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Abstract: A goal of thehuman genomeproject is to determinetheentiresequenceof DNA (3 3 109

base pairs) found in chromosomes. The massive amounts of data produced by this project require
interpretation. A Bayesian model is developed for locating regulatory regions in a DNA sequence.
Regulatory regions are areas of DNA to which specific proteins bind and control whether or not a
gene is transcribed to produce templates for protein synthesis. Each human cell contains the same
DNA sequence. Thus the particular function of different cells is determined by the genes that are
transcribed in that cell. A Hidden Markov chain is used to model whether a small interval of the
DNA is in a regulatory region or not. This can be regarded as a changepoint problem where the
changepoints are the start of a regulatory or nonregulatory region. The data consists of protein-
binding elements, which are short subsequences, or “words,” in the DNA sequence. Although these
words can occur anywhere in the sequence, a larger number are expected in regulatory regions.
Therefore, regulatory regions are detected by locating clusters of words. For a particular DNA
sequence, the model automatically selects those words that best predict regions of interest. Markov
chain Monte Carlo methods are used to explore the posterior distribution of the Hidden Markov
chain. The model is tested by means of simulations, and applied to several DNA sequences.
© 2001 John Wiley & Sons, Inc. Biopoly 58: 165–174, 2001
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INTRODUCTION

The problem of detecting regulatory regions in the
genome is considered. Every cell in an individual
contains the same DNA. However, the different cells
have very different functions. For example, blood
cells produce different proteins than liver cells. Reg-
ulatory regions are the control regions that switch
genes on and off, determining what proteins are pro-
duced by a cell.

DNA consists of a sequence of chemical structures
(nucleotides), represented by the letters A, C, G, and
T. It occurs naturally as adouble helix, consisting of

two strands, where A pairswith T and Gpairswith C.
Because of this complementarity, the second strand
may beconsidered to beredundant, and theDNA may
be represented by a single strand running in one
direction, known as the “59 to 39 ” direction. Regula-
tory proteins bind to the DNA, causing genes to be
switched on or off.

Regulatory regions represent the DNA segments
that contribute to the control of gene expression. Reg-
ulation is avery complex process involving proteins
that bind to specific control elements in the DNA. In
addition, control involves various types of regulatory
regions. Consider, for example, the protein encoding
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genes. These genes are transcribed by RNA polymer-
ase II. The initiation of transcription is controlled by
a DNA segment (basal promoter), which is in the
immediate upstream of the transcription initiation site.
Some basal promoters contain a sequence known as a
TATA element but there are many genes whose con-
trol does not require this sequence (see, for example,
Pugh and Tjian1). A second regulatory region (prox-
imal promoter) is often present in the immediate up-
stream of the basal sequence. The genome also in-
cludes regulatory segments that are found far up-
stream or far downstream of a gene. These segments
may include regions known as locus control regions.
Some regulatory regions occur within a gene, often in
noncoding sequences known as introns. These regu-
latory regions may include segments that are known
as transcriptional enhancers. Thus, how to locate reg-
ulatory regions in DNA is a complex problem.

Most previous work has concentrated on trying to
locate promoters. Prestridge2 uses the density of
words computed in promoter and nonpromoter re-
gions for primates to come up with a promoter rec-
ognition profile for a sequence of interest. This is
combined with the TATA box method of Bucher3 to
locate promoters in the sequence. Kondrakhin et al.4

compute a measure of similarity between the se-
quence of interest and a sample of 472 promoters. If
this measure is greater than a threshold value, it
suggests a potential promoter.

The focus of the studies described here is on the
regulatory regions that function through interactions
with proteins that bind to DNA sequences known as
control elements. These elements occur in regions that
could correspond to proximal promoters, locus con-
trol regions, and enhancers. The model presented in
this report does not address how to locate basal pro-
moters because these sequences are considered to be a
different type of regulatory region. The piece of the
DNA to which the regulatory proteins bind is called a
protein binding element. It consists of a short (5–20
base pairs) series of nucleotides, orword, in the DNA,
e.g., AGAACA. These words occur frequently in the
genome but are expected to occur more often in
regulatory regions.5 Hence, the idea is to look for
clusters of words in the DNA. This is done by means
of a Hidden Markov model. The parameters of the
model are estimated using Markov chain Monte Carlo
(MCMC).

To locate the regulatory regions, a finite collection
of words or catalogue is needed. In studies of regu-
latory elements, researchers often use the transcrip-
tion factor database (TFD) constructed by Ghosh.6

While this database might be a good resource for
finding potential protein binding sites in DNA, it is

not suitable for statistical work. The problems are
extensive, including redundancy. In addition, TFD
includes a concoction of sequences: from alternating
purine (R5 A or G) pyrimidine (Y5 T or C) found
in Z-DNA, to binding sites used for transcription by
RNA polymerase III. The problem here is that RY
repeats represent a structural motif, and not necessar-
ily a specific control element in DNA. Control sites
for RNA polymerase III are also not relevant for
regulation of transcription of protein-encoding genes
since these genes are exclusively transcribed by RNA
polymerase II. To resolve the problem of redundancy,
Prestridge2 extracted only TFD site numbers rather
than transcription factor name. However, a later study
noted that this approach does not resolve the problem
of redundancy.7 In addition, sequences that are ex-
tracted from TFD do not necessarily define specific
control elements (words) in DNA.

To avoid these problems, Bina (unpublished data)
compiled a different catalogue, and this is the one
used in the method described here. A control element
is defined as a binding site for specific or related
transcription factors for genes transcribed by RNA
polymerase II (see, for example, Crowley, Roeder,
and Bina8). Experimental data have shown that the
control elements are usually short (5–12 base pairs).
Somewhat longer elements provide sites for proteins
that have more than one DNA binding domain (i.e.,
the PAX family). Note that TFD includes a large
number of relatively long sequences (see for example,
Figure 3 in the article by Prestridge2). These se-
quences do not define a specific word. They often
represent regions protected in DNase I footprinting
experiments. These footprints are often longer than
the actual size of a site and in some cases they may
also include more than one protein-binding element.

To resolve the general problem of redundancy,
when possible, the control elements are defined and
classified according to the structure of the DNA bind-
ing domain of the proteins.8 In some cases, a consen-
sus core is defined to represent the binding site of
proteins that interact with related sequences. Often,
these proteins correspond to products of evolutionar-
ily related genes, and thus the similarity of their
binding sites may contribute to the redundancy prob-
lem. In addition, the entries of the catalogue are
closely checked against the actual experimental data
for accuracy and update. Experimental data represent
the results of published work including electro-
phoretic mobility-shift assays, methylation interfer-
ence assays, and mutational analysis. Updating is also
needed since new data often correct and improve
published work. In this context, a database is never as
definitive as it should be, and thus it should be con-
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sidered as an evolving process. However, for a given
set of analyses, and in particular those of this paper,
the catalogue does not change.

This paper describes the statistical aspects of the
method for finding regulatory regions in a DNA se-
quence. Applications of the method may be found in
Crowley, Roeder, and Bina.8 The layout of the paper
is as follows. First, the Hidden Markov model and the
model used for the distribution of the words are de-
scribed. The priors used are also discussed. Imple-
mentation of the MCMC algorithm is next described.
This is followed by a simulation study and then the
method is applied to some DNA sequences. Finally,
there is a discussion of the method.

THE MODEL

The DNA sequence of interest is divided intoI inter-
vals of lengthD, whereD is the length of the longest
word that occurs in the sequence. A word is in an
interval if its center (which is defined to be the middle
nucleotide if the word has an odd number of nucleo-
tides, and the upper middle nucleotide if the word has
an even number of nucleotides) is in the interval.
Hence, if a word overlaps two intervals, it is chosen to
be in only one of the intervals, depending on where its
center lies. As the model is looking for clusters of
words, it makes little difference which of the two
intervals the word is in.

Let Yi represent the state at thei th interval, withYi

5 1 if i is in a regulatory region andYi 5 0
otherwise. Assume thatY1, Y2, . . . , YI is a Hidden
Markov chain, with transition probabilities

Pr~Yi11 5 suYi 5 r ! 5 Vrs, r [ $0,1%, s [ $0,1%

with

V 5 F1 2 l l
t 1 2 tG

The lengths of regulatory and nonregulatory regions
have a Geometric distribution with expected values
1/t and 1/l, respectively. The Hidden Markov model
gives a reasonable approximation to the behaviour of
the DNA. As will be show later, it works well for this
problem. It is already a computationally intensive
model. The model works well enough that a further
increase in computational burden from a more com-
plicated model seems unjustified.

The data consist of theJ words in the DNA se-
quence under consideration. Let

Xij 5

H1,if a word of thej th type occurs in thei th interval
0,otherwise

Note that there is a possibility that a word could occur
twice in an interval. This does not happen often and
by this definition is treated the same as if it had
occurred once. As this can only happen with the
shorter words, which are more common, it has little
effect on the results.

The model is first described, assuming that all
words in the catalogue are good predictors of being in
a regulatory region for every dataset. Letur be the
probability that any of the words occurs whenYi 5 r .
It is assumed that words occur more frequently in
regulatory regions than in nonregulatory regions so
that u0 , u1. Some words occur more often than
others. Given that a word occurs, letcjr be the prob-
ability that it is of typej whenYi 5 r . Let

Xij uYi 5 r , Bernoulli ~cjr z ur! (1)

where i 5 1, . . . , I , j 5 1, . . . , J, and r 5 0, 1.
The Xij ’s are assumed to be conditionally indepen-
dent, given theYi ’s.

Note that if a word occurs in an interval, it can
occur atD different positions. Some of these positions
may not allow the other words to occur in the interval,
thus violating the assumption of conditional indepen-
dence above. However, the more restrictive words are
the longer ones and they occur less often. So, the
assumption of conditional independence should hold
approximately.

The cjr ’s are treated as constants. Letnj 5 ¥i Xij

be the number of words of typej and letwj 5 nj/¥j 9

nj 9 be the relative proportion of words that are of type
j , j 5 1, . . . , J. In nonregulatory regions, letcj0

5 wj. In regulatory regions, rare words are expected
to have increased probability. Socj1 needs to be
chosen so thatcj1/cj0 is a decreasing function ofwj.
To achieve this, takecj1 5 wj ln(1/wj). It would also
be possible to treat thecjr ’s as parameters and esti-
mate them.

The priors for the parametersl, t, u0, andu1 are
now described. Beta priors are put onl andt. In the
model, high prior probability is given to regulatory
regions of length 200–600 base pairs occuring 0–4
times every 5000 base pairs, as typical regulatory
regions fall in this range. The prior parameters are
chosen to approximately achieve this. For example,
whenD is equal to 13 base pairs, a Beta(1.3,100) prior
is used forl and a Beta(5.5,100) prior is used fort. A
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uniform prior is put onu0 andu1, with the restriction
u0 , u1.

In practice, it is not known which words in the
catalogue are good predictors for a particular dataset.
The following approach automatically chooses the
words that best predict for a particular sequence.
Words that predict well are called “predictive” words.
Let

zj 5 H1, if the j th word is predictive
0, if the j th word is nonpredictive

Equation (1) is replaced by

Xij uYi 5 r , zj , H Bernoulli~cjr z ur!, zj 5 1
Bernoulli~cj0 z u0!, zj 5 0

That is, for nonpredictive words, regulatory regions
are treated the same as nonregulatory regions. Letzj

have a Bernoulli(0.5) prior distribution. This method
both adjusts for the nonpredictive words and gives us
information about which words are good predictors
for a particular sequence.

IMPLEMENTATION

Let Xi 5 (Xi1, Xi2, . . . , XiJ)9 and let X 5 (X1,
X2, . . . , XI). Also, let Y 5 (Y1, Y2, . . . , YI) andZ
5 (Z1, Z2, . . . , ZJ). The posterior probability thatYi

5 1, i 5 1, . . . , I and thatZj 5 1, j 5 1, . . . , J
need to be estimated. This is done using Gibbs sam-
pling and the Metropolis–Hastings Algorithm.9,10

Start with some initial estimate of the parameters in
the model:Y0, l0, t0, u0

0, u1
0, Z0. First, the general

steps in the Markov chain Monte Carlo algorithm are
described and then more details are given below. For
k 5 1, . . . , N:

1. SampleYi
kuY1

k, . . . , Yi21
k , Yi11

k21, . . . , YI
k21, X,

lk21, tk21, u0
k21, u1

k21, Zk21 for i 5 1, . . . ,
I , using Gibbs sampling.

2. Samplelk, tkuYk from their posteriors.
3. Sampleu0

k, u1
kuYk, X, Zk21 using Metropolis–

Hastings.
4. SampleZj

kuYk, X, u0
k, u1

k, for j 5 1, . . . , J,
from their posteriors.

Ignoring the firstn0 runs, the posterior probability that
Yi 5 1 is estimated by 1/(N 2 n0)¥k5n011

N Yi
k and

that Zj 5 1 by 1/(N 2 n0)¥k5n011
N Zj

k.

Step 1.The posterior distribution of eachYi needs
to be computed. This is denoted byp(Yi uY1, . . . ,

Yi21, Yi11, . . . , YI, X, l, t, u0, u1, Z). This is done
using an algorithm for hidden Markov models. This
algorithm is described in the context of DNA se-
quences by Churchill11 and by Dupuis.12 For conve-
nience, some of the parameters are suppressed. LetXi

5 (X1, X2, . . . , Xi). The hidden Markov chain al-
gorithm gives p( yi uX

i21), p( yi uX
i) and p( yi uX).

Hence,

p~yiuy1, . . . , yi21, yi11, . . . , yI, X !

5 p~yiuyi21, yi11, X !

5
p~yiuX !p~yi21uyi, X !p~yi11uyi, X !

p~yi21uX !p~yi11uyi21, X !

The first term in the numerator and the denominator
are given directly by the hidden Markov chain algo-
rithm, and the other conditional distributions are eas-
ily computed. For example,

p~yi21uyi, X ! 5
p~yi21uXi21!p~yiuyi21!

p~yiuXi21!

Step 2.Suppose that the prior forl is Beta(a0, b0)
and that the prior fort is Beta(a1, b1). Let Srt

5 ¥ i51
I21{ Yi 5 r , Yi11 5 t}, r 5 0, 1, t 5 0, 1.

Then the posterior distribution ofl is approximately
Beta(a0 1 S01, b0 1 S00) and the posterior distri-
bution of t is approximately Beta(a1 1 S10, b1

1 S11).
Step 3.The posterior distribution ofu0 and u1,

p(u0, u1uY, X, Z), 0 # u0 , u1 # 1, needs to be
sampled from. Letdr 5 log(ur/(1 2 ur)), r 5 0,1.
Then,

p~d0, d1uY , X , Z ! } p0~d0uY , X , Z !

3 p1~d1uY , X , Z !, 2` , d0 , d1 , `

Metropolis Hastings is performed ond0 and d1, in-
stead of onu0 andu1. The candidate generating den-
sities areg0(d0) 5 N(d0, s0

2) and g1(d1) 5 N(d1,
s1

2), d1 . d0. The probability of a move froma to b
is

ar~a, b!

5 HminS1,
pr~buY , X , Z !

pr~auY , X , Z !D if pr~auY , X , Z ! . 0

1 otherwise

For r 5 0, 1, start withdr
0. The kth step is
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● Generated*r from gr(dr) andUr from U(0,1)
● Let

dr
k 5 Hd*r if Ur # ar~dr

k21, d*r!
dr

k21 otherwise

Transform to getur
k.

Step 4. P(Zj 5 r uY, X, u0, u1), r 5 0,1 needs to
be computed. This is straightforward.

Run lengths ofN equal to 10,000 or 50,000 are
used, and diagnostic plots are used to assess conver-
gence. Ford0 andd1, d0

k andd1
k are plotted againstk,

for k 5 1, . . . ,N. To check convergence for theYi ’s,
1/100¥15w11

w1100 Yi
k is plotted againstk. This is done for

w 5 250 j where j 5 0, 1, 2, . . . , int(I / 250).

SIMULATIONS

A simulation study is performed to examine how well
the method picks out regulatory regions and detects
nonpredictive words. In each of the four scenarios
considered, the sequence is of length approximately
30,000 base pairs. There are 40 words, of which 5 are
nonpredictive. The 40 words consist of 10 low fre-
quency words, 20 medium frequency words and 10
high frequency words. Low, medium, and high fre-
quency mean that approximately 5, 50, and 200 of
these words, respectively, would be expected in the
sequence. This is similar to some of the DNA se-
quences considered in terms of the number of low,
medium, and high frequency words seen. For each
scenario, the posterior probability that each interval is
a regulatory region is plotted against its location in the
sequence. It would be optimal if this probability is
close to one in a regulatory region and close to zero in
a nonregulatory region. The posterior probability that
a word is predictive, and its standard error, are also
computed, for each of the 40 words. The standard
errors are computed using the method of batch means.
This was done for batchlengths of 100, 150, 200, 300,
and 600. For each word, the standard error associated
with the smallest batchlength that gave a serial cor-
relation between20.1 and 0.1 is given. For each
scenario, the results for one simulation are shown.
Other simulations follow a similar pattern. The diag-
nostic plots showed that a run length ofN 5 10,000
was sufficient for convergence in the simulations.

Data Generated from the Exact Model

Here, the five nonpredictive words are medium fre-
quency words andu0 5 0.1 andu1 5 0.9. The first

scenario considered is one that is very probable under
the prior. There is one regulatory region every 6000
base pairs. Each of the (five) regulatory regions is of
length 300 base pairs. The method correctly detected
the five regulatory regions (the probabilities were all
close to one)—see Figure 1(a). The posterior proba-
bility that a word is predictive, for each of the 40
words, is contained in Table I. The nonpredictive
words tend to have a low probability of being predic-
tive, while the predictive words have a high probabil-
ity of being predictive. The probability of being pre-
dictive is higher for the medium and high frequency
words than for the low frequency words. Note that the
standard errors for these posterior probabilities are
very small for all of the words.

Next, the effect of varying the length of the regu-
latory regions is considered. The above scenario is
changed by considering regulatory regions of length
120 and 600 base pairs, instead of 300 base pairs. The
shorter and longer regulatory regions are clearly de-
tected—see Figure 1(b) and 1(c), respectively. Also
looked at is what happens when the number of regu-
latory regions per 6000 base pairs is increased (and
also this number differs across the sequence). In this
scenario, there were five regulatory regions in the first
6000 base pairs and none in the rest of the sequence.
The method clearly picks out these five regulatory
regions—see Figure 1(d). Note that the probability
that a word is predictive follows the same pattern for
the last three scenarios as it does for the first.

Nonpredictive Words

The effect of varying the types of nonpredictive words
under the four scenarios above is examined. The pos-
terior probability of a regulatory region for the low
frequency and high frequency words for each of the
four scenarios looks almost identical to that for the
medium frequency words given in Figure 1. However,
there is a difference in the posterior probability that a
word is predictive. For nonpredictive words, this
probability decreases and for predictive words, this
probability increases as the nonpredictive words occur
with higher frequency. So the method is better at
finding and adjusting for the higher frequency non-
predictive words than for the low frequency ones.

Robustness and Sensitivity

Now consider what happens when the data is gener-
ated without the assumption that rare words have
increased probability in regulatory regions. Letcj1

Bayesian Method for Finding Regulatory Segments169



5 wj [instead ofwj ln(1/wj)]. The same four scenar-
ios are used and there are five medium frequency
nonpredictive words withu0 5 0.1 andu1 5 0.9.

The posterior probabilities of a regulatory region
are given in Figure 2. This looks very similar to
Figure 1, except for the case of short regulatory re-

FIGURE 1 Posterior probability of a regulatory region for data generated from the model withu0

5 0.1, u1 5 0.9, and five medium frequency nonpredictive words. (a) One regulatory region of
length 300 base pairs every 6000 base pairs; (b) one regulatory region of length 120 base pairs every
6000 base pairs; (c) one regulatory region of length 600 base pairs every 6000 base pairs; (d) five
regulatory regions of length 300 in the first 6000 base pairs and none in the rest of the sequence.

Table I The Posterior Probability that a Word is Predictive for Data Generated from the Modela

Word PWP Word PWP Word PWP Word PWP

1 .997 (1) 11 .005 (1) 21 1.000 (0) 31 1.000 (0)
2 — 12 .012 (1) 22 1.000 (0) 32 1.000 (0)
3 .967 (2) 13 .045 (2) 23 1.000 (0) 33 1.000 (0)
4 1.000 (0) 14 .023 (1) 24 .998 (1) 34 1.000 (0)
5 — 15 .140 (4) 25 1.000 (0) 35 1.000 (0)
6 .945 (2) 16 1.000 (0) 26 1.000 (0) 36 1.000 (0)
7 .992 (1) 17 1.000 (0) 27 1.000 (0) 37 1.000 (0)
8 — 18 1.000 (0) 28 1.000 (0) 38 1.000 (0)
9 — 19 1.000 (0) 29 1.000 (0) 39 1.000 (0)

10 .229 (4) 20 1.000 (0) 30 1.000 (0) 40 1.000 (0)

a u0 5 0.1 andu1 5 0.9. Words 1–10 are low frequency, words 11–30 are medium frequency, and words 31–40 are high frequency. Words
11–15 are nonpredictive. PWP is the posterior probability that a word is predictive. Words 2, 5, 8, and 9 did not occur in this simulation. Values
in parentheses multiplied by 1023 are the standard errors of the posterior probabilities.
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gions. Here, one of the regulatory regions is missed
completely and two of the others have probabilities
closer to 0.5 than to one. There is also a difference in
the posterior probabilities that a word is predictive—
see Table II. These are lower for the predictive words
and higher for the nonpredictive words. The standard
errors for the posterior probabilities are small here
also. In summary, if the data does not agree with the
assumption that rare words have increased probability
in regulatory regions, the method still does well at
detecting regulatory regions (except for shorter ones)
but won’t do as well at finding and adjusting for
nonpredictive words.

Also consider what happens whenu0 and u1 get
closer. The same four scenarios are used and there are
five medium frequency nonpredictive words withcj1

5 wj ln(1/wj). First, consideru0 5 0.25 and u1

5 0.75. The results obtained here are very similar to
the results presented in Figure 1 and Table I. Also,
consideru0 5 0.4 andu1 5 0.6. The results obtained

here are very similar to the results presented in Figure
2 and Table II. So, unlessu0 and u1 are very close
together, the method does well at both detecting reg-
ulatory regions and finding and adjusting for nonpre-
dictive words. If they are very close together, it still
does well at detecting regulatory regions.

EXAMPLES

Three examples are considered. The regulatory re-
gions are known for the first two examples but not for
the third. For each example, the diagnostic plots
showed that a run length ofN 5 50,000sufficed for
convergence. First, the predictions made by the model
for two datasets corresponding to sequences that con-
tain known regulatory sequences are examined. Sub-
sequently, a human genomic DNA whose regulatory
sequences have not been experimentally defined is
analyzed.

FIGURE 2 Posterior probability of a regulatory region for data generated without the assumption
that rare words have increased probability in regulatory regions and withu0 5 0.1, u1 5 0.9, and
five medium frequency nonpredictive words. (a) One regulatory region of length 300 base pairs
every 6000 base pairs; (b) one regulatory region of length 120 base pairs every 6000 base pairs; (c)
one regulatory region of length 600 base pairs every 6000 base pairs; (d) five regulatory regions of
length 300 in the first 6000 base pairs and none in the rest of the sequence.
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The first dataset is Moloney Murine Sarcoma virus
(Mo-MuSV). The regulatory signals for this virus are
contained in the long terminal repeats at the two ends
of the sequence. Two regulatory regions (probabilities
approximately one) are predicted by the model—see
Figure 3(a). These correspond to the two long termi-
nal repeats. There is a smaller peak (probability ap-
proximately 0.25) around 1820 base pairs. In sum-
mary, there are two regulatory regions in this se-
quence and both are clearly detected. There is one
other small peak, which does not correspond to a
regulatory region.

The second dataset is an artificial construct called
pLNCX. This construct is selected as a prototype of a
set of vectors designed by Miller and Rosman13 for

gene transfer experiments. These vectors are mosaic
in structure. They include regulatory segments de-
rived from viral genomes and bacterial-derived se-
quences with desired biological properties. This data-
set is useful because it shows that the model can find
regulatory regions, regardless of their location (that is,
they do not have to be close to the transcription
initiation site). The sequence selected for analysis
(pLNCX) contains 6620 base pairs: position 145–733
corresponds to the Mo-MuSV 59 long terminal repeat,
3666–4259 to the Moloney murine leukemia virus
(Mo-MuLV) 39 long terminal repeat, and 2800–3617
to a regulatory segment (immediate early promoter)
from human cytomegalovirus (CMV). The prediction
for this sequence is shown in Figure 3(b). The regu-

Table II The Posterior Probability that a Word is Predictive for Data Generated Without the Assumption that
Rare Words Have Increased Probability in Regulatory Regionsa

Word PWP Word PWP Word PWP Word PWP

1 — 11 .172 (4) 21 1.000 (0) 31 .996 (1)
2 — 12 .038 (2) 22 .995 (1) 32 1.000 (0)
3 — 13 .499 (8) 23 .090 (3) 33 .999 (0)
4 .853 (4) 14 .053 (3) 24 .976 (2) 34 1.000 (0)
5 — 15 .068 (4) 25 .934 (3) 35 1.000 (0)
6 — 16 .743 (16) 26 1.000 (0) 36 .929 (5)
7 — 17 .328 (23) 27 .776 (5) 37 1.000 (0)
8 — 18 .505 (20) 28 .126 (3) 38 1.000 (0)
9 .348 (6) 19 .998 (0) 29 .998 (1) 39 1.000 (0)

10 — 20 .985 (3) 30 .674 (5) 40 1.000 (0)

a u0 5 0.1 andu1 5 0.9. Words 1–10 are low frequency, words 11–30 are medium frequency, and words 31–40 are high frequency. Words
11–15 are nonpredictive. PWP is the posterior probability that a word is predictive. Words 1–3, 5–8, and 10 did not occur in this simulation.
Values in parentheses multiplied by 1023 are the standard errors of the posterior probabilities.

FIGURE 3 Posterior probability of a regulatory region for two DNA sequences. (a) Mo-MuSV
DNA (GenBank accession no. J02266); (b) pLNCX DNA (GenBank accession no. M28247).
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latory regions corresponding to the Mo-MuSV and
Mo-MuLV viruses are clearly detected (probabilities
approximately one). The regulatory segment derived
from CMV is seen as a smaller peak (probability
approximately 0.39) at around 2970 base pairs. In
summary, there are three regulatory regions in this
sequence and two of these are clearly found. The third
regulatory region is also detected but with consider-
ably lower posterior probability.

As an example of human genomic DNA, the nu-
cleotide sequence of HSG6PDGEN is analyzed. This
locus has previously been sequenced to examine the
molecular basis of predisposition to hemolytic anemia
and how this predisposition can provide partial pro-
tection against malarial infection.14 This locus in-
cludes 52,173 base pairs. The locus contains two
genes: G6PD and 2-19. Each gene is defined by
transcription initiation sites, the protein coding re-
gions of the genes and the corresponding intervening
sequences. Note that the regulatory regions of this
locus have not been reported. The distribution of the
words in the catalogue that occur in HSG6PDGEN
DNA is given in Figure 4. The name of each word and
its corresponding sequence are given with the distri-
bution. In the analysis, the site for GCF/TCF9 (which
is listed in Figure 4) is not used, as there are clusters
of occurrences of this word in some sequences, and
these clusters obscure the predictions made by the
model.

The model predicts five probable regulatory re-
gions in the HSG6PDGEN locus (Figure 5). The first
region precedes the transcription initiation site and
includes exon 1 in the G6PD gene. The second reg-
ulatory region is in the immediate upstream of the
transcription initiation site of the 2-19 gene. Both of
these regions have probabilities approximately one.
The other three probable regions have smaller prob-
abilities and occur in the 2-19 gene. The first of these
is contained in intron 2 and the second is contained in
intron 3. The third region begins in intron 3 and
extends to include exon 4, intron 4, exon 5 and part of
intron 5 of the 2-19 gene. Note that these two exons
are relatively short (124 and 59 base pairs, respective-
ly). Currently, it is not known whether regulatory
regions can extend into exons. Regardless of this
possibility, the model implicates part of intron 3,

FIGURE 4 Distribution of words in HSG6PDGEN DNA (GenBank accession no. X55448 and
no. Z29527). The words are shown on separate lines that define the DNA sequence. The names of
the words are on the left and the corresponding sequences are provided on the right. The ambiguity
codes in the sequences follow the standard notations: Y5 T/C; R 5 A/G; W 5 A/T; S 5 G/C; K
5 G/T; M 5 A/C; B 5 C/G/T; D 5 A/G/T; H 5 A/C/T; V 5 A/C/G; N 5 A/G/C/T.

FIGURE 5 Posterior probability of a regulatory region
for HSG6PDGEN DNA (GenBank accession no. X55448
and no. Z29527).
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intron 4, and part of intron 5, in functioning as regu-
latory segments. This prediction appears intriguing
since regulatory regions localized in intronic regions
are difficult to identify directly by experimental strat-
egies. Thus, the predictions made by the model locate
segments that can be readily tested by experimental
biologists.

DISCUSSION

The results of the simulation study show that the
method works well. It detects the regulatory regions
and the nonpredictive words. It is particularly good at
finding and adjusting for the more high frequency
nonpredictive words. When the data deviates from the
assumptions, the regulatory regions are still detected,
unless they are very short. For example, regulatory
regions of length 120 base pairs are not detected. The
method also detects the regulatory regions if the prob-
ability that any of the words occur in a regulatory
region gets close to this probability in a nonregulatory
region. The method is applied to DNA sequences,
some of which contain known regulatory regions. It
correctly identifies the known regulatory regions.

Other methods of finding regulatory regions have
concentrated on finding promoters. For example, Pre-
stridge’s approach2 relies on the TATA element lo-
calized in basal promoters and hence it might only be
suitable for locating a subset of regulatory regions.
Kondrakhin et al.4 also focus on promoters. The
Bayesian method described here can also find locus
control regions and enhancers.

This method also differs from those of Prestridge
and Kondrakhin et al. in that it looks for clusters of
words, not at how similar word occurrence is to a
promoter sample. It gives a probability distribution
for the location of regulatory regions, and for a word
being a good predictor in a particular dataset. It also
has the advantage of avoiding overprediction of reg-
ulatory regions because of the way the catalogue is

obtained. However, it does tend to underpredict reg-
ulatory regions. This should become less of a problem
as more experimental data becomes available to up-
date the catalogue. Future work on this method will
include combining the method with methods that
work well at locating basal promoters and looking at
ways of speeding up the algorithm.

The software to implement the method is available
from the author upon request.
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