taxonomy; 
the trend of evolution towards complexity. We believe that these features match those of the living world, 
so our hypotheses can explain very basic properties left unexplained by today's biology. Other 
consequences of the hypotheses are that evolution proceeds by jumps and that genomic information has 
a random origin. Probably many others can be found. 

 
2 Genomic error-correcting codes are needed 

 
2.1 Origin of genomic errors 

 
First of all, why do genomes suffer errors? Their integrity is mainly threatened by chemical reactants 

and radiations. Phenotypic membranes can provide an adequate shielding against chemical agents, but 
not against radiations of solar and cosmic origin, or due to natural radioactivity. Moreover, DNA is a 
strange molecule which belongs to the macroscopic world in one of its dimensions but to the 
submicroscopic world in the other two. It can support a definite information only provided its intrinsic 
indeterminism as a quantum object is corrected by genomic codes. As strings of nucleotides, their 
codewords belong to the macroscopic dimension. 

 
2.2 Symbol error probability and genomic channel capacity as functions of time 

 
Any representation or communication of information relies on the use of an alphabet. The basic 

information-bearing event is the choice of one of its symbols. We define an  alphabet as a given collection 
of a finite number q of symbols referred to as the alphabet size. These symbols are arbitrary signs or 
objects which can be unambiguously distinguished from each other, like letters, digits, electric voltages, 
signal forms, or, in genetics, molecules like nucleotides or amino-acids. The smallest possible size of an 
alphabet is q 2 .  

 
Let us now consider a situation where a symbol from an alphabet of size q has been chosen to bear 

some information but may, or not, be replaced by (or changed into, or received as) another symbol, an 
event to be referred to in general as a  transition, or to an error when it results in a symbol which differs 
from the initial one. Let us assume that a given symbol is randomly subjected to error with a 
probability per unit of time. When an error occurs, we assume that the q 1 symbols other than the 
correct one are equally probable. Then it is easily shown that the probability of symbol error, as a function 
of time, obeys the differential equation P' t 1 P t q q 1 where P' t denotes the derivative 
of P t with respect to time. If is constant, the solution to this equation which satisfies the initial 
condition P 0 0  is 

 
 P t 1 exp t q q 1 q 1 q . 
 
This probability of error is an increasing function of time which tends to the asymptotic value q 1 q as 

t approaches infinity. Notice that the error probability P t only depends on time through the 
product t , a dimensionless quantity which can be interpreted as a measure of time using 1 as unit. 
The average number of errors in a string of n such symbols at time t is thus Ne t nP t . Even if the 
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probability of error per unit of time is not constant, the average number of errors still increases with time 
and tends to the same asymptotic value n q 1 q .  

 
The set of all transitions possibly incurred by a symbol is referred to as the channel and its capacity is 

the largest quantity of information it can transmit in the average. Besides the alphabet size, it depends on 
the transition probabilities. It is the most important information-theoretic measure related to communication 
in the presence of errors. Computing the channel capacity Cq t which corresponds to the cumulated 
probability of error P t above results in a function of which decreases from log2 q  for 0 , where its 
slope equals minus infinity, down to 0, exponentially for  approaching infinity. The expression of the 
channel capacity accounts for its degradation due to the accumulation of errors. Other assumptions than 
the substitution of a wrong symbol to the correct one can be made, especially if we consider the possible 
lack of complementarity of a pair of nucleotides in double-strand DNA as equivalent to the erasure of a 
symbol. Then, the capacity is asymptotically twice larger so it still decreases exponentially down to zero 
for approaching infinity. The derivation and exact expression of the cumulated error probability, as well 
as that of the corresponding capacity, will appear in (Battail, 2006b).  

For applying these results to genomes, the quaternary alphabet {A, T, G, C} having as symbols the 
DNA nucleotides would seem obviously relevant, but considering the binary alphabet {R, Y} which only 
keeps the chemical structure of the nucleotides (purine R, double-cycle molecule, i.e., A or G, or 
pyrimidine Y, single-cycle molecule, i.e., T or C) maybe better fits reality. Whatever the chosen alphabet, 
the main fact is the exponential decrease of the channel capacity down to zero which makes it negligible 
after a time interval of a few times 1 . The lack of a reliable estimate of the error 
frequency unfortunately forbids a quantitative exploitation of this result. We can just notice that it is 
currently stated that errors in the genome replication are responsible, at least partially, for ageing and 
diseases like certain cancers. That these disorders occur within the lifetime of individuals clearly shows 
that is rather large, so 1 is small at the geological time scale. The genomic channel thus becomes 
completely inefficient at the time scale of geology.  

 
The fundamental theorem of channel coding asserts that, within precise limits to be stated below, 

errorless communication can be performed despite the occurring errors thanks to error-correcting codes. 
The engineers's experience in implementing such codes in countless applications practically checks the 
validity of this paradoxical theoretical statement. Since the genome loses more and more information 
about the original message as time goes, due to the cumulated errors, it can be conserved only provided 
specific processes perform its regeneration, using means which must rely on genomic error-correcting 
codes. Then the genomes are endowed with the necessary property of resilience to errors. Due to the fast 
degradation of the genomic message, it must be  regenerated after a time interval as small as to avoid 
that the genomic channel capacity becomes degraded beyond the code correcting ability. It is why nature 
proceeds with successive generations. Conservation of the genome is not the rule and error is not the 
exception. This implies a reversal of the onus of proof: it is the conservation of nonrandom genomic 
features which needs to be explained. We shall develop this remark below (Sec. 6) but we may already 
stress that it plainly contradicts a basic assumption of today's genetics, underlying almost all its arguments 
but left implicit as believed obvious. 

 
2.3 A short introduction to error-correcting codes 

 
For introducing error-correcting codes, let us define a word of length n as a sequence of n symbols from 

a given alphabet of size q. Since each symbol of a word can assume q distinguishable values, the total 
number of possible different n-symbol words is qn . It is very convenient to represent an n-symbol word as 
a point in an n-dimensional space, having the n symbols of the word as coordinates. For instance, 
if q 2 (with symbols denoted by 0 and 1) and n 3 , there are 23 8 different possible words, each of 
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which being represented as a vertex of a cube. The useful values of n are much larger, but there is no 
difficulty in extending this representation to an n-dimensional space with n 3 . We may define the 
Hamming distance between two words as the number of coordinates where they differ. For instance, 
for n 7 , the distance between 1101000 and 0110100 is 4. We refer to the space endowed with this 
distance measure as the n-dimensional Hamming space. The minimum distance between any two 
different n-symbol words is only 1 since they may differ in a single coordinate. An error-correcting code is 
a subset of all possible n-symbol words such that the minimum Hamming distance d between any two 
words of the code, referred to as the minimum distance of the code, is larger than 1, so it is a strict subset 
of all n-symbol words. The property that not any n-symbol word belongs to the error-correcting code is 
referred to as  redundancy. For instance, if n 3 we may define a code made of all words having even 
weight, the weight of a word being defined as the number of symbols `1' it contains. Its codewords are: 
000, 011, 110 and 101 and its minimum distance is d 2 . A code with the largest possible minimum 
distance for n 3 , i.e., d 3 , only contains two words, for instance 000 and 111. For larger values of the 
codelength n, the minimum distance d can be made the larger, the smaller the code rate R k n (i.e., the 
larger the code redundancy) and, of course, the larger is n.  

 
In a communication system using an error-correcting code, only words belonging to this code may be 

transmitted. As an example, let us assume that a binary code is used over a channel where an error 
consists of changing a 1 into a 0 or vice-versa. Then the channel errors result in a received word which 
possibly differs from the transmitted one and which moreover is at a Hamming distance from it equal to 
the number of errors which occurred, say e, referred to as the weight of the error pattern. For a binary 
symmetric channel, i.e., if we may characterize it as making an error with a constant probability p 1 2 , 
independently, on each symbol of the word, then the probability of a given error pattern of weight e is 
simply Pe pe 1 p n e

. For p 1 2 , Pe  is a decreasing function of e, so an error pattern is the more 
probable, the smaller its weight. There is no loss of generality in assuming p 1 2  since the labelling of 
the received symbols by `0' or `1' is arbitrary, thus it can always be chosen such that this inequality holds 
provided p is different from 1/2. The case p 1 2  is not relevant since it is equivalent to the absence of 
any channel.  

 
The rule for most probably recovering the transmitted word is thus: choose the word of the code the 

closest to the received word. Its mere statement enables to understand the most important properties that 
an error-correcting code must possess in order to be efficient. The words of a code must be far from each 
other, so they should be very few as compared with all possible n-symbol words, i.e., the redundancy 
should be large. But they should also be as evenly distributed in the n-dimensional Hamming space as 
possible, since any concentration of codewords would reduce their mutual distances with respect to the 
case of a more even distribution. For a given amount of redundancy, endowing a code with this property is 
by far the most difficult task in the design of an error-correcting code, although its necessity is quite 
intuitive and its statement is easy.  

 
The above regeneration rule succeeds in recovering the actually transmitted word if the weight of the 

error pattern e is less than half the minimum distance of the code: a sufficient condition of the regeneration 
success is e d 2 . Indeed, if this inequality is satisfied, the point which represents the received word (i.e., 
affected by errors) is closer to the actually transmitted one than to any others. If e is equal to or larger than 
d 2 , the regeneration can fail with a probability which increases and tends to 1 as e grows beyond d 2 . 

 
2.4 Error-free communication is possible in the presence of errors 

 
It was convenient in the above examples to consider small values of the word length n. Let us now go to 

the other extreme and assume that n is very large. Then, the law of large numbers tells that the weight of 
an error pattern is very probably close to its average, np ; in other words, the frequency of errors 
measured in a large sample is with high probability close to the error probability. In geometrical parlance, 
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this means that the received point is with high probability close to the `surface' of the n-dimensional 
sphere of radius np centred on the transmitted word (this surface is an n 1 -dimensional volume). If the 
radius np is smaller than half the minimum distance d of the code, then clearly the received word is with 
high probability closer to the transmitted word than to any other, so the above regeneration rule succeeds 
with high probability. Morever, the probability of a regeneration error vanishes as n approaches infinity. On 
the contrary, if np d 2 , a wrong codeword is often closer to the received word so the regeneration rule 
above generally fails and, as the word length n approaches infinity, the probability of a regeneration error 
approaches 1. We thus have a regeneration rule which fails with very low probability if p d 2n , but with 
very high probability if p d 2n . The transition between the two behaviours is the sharper, the larger n. 
Notice the paradox: for a given probability p of channel error, increasing the word length n also increases 
the average number of erroneous symbols in the received word. Nevertheless, increasing n decreases the 
probability of a regeneration error provided p d 2n . If this inequality holds, errorless communication of a 
message through an unreliable channel is possible. This result is paradoxical, and nobody imagined it 
could be reached anyway before its possibility was proved by information theory. It started the researches 
on error-correcting codes and remained up to now a very strong incentive to their continuation. 

 
The problem of designing an optimal error-correcting code using a q-symbol alphabet and having M 

words of length n has no known general solution for a given channel. However, choosing M qk words at 
random within the n-dimensional space, with k n to provide redundancy, results in a code close to the 
optimum for a given value of the rate R k n . This method, referred to as random coding, was used by 
Shannon in the proof of the fundamental theorem of channel coding (Shannon, 1948). This theorem 
asserts that `errorless' communication is possible if, and only if, the information rate R k n is less than a 
limit which decreases as the channel error probability p increases: this limit is the channel capacity C 
already introduced in Sec. 2.2. `Errorless' means that, provided R C , a vanishing probability of error can 
result from using adequate (but not explicitly specified) codes as their length n approaches infinity. The 
main virtue of random coding is to ensure that, statistically, the codewords are as evenly distributed in the 
Hamming space as possible. Further elaboration of this fundamental theorem led to stronger results 
which, loosely speaking, tell that an arbitrarily chosen code is good with high probability. In a more 
adamant style: All codes are good. The problem of almost optimum error-correction coding seems thus to 
be solved, and moreover in an unexpectedly simple way.  

 
It is far less simple, however, if one looks at the decoding side. Remember that implementing the 

regeneration rule above implies to find the codeword the closest to the received word. In the absence of 
any structure, a code is an arbitrary set of M n-symbol words. There is no other way for implementing this 
regeneration rule than to compare any single received (erroneous) word to be regenerated with each of 
the M codewords. The trouble is that for useful values of the codeword length, i.e., n as large as to make 
the probability of a regeneration error small enough, M is a huge number. For example, in a binary code 
with length n 1,000 and information rate R 1 2 , we have M 2500 or approximately 10150 . (For 
comparison, the number of atoms in the visible universe is estimated to about 1080 .) Implementing 
regeneration when an arbitrary code is used thus bumps against a complexity barrier. This problem 
cannot actually be solved unless the code is given some structure intended to alleviate the complexity of 
regenerating its codewords. 

 
A large number of codes and code families having a strong mathematical structure were invented, but 

their results were invariably far from the promise of the fundamental theorem of channel coding, namely 
error-free communication at an information rate close to the channel capacity. Most experts believed that 
finding good codes with a tractable structure was hopeless due to an intrinsic incompatibility of goodness 
and structure, an opinion summarized in the folk theorem: All codes are good, except those we can think 
of. 
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It turns out that this opinion was by far too pessimistic. For instance, we noticed in 1989 that the sole 

criterion used in order to design a good code was to endow it with a minimum distance as large as 
possible. We criticized this seeming dogma, and suggested that a better criterion could be to look for 
random-like codes, i.e., codes such that the distribution of distances between their words is close in some 
sense to that of random codes (regardless of their actual minimum distance) but constructed according to 
a deterministic process (Battail, 1989, 1996). (Analogously, easily generated pseudo-random sequences 
are known, and widely used in simulation, which mimic truly random sequences.) Codes designed 
according to this criterion should have a performance close to the optimum. In 1993, soon after the 
random-like criterion was proposed, the pessimistic opinion quoted above was definitively ruined with the 
advent of the turbo codes (Berrou et al., 1993,1996) (the reader is referred to (Guizzo, 2004) for an 
excellent description of the turbo codes in non-technical terms and the history of their invention). Turbo 
codes actually meet the random-like criterion, although they were not explicitly designed in order to fulfil it 
(Battail et al., 1993). Their implementation is comparatively simple and well within the possibilities of 
current technology. Besides being the best codes presently available, turbo codes perform closely enough 
to the theoretical limit (the channel capacity) to be considered as almost optimal, at least from a practical 
point of view. The channel capacity then appears as defining the limit of what is possible as regards 
errorless communication, practically as well as theoretically. It is why we centred our discussion of Sec. 
2.2 on this most important parameter of the genomic channel. 

 
3 Natural implementation of error-correcting codes 

 
3.1 Genomes are redundant  

 
The assumption that genomes are words of error-correcting codes implies that they are redundant. In 

information theory, `redundancy' does not merely mean that several copies of a message are available but 
the far more general property that the number of symbols which are used in order to represent the 
information exceeds that which would be strictly necessary. Genomes are in fact extremely redundant 
since 415 is approximately equal to 109 , so a genome of about 15 nucleotides would suffice to uniquely 
specify all past and extant species (of course, according to a rough and disputable estimation), meaning 
that a genome length of less than 100 nucleotides would suffice to uniquely label each individual within 
any of the past and extant species. If we compare this figure with the actual length of genomes, even the 
shortest ones (that of viruses) appear as very redundant. In the absence of redundancy, the number of 
possible n-nucleotide genomes would be 10n , an inconceivably large number for n of a few millions as in 
bacteria, let alone for n of a few billions as in many plants and animals. 

 
3.2 Nature uses `nested codes'  

 
The assumption that nature uses genomic error-correcting codes is our main hypothesis. The 

subsidiary hypothesis that nature uses nested codes should furthermore be made. By `nested codes', we 
mean a system which combines several codes into a layered architecture. A first information message is 
encoded according to some code. Then, a second information message is appended to the codeword 
which resulted from the first encoding, and the resulting message is encoded again by another code. This 
process is repeated several times, the last information message being left uncoded. Notice that a very 
efficient protection of the oldest and most central information does not demand very efficient individual 
codes: the multiplicity of the codes provides a much higher degree of safety than each of them separately.  

 
The nested codes concept arose from noticing that certain parts of the genome like the HOX genes 

(hence the organization plans of the corresponding phenotypes) are conserved with astonishing 
faithfulness in many animal species. At variance with this extreme permanency, however, it turns out that 
some genomic variability has advantages as witnessed by the evolutive success of sex as a means for 
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creating new combinations of alleles. It is thus likely that genomic information is unequally protected 
against errors, and the nested codes scheme is the simplest way to do so. Moreover, we assumed that 
the codes appeared successively in time, the genomic information being the better protected, the older it 
is, so that the variability mainly concerns the most peripheral layers of the nested codes scheme.  

 
3.3 Genomic error-correcting codes as `soft codes' 

 
It would be naïve to expect that the error-correcting codes that nature uses closely resemble those 

designed by engineers. The latter are defined as a set of words which obey constraints expressed by 
deterministic mathematical equalities easily implemented using physical devices. Looking for error-
correcting codes of natural origin, we were led to the concept of `soft code', where the constraints may be 
expressed as inequalities or forbidding rules as well as mathematical equalities, and may be probabilistic 
as well as deterministic. Having thus extended the concept of error-correcting codes, we may think of the 
many mechanical, steric and chemical constraints obeyed by the DNA molecule, or the protein for which it 
codes, as defining soft codes. Even linguistic constraints may be considered since the genome describes 
the construction of a phenotype, which needs some kind of language. We gave in (Battail, 2005) a rather 
comprehensive list of the potential genomic soft codes which result from the several constraints which the 
genome obeys, briefly recalled here.  

 
A first kind of soft codes are those which are associated with structural constraints of DNA. As a 

sequence of nucleotides, a DNA molecule is clearly subjected to mechanical and chemical constraints due 
to its spatial structure, its bonding with proteins like histones and especially its packing in nucleosomes 
and higher-order structures (when they exist, i.e., in eukaryotes). 

 
In the portions of the genome which specify proteins, i.e., in genes in a restricted sense, the sequence 

of codons (triplets of nucleotides) is furthermore constrained as are the proteins themselves: the structural 
constraints of proteins induce soft codes on the sequence of codons which correspond to the amino-acids 
according to the `genetic code' (We use quotes, here and in the sequel, in order to express that it is not 
truly a code in the information-theoretic sense, but rather a mapping in the mathematical vocabulary.) 
Physiologically active proteins are made of a number of 3-dimensional substructures: helices, sheets, 
which are themselves included into higher-order structures named `domains', which impose strong 
constraints of steric and chemical character. Moreover, proteins owe their functional properties to the 
folding of the polypeptidic chain according to a unique pattern, which implies many chemical bonds 
(especially disulphur bridges but also weaker ones) between amino-acids which are separated along the 
polypeptidic chain but close together in the 3-dimensional space when the protein is properly folded. The 
sequence of amino-acids is thus subjected to many constraints, which in turn affect the codons through 
the inverse `genetic code'. Due to the universal role of DNA for specifying proteins, such constraints must 
be present in any living being. 

 
Soft codes may be induced by linguistic constraints, too. We already noticed that the message which is 

needed for unambiguously identifying a biological species and even an individual inside it is much shorter 
than the actual genomes, even those of viruses (see Sec. 3.1). This high redundancy has rather obvious 
reasons: the genome rôle is by no means restricted to identify a living being but it acts as a blueprint for its 
construction and its maintenance. Besides those parts of the genome which direct the synthesis of 
proteins, i.e., the genes in a restricted sense, and the associated regulatory sequences which switch on or 
off their expression, the genome must somehow describe the succession of operations which results in 
the development and the maintenance of phenotype. This demands some kind of language, involving 
many morphological and syntactic constraints which may be interpreted as generating soft codes having 
error-correcting capabilities. Moreover, the linguistic constraints appear at several different levels 
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according to the same structure of `nested soft codes' which we were led to hypothesize for the genetic 
message. The error-correcting ability of languages is manifest in the ability of the spoken human language 
to be literally perceived in extremely noisy acoustic surroundings. It turns out that the individual phonemes 
are identified with a large probability of error, but the linguistic constraints together with the high 
processing power of the human brain eventually result in errorless communication despite the presence of 
noise. We can say that the daily experience of a conversation experimentally proves the ability of the 
human language, as a highly redundant soft code, to behave like good error-correcting codes designed by 
engineers. 

 
The number and variety of constraints indeed suggest that many potential genomic error-correcting 

mechanisms actually exist, which moreover are organised as nested soft codes. The resulting system of 
nested soft codes closely resembles Barbieri's organic codes (Barbieri, 2003), although it is merely 
intended to cope with the necessity of protecting the DNA molecule against radiations and quantum 
indeterminism which no phenotypic shielding can ensure. Barbieri's concept of organic codes, on the other 
hand, does not refer to the necessity of error correction but results from a deep reflection on biological 
facts. It consists of the correspondence between unidimensional strings of completely different molecules 
like, for instance, the relationship between triplets of nucleotides and the 20 amino-acids which make up 
proteins, referred to as the `genetic code'. (Unidimensionality is a common feature of messages in 
engineering and in genetics. It appears as necessary for unambiguous semantic communication.) Such a 
correspondence does not result from any physical or chemical law, but can be considered as a pure 
convention or artifact, just like rules in linguistics or engineering. These rules are maintained thanks to 
`semantic feedback loops' (Battail, 2005). Barbieri's organic codes moreover assume the nested codes 
structure (see Fig. 8.2 in (Barbieri, 2003), p. 233).  

 
4 Identification of genomic error-correction means 

 
4.1 Indirect evidence of genomic error-correction codes  

 
4.1.1. Spectral and correlation properties of genomes 

 
The experimental analysis of DNA sequences has shown they exhibit long-range dependence. Their 

power spectral density has been found to behave as 1 f asymptotically for small values of the 
frequency f , where is a constant which depends on the species. Roughly speaking, is the smaller, the 
higher the species is in the scale of evolution; it is very close to 1 for bacteria and significantly less for 
animals and plants (Voss, 1992). Another study of DNA sequences with the alphabet of nucleotides 
restricted to the binary one {R,Y} as we did above has shown that their autocorrelation function decreases 
according to a power law (Audit et al., 2002). This implies long-range dependence at variance with, e.g., 
Markovian processes which exhibit an exponential decrease. Moreover, in eukaryotic DNA the long-range 
dependence thus demonstrated has been related to structural constraints of nucleosomes. 

 
4.1.2.  Distance properties of eukaryotic genes under evolutive pressure 

 
As early as 1981, Forsdyke suggested that the introns in eukaryotic genes are made of check symbols 

associated with the information message borne by the exons (Forsdyke, 1981). The literature generally 
states that introns are more variable than exons, but a counterexample was provided in 1995, again by 
Forsdyke, in genes which `code' for snake venoms (Forsdyke, 1995). It turns out that both the generally 
observed greater variability of introns and Forsdyke's counterexample can be explained by assuming that 
an error-correcting system exists. Interpreted as a regeneration error, a mutation occurs with large 
probability in favour of a codeword at a distance from the original word equal to the minimum distance of 
the code or slightly larger. If the exons `code' for a protein of physiological importance, which is the most 
usual case, the evolutive pressure tends to its conservation so the erroneous symbols after a mutation are 



tripleC 4(2): 217-229, 2006  

 

 

CC: Creative Common License, 2006 

225

mostly located in introns. If however the evolutive pressure tends to make the protein highly variable, as in 
the arms race of snakes and rodents, then the erroneous symbols after regeneration will be mostly located 
in exons and the introns will be almost conserved (Battail, 2004b).  

 
4.2 Lack of direct identification of genomic codes 

 
Error-correction means are necessary for counteracting the lack of permanency of the genome pointed 

out in Sec. 2.2 and we show in Sec. 5 that assuming their existence enables to derive a number of 
properties which the living world actually possesses, some of them being so familiar and general that 
biologists did not even try to explain them. We just mentioned above indirect experimental evidence of this 
existence. The direct identification of genomic error-correcting would be highly desirable, but it is still 
lacking.   

 
4.3 Identifying the regeneration means: an open problem  

 
The problem of genomic regeneration (decoding) is left for future researches. Its principle can be 

stated: the genome replication process aims at creating a new genome, hence subjected to all the 
constraints that a genome should obey. On the other hand, it should replicate the old genome which 
presumably suffered errors. These conflicting requirements must be solved in favour of the constraints. 
Since we used biological constraints to define genomic soft codes, obeying constraints amounts to 
correcting errors. We may thus think of the regeneration process as necessarily providing the approximate 
copy of the old genome which best fits the genomic constraints. Replacing `old genome' by `received 
codeword' in the above statement just results in the definition of regeneration from an engineering 
viewpoint, given in Sec. 2.3. An intriguing feature of regeneration as implementing this rule is that its 
operation demands that the decoder possesses a full description of the constraints at any level, including 
those which originate in physico-chemical properties of molecular strings.  

 
As regards the implementation of regeneration, it must be stressed that the full knowledge of a code 

does not ipso facto entail that adequate means for its decoding are known. For a given code, there exist 
several decoding processes which more or less approximately implement the optimum rule stated in 
Sec.2.3; the more complex, the closer they are to optimality. Still more than the identification of genomic 
error-correcting codes, that of the means actually implemented by nature for their regeneration is thus 
difficult and challenging. Remember that we used above the human language as an example to illustrate 
the error-correcting properties of soft codes, but the means implemented in the brain for performing this 
task are presumably very complex and still unknown. Also, it is likely that existing mechanisms believed to 
perform `proof-reading' actually implement some kind of genome regeneration. Incidentally, proof-reading 
can only check that the copy is faithful to the original, hence correct errors intrinsic to the replication 
process. It is of no use if the original itself suffered errors. 

 
5 Consequences of the hypotheses 

 
5.1 Nature proceeds by successive generations  

 
That nature proceeds by successive generations is a direct consequence of our main hypothesis. The 

fundamental theorem of channel coding tells that error-free communication is possible only provided an 
error-correcting code is used, having an information rate k n less than the channel capacity (remember 
that k logq M for an M-word code, as defined in Sec. 2.4). The information rate is constant for a given 
code. On the other hand, we have seen in Sec. 2.2 that the capacity of the genomic channel is a fast 
decreasing function of time. Regeneration of the genome must thus be performed before the genomic 
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channel capacity has become too low for enabling the code to correct the occurring errors, and must 
further be repeated at short enough time intervals.  

 
The average time interval between regenerations should be matched to the correction ability of the 

code. If this interval is as long as to often exceed the limit set by the minimum distance of the code, then 
regeneration errors will frequently occur and result in low-permanency phenotypes markedly different from 
each other. Maybe a phenomenon like the Cambrian explosion could be explained by a mismatch 
between the average regeneration interval and the actual efficiency of the available error-correcting 
codes, this interval being too long for ensuring an almost certain regeneration. The genetic factors which 
control the regeneration interval on the one hand, and the efficiency of the error-correcting codes on the 
other hand, are probably quite independent so their matching, as an evolutive advantage, could only result 
from the Darwinian selection. Also, the recent finding in Arabidopsis thaliana of `non-Mendelian 
inheritance' (Lolle et al., 2005) could be explained by assuming that, in this species and maybe in other 
plants, the regeneration process does not systematically coincide with the genome replication, but is 
sporadically triggered by some kind of `stress'. 

 
5.2 Discreteness and hierarchical taxonomy of the living world 

 
The hypothesis that genomic error-correcting codes exist immediately implies that the genomes are far 

from each other in terms of the Hamming distance. This would be obvious in the case of a single code 
having a large minimum distance d. Then genomes are in the Hamming space at this distance from their 
closest neighbours, which implies the existence of distinct species (as opposed to chimeras).  

 
The picture becomes more complicated but more realistic when we take into account our subsidiary 

hypothesis. Every time a new encoding has been performed in the process of constructing the nested 
codes system, the minimum distance between the points representing the previously encoded words has 
been enhanced by the minimum distance of the new code. Once this system is built (and in fact 
simultaneously to its construction), regeneration errors occur at random and are the more frequent, the 
distance between the points in the Hamming space is the lesser. But the points are the more distant in this 
space, the more central the layer to which they belong. A large distance implies that the corresponding 
regeneration error pattern has a large weight, thus gives rise to a phenotype more different from the 
original than an error pattern of smaller weight. (We assume here that the more different are genomes, the 
more different are the corresponding phenotypes: a kind of isomorphism between the genomes and the 
phenotypes is thus assumed although it can only be approximative. The same assumption legitimates the 
use of the Hamming distance for reconstructing phyletic trees.) Clearly, besides the discreteness of 
species which results from the main hypothesis, the layers of the nested codes system delineate a 
hierarchical taxonomy among them which results from the subsidiary hypothesis.  

 
5.3  Trend of evolution towards complexity 

 
But why should the multiple layers of the nested codes appear successively in time? Appending a new 

error-correcting code to those already in use results in a diminished probability of error, hence in an 
increased permanency, which provides an  immediate evolutive benefit. The hypothesis of a nested codes 
structure is not even necessary to explain the trend of evolution towards complexity. It actually appears as 
a mere consequence of the rather paradoxical information-theoretic fact that the longer the code, the 
smaller can be made the regeneration error probability. Hence increasing the genome size can result in 
increasing its permanency. If nature uses efficient enough codes (and we may safely assume that the 
Darwinian mechanisms resulted in almost optimal codes, as products of evolution having a prominent role 
in the genome conservation), then we may think that increasing the genome length results in diminishing 
the probability of a regeneration error, hence increases its permanency. Moreover, increasing the genome 
length while keeping the redundancy rate constant increases the quantity of information which is borne by 
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the genome, thus giving room for specifying more complex (and, after being filtered by natural selection, 
better fitted) phenotypes. Indeed, although information theory ignores semantics, information can be 
thought of as a container for semantics: the availability of more information enables to specify more 
phenotypic features. As regards the epistemological status of information, we believe that it has no 
existence without a physical support and that it acts as a container for semantics. We may thus think of 
information as a bridge between the concrete and the abstract: genomes are  concrete objects which bear 
the abstract recipe for developping and maintaining concrete phenotypes.  

 
5.4 Answering debated questions  

 
5.4.1. Evolution is saltationist  

 
The hypothesis that the genomes behave as words of error-correcting codes, hence are distinctly far 

apart in the Hamming space, entails that mutations resulting from regeneration errors change genomes 
into distinctly different ones, so evolution proceeds by jumps.  

 
5.4.2. Genetic information has a random origin  

 
The accumulation of errors tends to make the genomic message less and less dependent on the 

original one (see Sec. 2.2). If an error-correcting code is present, the genomic message is exactly 
regenerated provided the correcting ability of the code is not exceeded and only varies when a 
regeneration error occurs. Such an event is very unfrequent but results in a burst of at least d erroneous 
symbols when it occurs (d denotes the minimum distance of the genomic code). The genomic code then 
ensures the conservation of this `wrong' genome exactly as it does for the initial `correct' one. Without 
error-correcting properties, the genome would gradually become less and less dependent on the original 
genome due to the occurring errors. If endowed with error-correcting properties, it remains a long time 
faithfully conserved but suddenly becomes markedly different from the original when a regeneration error 
occurs. Next regeneration errors increase the difference in discrete steps. Continuing this process during 
a long enough time has thus the ultimate consequence that the original genomic message is progressively 
forgotten, but according to a much slower pace, depending on the time interval between regenerations, 
when error-correcting means are used. Another difference is that, when an error-correcting code is 
employed, the genomes resulting from replication errors are conserved as efficiently as the original one 
was. Then each genome, whether original or affected by errors, remains identical to itself during a time 
interval which depends only on the probability of a regeneration error. Each regeneration error may be 
thought of as generating a separate species (excluding errors occurring in the most peripheral, uncoded 
layer of the nested codes scheme, which only account for differences between individuals of a same 
species). In contrast, an uncoded system would give rise to a world of chimeras, not of discrete species. 
Another important consequence of our hypotheses is that all the extant genomic information originated in 
replication errors since the original DNA molecule is presumably forgotten for long but, of course, these 
products of chance were strongly filtered by the necessity of natural selection acting on the corresponding 
phenotypes. Only information at the most central position in the nested codes system, hence very old and 
fundamental, is a possible remnant of the common origin of the extant living beings.   

 
5.5 Further comments 

 
Although one may deem that the results of this section are speculative as relying on hypotheses, the 

theoretical impossibility of genome conservation without error-correcting means makes these hypotheses 
necessary, and so are their consequences. The direct identification of natural error-correcting means is 
still lacking, but one cannot expect it to be performed without the active involvement of practising 
geneticists.  
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6  Conclusion: the genome conservation is a dynamic process 

 
To conclude, let us stress the epistemological importance of the results presented at the beginning of 

this paper (Sec. 2.2). In the presence of a steady error frequency, they show that the average number of 
errors which would affect the genome if it were uncoded is an increasing function of the time elapsed 
which makes the genomic capacity, in the information-theoretic sense, decrease exponentially fast down 
to zero. Conservation of the genomic information thus demands that the genome be endowed with an 
error-correcting code and moreover that it be regenerated after a time interval such that the number of 
accumulated errors is very unlikely to exceed the error-correction capability of the code. Then, rather 
paradoxically,  conservation of the genome appears as a dynamic process. (Lewis Carroll's Red Queen is 
here an illuminating metaphor.)  

 
That the conservation of genetic information, far from being systematically secured, results from a 

dynamic process appears as a total reversal with respect to the traditional point of view. It leads to ask 
new questions. For instance, a usual argument is that that part of the genome which specifies how the 
phenotype is built and maintained is conserved because natural selection precisely has the phenotypes as 
targets. But, at least in many eukaryotes, only a small fraction of the genome is known to have this role. 
The remainder has no known function and is often dubbed `junk DNA'. How is ensured its conservation? 
Even short motifs repeated a large number of times, which bear negligibly few information, are conserved. 
How and why it is so should be understood. What needs indeed to be explained is why any portion of the 
genome departs from being purely random. While the conventional genetics tacitly assumes that the 
genome conservation is the rule, the genome would fast become random, hence devoid of any structure, 
unless specific means ensure its conservation. All the symbols of a codeword both participate in and 
benefit from error correction. Any departure from randomness in DNA can be accounted for only by error-
correction mechanisms. Hence the conservation of `junk DNA', as superfluous as it may look, means that 
it benefits from error correction, which also implies it has an active role in it and thus should not be 
qualified as `junk'. 

 
Things we can observe are those which are conserved. One may wonder why the consequences of 

such an obvious statement have been (and still are) so often overlooked. Within the human time scale 
permanency seems to be an intrinsic property of macroscopic objects but within the time scale of geology 
this generally does not remain true. Permanency is erroneously believed to be a trivial property of things, 
maybe as an unthought extension of our daily experience. At the geological time scale, conservation is 
however the exception and not the rule. According to Darwin, conservation of a living thing depends on its 
ability to get food, escape predators and pathogenic agents, and, as a species, to reproduce itself. 
Stressing the importance of the genome (remember that its very existence was unknown to Darwin), 
modern neo-Darwinians made a step more in interpreting the phenotype as subordinate to ensuring the 
genome conservation by shielding it against physical and chemical aggressions. We still make a step in 
the same direction in pointing out that the message borne by the genome should moreover contain means 
for its own conservation, in the form of intrinsic error-correcting codes which extend the genome protection 
to other kind of error-inducing agents, especially radiations. Indeed, the faithful conservation of a DNA 
molecule, a submicroscopic object in two of its dimensions, is not conceivable at the time scale of geology 
without intrinsic means which ensure it. It is definitely impossible to deal with it as if it were a permanent 
solid body and the conventional paradigm of template replication is wrong.  

 
The above discussion made the genome memory appear as ephemeral at the geological time scale in 

the absence of corrective means, which implies that the genome conservation is not the rule and needs to 
be ensured by a dynamic process. Among the many questions which arise from this statement, the 
problems of identifying genomic error-correcting codes and the means for genome regeneration have to a 
large extent been left open. We would like to emphasize that no progress can be expected in these 
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directions unless geneticists get interested, and even educated, in information theory (Yockey, 2005; 
Battail, 2006a). Needless to say, we think that rejecting information theory as did a majority of biologists 
many years ago (arguing that its concept of information is too restrictive, especially as ignoring semantics) 
was just throwing out the baby with the bathwater. We believe that information theory can be an extremely 
useful conceptual tool not only in genetics (as we tried to show it above) but in biology as a whole, 
provided a much closer collaboration of information engineers and biologists can be set up. The wish that 
it be so concludes the paper. 
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