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Abstract A goa of the human genone projed isto determire the entire sequene of DNA (3 X 10°
bas pairs) found in chromosomesThe massie amouns of data producel by this projed require
interpretation A Bayesia modé is developd for locating regulatory regions in a DNA sequence.
Regulatoy regiors are areas of DNA to which specifc proteins bind and contrd whethe or not a
gereis transcribel to produce template for protein synthesisEach human cel contairs the same
DNA sequenceThus the particular function of differert cells is determine by the genes that are
transcribed in that cell. A Hidden Markov chain is usel to modé whethe a smal intervd of the
DNA isin aregulatory region or not This can be regarded as a changepoibh problem whete the
changepoirg are the start of a regulatory or nonregulatoy region The data consiss of protein-
binding elementswhich are shott subsequencesr “words,” in the DNA sequenceAlthoud these
words can occu anywhee in the sequencea larger numbe are expectd in regulatoly regions.
Therefore regulatoly regiors are detecte by locating clusteis of words For a particular DNA
sequencethe modé automaticaly selecs those words that beg predid regiors of interest Markov
chain Monte Carlo method are usal to explore the posteria distribution of the Hidden Markov
chain The modé is testal by mears of simulations and applied to severa DNA sequences.
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INTRODUCTION

The problem of detectirg regulatoy regiors in the
genone is considered Evely cel in an individual
contairs the sarme DNA. However the differert cells
hawe very differernt functions For example blood
cells produe different proteirs than liver cells. Reg-
ulatory regiors are the contrd regiors tha switch
gene on and off, determinirg what proteirs are pro-
ducal by a cell.

DNA consiss of a sequene of chemicé structures
(nucleotides)represente by the letters A, C, G, and
T. It occus naturally as adoubk helix, consistirg of
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two strandswhere A pairswith T and G pairs with C.
Becaus of this complementaritythe seconl strand
may be considerd to be redundantand the DNA may
be representg by a single strard running in one
direction known as the “5’ to 3’ ” direction Regula-
tory proteirs bind to the DNA, causimg genes to be
switched on or off.

Regulatoy regiors represehthe DNA segments
tha contribut to the contrd of gere expressionReg-
ulation is avery complex proces involving proteins
that bind to specift contrd elemens in the DNA. In
addition contrd involves various types of regulatory
regions Consider for example the protein encoding
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genes. These genes are transcribed by RNA polymer-not suitable for statistical work. The problems are
ase Il. The initiation of transcription is controlled by extensive, including redundancy. In addition, TFD
a DNA segment (basal promoter), which is in the includes a concoction of sequences: from alternating
immediate upstream of the transcription initiation site. purine (R= A or G) pyrimidine (Y= T or C) found
Some basal promoters contain a sequence known as an Z-DNA, to binding sites used for transcription by
TATA element but there are many genes whose con- RNA polymerase lll. The problem here is that RY
trol does not require this sequence (see, for example, repeats represent a structural motif, and not necessar-
Pugh and Tjiaf). A second regulatory region (prox- ily a specific control element in DNA. Control sites
imal promoter) is often present in the immediate up- for RNA polymerase Il are also not relevant for
stream of the basal sequence. The genome also in-regulation of transcription of protein-encoding genes
cludes regulatory segments that are found far up- since these genes are exclusively transcribed by RNA
stream or far downstream of a gene. These segmentspolymerase Il. To resolve the problem of redundancy,
may include regions known as locus control regions. Prestridgé extracted only TFD site numbers rather
Some regulatory regions occur within a gene, often in than transcription factor name. However, a later study
noncoding sequences known as introns. These regu-noted that this approach does not resolve the problem
latory regions may include segments that are known of redundancy. In addition, sequences that are ex-
as transcriptional enhancers. Thus, how to locate reg-tracted from TFD do not necessarily define specific
ulatory regions in DNA is a complex problem. control elements (words) in DNA.

Most previous work has concentrated on trying to To avoid these problems, Bina (unpublished data)
locate promoters. Prestridgeuses the density of compiled a different catalogue, and this is the one
words computed in promoter and nonpromoter re- used in the method described here. A control element
gions for primates to come up with a promoter rec- is defined as a binding site for specific or related
ognition profile for a sequence of interest. This is transcription factors for genes transcribed by RNA
combined with the TATA box method of BuchHeio polymerase Il (see, for example, Crowley, Roeder,
locate promoters in the sequence. Kondrakhin ét al. and Bind). Experimental data have shown that the
compute a measure of similarity between the se- control elements are usually short (5-12 base pairs).
quence of interest and a sample of 472 promoters. If Somewhat longer elements provide sites for proteins
this measure is greater than a threshold value, it that have more than one DNA binding domain (i.e.,
suggests a potential promoter. the PAX family). Note that TFD includes a large

The focus of the studies described here is on the number of relatively long sequences (see for example,
regulatory regions that function through interactions Figure 3 in the article by Prestridge These se-
with proteins that bind to DNA sequences known as quences do not define a specific word. They often
control elements. These elements occur in regions thatrepresent regions protected in DNase | footprinting
could correspond to proximal promoters, locus con- experiments. These footprints are often longer than
trol regions, and enhancers. The model presented inthe actual size of a site and in some cases they may
this report does not address how to locate basal pro-also include more than one protein-binding element.
moters because these sequences are considered to be a To resolve the general problem of redundancy,
different type of regulatory region. The piece of the when possible, the control elements are defined and
DNA to which the regulatory proteins bind is called a classified according to the structure of the DNA bind-
protein binding element. It consists of a short (5-20 ing domain of the protein¥In some cases, a consen-
base pairs) series of nucleotidesyard, in the DNA, sus core is defined to represent the binding site of
e.g., AGAACA. These words occur frequently in the proteins that interact with related sequences. Often,
genome but are expected to occur more often in these proteins correspond to products of evolutionar-
regulatory regions. Hence, the idea is to look for ily related genes, and thus the similarity of their
clusters of words in the DNA. This is done by means binding sites may contribute to the redundancy prob-
of a Hidden Markov model. The parameters of the lem. In addition, the entries of the catalogue are
model are estimated using Markov chain Monte Carlo closely checked against the actual experimental data
(MCMCQ). for accuracy and update. Experimental data represent

To locate the regulatory regions, a finite collection the results of published work including electro-
of words or catalogue is needed. In studies of regu- phoretic mobility-shift assays, methylation interfer-
latory elements, researchers often use the transcrip-ence assays, and mutational analysis. Updating is also
tion factor database (TFD) constructed by Ghdsh. needed since new data often correct and improve
While this database might be a good resource for published work. In this context, a database is never as
finding potential protein binding sites in DNA, it is  definitive as it should be, and thus it should be con-
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1,if a word of thejth type occurs in théth interval
0,otherwise

sidered as an evolving process. However, for a given X; =
set of analyses, and in particular those of this paper,
the catalogue does not change. {

This paper describes the statistical aspects of the
method for finding regulatory regions in a DNA se-
guence. Applications of the method may be found in Note that there is a possibility that a word could occur
Crowley, Roeder, and BirfaThe layout of the paper  twice in an interval. This does not happen often and
is as follows. First, the Hidden Markov model and the by this definition is treated the same as if it had
model used for the distribution of the words are de- occurred once. As this can only happen with the
scribed. The priors used are also discussed. Imple-shorter words, which are more common, it has little
mentation of the MCMC algorithm is next described.
This is followed by a simulation study and then the
method is applied to some DNA sequences. Finally,
there is a discussion of the method.

THE MODEL

The DNA sequence of interest is divided iftinter-
vals of lengthA, whereA is the length of the longest
word that occurs in the sequence. A word is in an
interval if its center (which is defined to be the middle
nucleotide if the word has an odd number of nucleo-
tides, and the upper middle nucleotide if the word has
an even number of nucleotides) is in the interval.
Hence, if a word overlaps two intervals, it is chosen to
be in only one of the intervals, depending on where its
center lies. As the model is looking for clusters of
words, it makes little difference which of the two
intervals the word is in.

LetY; represent the state at thté interval, withY;

1 if i is in a regulatory region and; 0
otherwise. Assume that,;, Y,, ..., Y, is a Hidden
Markov chain, with transition probabilities

Pr(Yi+l = S|YI = r) = Qrsa re {011}1 s&e {011}
with

1-A A

Q:[T 1—7]

The lengths of regulatory and nonregulatory regions
have a Geometric distribution with expected values
1/m and 1A, respectively. The Hidden Markov model
gives a reasonable approximation to the behaviour of
the DNA. As will be show later, it works well for this
problem. It is already a computationally intensive
model. The model works well enough that a further
increase in computational burden from a more com-
plicated model seems unjustified.

The data consist of thd words in the DNA se-
quence under consideration. Let

effect on the results.

The model is first described, assuming that all
words in the catalogue are good predictors of being in
a regulatory region for every dataset. Lét be the
probability that any of the words occurs wh¥n=r.

It is assumed that words occur more frequently in
regulatory regions than in nonregulatory regions so
that 6, < 60,. Some words occur more often than
others. Given that a word occurs, kgt be the prob-
ability that it is of typej whenY, = r. Let

X;|Y; = r ~ Bernoulli (c; - 6,) 1)

wherei = 1,...,1,j=1,...,J, andr = 0, 1.
The X;;’s are assumed to be conditionally indepen-
dent, given they;’s.

Note that if a word occurs in an interval, it can
occur atA different positions. Some of these positions
may not allow the other words to occur in the interval,
thus violating the assumption of conditional indepen-
dence above. However, the more restrictive words are
the longer ones and they occur less often. So, the
assumption of conditional independence should hold
approximately.

Thec;,’s are treated as constants. let= X; X;;
be the number of words of tygeand letw; = n;,/X;

n;. be the relative proportion of words that are of type
j» 1 = 1,...,J. In nonregulatory regions, let;,

= w;. In regulatory regions, rare words are expected
to have increased probability. Sg,; needs to be
chosen so thatj,/c;, is a decreasing function of;.

To achieve this, take;; = w;In(1/w;). It would also

be possible to treat the,’s as parameters and esti-
mate them.

The priors for the parameters 7, 6,, and6, are
now described. Beta priors are put drand . In the
model, high prior probability is given to regulatory
regions of length 200—-600 base pairs occuring 0—4
times every 5000 base pairs, as typical regulatory
regions fall in this range. The prior parameters are
chosen to approximately achieve this. For example,
whenA is equal to 13 base pairs, a Beta(1.3,100) prior
is used forx and a Beta(5.5,100) prior is used forA
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uniform prior is put onf, and 6,, with the restriction Yic, Yieq - Y X, A, 7, 0g, 041, Z). This is done
0y < 6,. using an algorithm for hidden Markov models. This
In practice, it is not known which words in the algorithm is described in the context of DNA se-
catalogue are good predictors for a particular dataset. quences by Churchift and by Dupuis:? For conve-
The following approach automatically chooses the nience, some of the parameters are suppressed' Let

words that best predict for a particular sequence. = (Xy, X,, ..., Xj). The hidden Markov chain al-
Words that predict well are called “predictive” words. gorithm gives m(y;|X' ™ %), #(yi|X") and m(y;|X).
Let Hence,
_[1, ifthejth word is predictive TVilYe - oy Yien Yiews - -« Vi X)
i 0, ifthejth word is nonpredictive

ilYi—1 Yi+1 X
Equation (1) is replaced by T(YilYi-1 Vi X)

Bernoullic, - 6,), z=1 _ (Y X) (yi-alyi, X)m(Yicalyi, X)
XilYi=r, 7~ { Bernoulli(cjjo- 0y), z; =0 (i A X)m(Yisal Vi1 X)

That iS, for nonpredictive WOI’dS, regu|at0ry regions The first term in the numerator and the denominator
are treated the same as nonregulatory regionszLet ~are given directly by the hidden Markov chain algo-
have a Bernoulli(0.5) prior distribution. This method rithm, and the other conditional distributions are eas-
both adjusts for the nonpredictive words and gives us iy computed. For example,

information about which words are good predictors

for a particular sequence. %) = a(Yi o X m(yilyi-o)
m(Yialys, X) = (y [ X9
IMPLEMENTATION Step 2.Suppose that the prior foris Beta@,, by)

and that the prior forr is Beta@,, b;). Let S,

Let Xi = (Xiy, Xiz, .-+, Xj5)" and letX = (X, =2-H{Yi=r Yy, =1, r=01t=0,1

)EZ(Z 'Z’X')' AISZO’) Ie';r:(e :ogt(é,ric\)(rz}:).rc.)l.)ét\)(illi)tyatnhda% Then the posterior distribution of is approximately
= 1y &2y = - - 1 &) i + + I 1 -
~1i=1,.  ladthaz =1,j=1,...,3J Betaf, + Sp1, by + Syp) and the posterior distri

i i i +
need to be estimated. This is done using Gibbs sam- S_Utg)lrll) of 7 is approximately Beta(, S0 b

. . . . 0
gltmgt a?r? the M(.atml)pOI;‘.S_H? St'?%sl Algorlth?trJr. . Step 3.The posterior distribution o, and 6,,
art wi sogneolm(l)a %S wgna% of the parameters in (0, 6]Y, X, Z), 0 = 6, < 6, = 1, needs to be
the model:Y®, A", 7, 6, 67, Z°. First, the general _ _
) ; ) sampled from. Leb, = log(0,/(1 — 6,)),r = 0,1.
steps in the Markov chain Monte Carlo algorithm are
. . . Then,
described and then more details are given below. For

k=1,...,N:
77(80, 81|Y, X, Z) o 770(80|Y, X, Z)

1. SampleY®|Yk, ... YK YRCE L Y X, X i (84Y, X, Z), =0 < §,< 8, < ©
)\"’1,_ TH_, 052, o';*_l, ZKtfori=1,...,
I, using Gibbs sampling. _ Metropolis Hastings is performed o8y and 8, in-

2. Sample/\:(‘, TE|Y'I((ff0m tkh9|f posteriors. stead of orf, and ;. The candidate generating den-

3. Sam_ple@o, 051", X, Z ~1 using Metropolis— sities arego(8,) = N(8,, (,(2)) andg,(8,) = N(&,,
Hastings. a?), 8, > §,. The probability of a move from to b

4. SampleZ|Y¥, X, 0§, 65, forj = 1,...,J, is

from their posteriors.

aa, b
Ignoring the firsing runs, the posterior probability that (&b
Y, = 1 is estimated by 1§ — o)l ,,Y< and min<1 m(blY, X, Z) Z)) if m(alY, X, Z) >0
thatz, = 1 by 1/(N — ng)=_,, . ,ZK. = '@y, X, Z) R
1 otherwise
Step 1.The posterior distribution of eachj needs
to be computed. This is denoted by(Y,|Y,, ..., Forr = 0, 1, start withd?. Thekth step is
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e Generated? from g,(8,) andU, from U(0,1) scenario considered is one that is very probable under

o Let the prior. There is one regulatory region every 6000

L [oF iU =a(57 8 base pairs. Each of the (five) regulatory regions is of
& = {35*1 otherwise length 300 base pairs. The method correctly detected

the five regulatory regions (the probabilities were all

Transform to ge#*. close to one)—see Figure 1(a). The posterior proba-

bility that a word is predictive, for each of the 40

Step 4. RZ, = r|Y, X, 65, 6,), = 0,1 needs to words, is contained in Table I.' The noppredictiye
be computed. This is straightforward. words tend to have a low probability of being predic-
Run lengths ofN equal to 10,000 or 50,000 are tive, while the predictive words have a high probabil-
used, and diagnostic plots are used to assess converly Of being predictive. The probability of being pre-

gence. Fob, ands,, 85 ands¥ are plotted againg, dictive is higher for the medium and high frequency
fork =1, ...,N. To check convergence for the's, words than for the low frequency vyords. Notg .that the
1/1003 %290 vk is plotted againsk. This is done for standard errors for these posterior probabilities are
w = 250j wherej = 0, 1, 2, ..., int{/250). very small for all of the words.

Next, the effect of varying the length of the regu-
latory regions is considered. The above scenario is
changed by considering regulatory regions of length
120 and 600 base pairs, instead of 300 base pairs. The
) ) ) ) shorter and longer regulatory regions are clearly de-
A simulation study is performed to examine how well  {acted—see Figure 1(b) and 1(c), respectively. Also
the metr_]oc_i picks out regulatory regions and detgcts looked at is what happens when the number of regu-
nonpredictive words. In each of the four scenarios latory regions per 6000 base pairs is increased (and
considered, the sequence is of length approximately 550 this number differs across the sequence). In this
30,000 base pairs. There are 40 words, of which 5 are scenario, there were five regulatory regions in the first
nonpredictive. The 40 words consist of 10 low fre- 600 base pairs and none in the rest of the sequence.
quency words, 20 medium frequency words and 10 The method clearly picks out these five regulatory
high frequency words. Low, medium, and high fre- yagions—see Figure 1(d). Note that the probability
quency mean that approximately 5, 50, and 200 of that 5 word is predictive follows the same pattern for

these words, respectively, would be expected in the {he |ast three scenarios as it does for the first.
sequence. This is similar to some of the DNA se-

quences considered in terms of the number of low,
medium, and high frequency words seen. For each
scenario, the posterior probability that each interval is

aregulatory region is plotted against its location inthe The effect of varying the types of nonpredictive words
sequence. It would be optimal if this probability is ynder the four scenarios above is examined. The pos-
close to one in a regulatory region and close to zero in tarior probability of a regulatory region for the low
a nonregulatory r_egion. Th_e posterior probability that frequency and high frequency words for each of the
a word is predictive, and its standard error, are also foyr scenarios looks almost identical to that for the
computed, for each of_ the 40 words. The standard medium frequency words given in Figure 1. However,
errors are computed using the method of batch means.ihere js a difference in the posterior probability that a
This was done for batchlengths of 100, 150, 200, 300, word is predictive. For nonpredictive words, this
and 600. For each word, the standard error associatedyrobability decreases and for predictive words, this
with the smallest batchlength that gave a serial cor- propability increases as the nonpredictive words occur
relation between—0.1 and 0.1 is given. For each ity higher frequency. So the method is better at
scenario, the results for one simulation are shown. finding and adjusting for the higher frequency non-

Other simulations follow a similar pattern. The diag- predictive words than for the low frequency ones.
nostic plots showed that a run lengthdf= 10,000

was sufficient for convergence in the simulations.

SIMULATIONS

Nonpredictive Words

Robustness and Sensitivity

Data Generated from the Exact Model Now consider what happens when the data is gener-

Here, the five nonpredictive words are medium fre- ated without the assumption that rare words have
quency words and, = 0.1 andf, = 0.9. The first increased probability in regulatory regions. Lgt
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FIGURE 1 Posterior probability of a regulatory region for data generated from the modebyyith

Nucleotide position

(@

= 0.1, 6, = 0.9, and five medium frequency nonpredictive words. (a) One regulatory region of

length 300 base pairs every 6000 base pairs; (b) one regulatory region of length 120 base pairs every
6000 base pairs; (c) one regulatory region of length 600 base pairs every 6000 base pairs; (d) five
regulatory regions of length 300 in the first 6000 base pairs and none in the rest of the sequence.

= w, [instead ofw;In(1/w;)]. The same four scenar-

The posterior probabilities of a regulatory region

ios are used and there are five medium frequency are given in Figure 2. This looks very similar to

nonpredictive words witl, = 0.1 and6, = 0.9.

Figure 1, except for the case of short regulatory re-

Table | The Posterior Probability that a Word is Predictive for Data Generated from the Model®

Word PWP Word PWP Word PWP Word PWP
1 .997 (1) 11 .005 (1) 21 1.000 (0) 31 1.000 (0)
2 — 12 .012 (1) 22 1.000 (0) 32 1.000 (0)
3 .967 (2) 13 .045 (2) 23 1.000 (0) 33 1.000 (0)
4 1.000 (0) 14 .023 (1) 24 .998 (1) 34 1.000 (0)
5 — 15 .140 (4) 25 1.000 (0) 35 1.000 (0)
6 .945 (2) 16 1.000 (0) 26 1.000 (0) 36 1.000 (0)
7 1992 (1) 17 1.000 (0) 27 1.000 (0) 37 1.000 (0)
8 — 18 1.000 (0) 28 1.000 (0) 38 1.000 (0)
9 — 19 1.000 (0) 29 1.000 (0) 39 1.000 (0)
10 .229 (4) 20 1.000 (0) 30 1.000 (0) 40 1.000 (0)

26, = 0.1 andp, = 0.9. Words 1-10 are low frequency, words 11-30 are medium frequency, and words 31-40 are high frequency. Words
11-15 are nonpredictive. PWP is the posterior probability that a word is predictive. Words 2, 5, 8, and 9 did not occur in this simulation. Values

in parentheses multiplied by 18 are the standard errors of the posterior probabilities.
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FIGURE 2 Posterior probability of a regulatory region for data generated without the assumption
that rare words have increased probability in regulatory regions andéyith 0.1, 6, = 0.9, and

five medium frequency nonpredictive words. (a) One regulatory region of length 300 base pairs
every 6000 base pairs; (b) one regulatory region of length 120 base pairs every 6000 base pairs; (c)
one regulatory region of length 600 base pairs every 6000 base pairs; (d) five regulatory regions of
length 300 in the first 6000 base pairs and none in the rest of the sequence.

gions. Here, one of the regulatory regions is missed here are very similar to the results presented in Figure

completely and two of the others have probabilities 2 and Table Il. So, unlesg, and 0, are very close

closer to 0.5 than to one. There is also a difference in together, the method does well at both detecting reg-

the posterior probabilities that a word is predictive— ulatory regions and finding and adjusting for nonpre-

see Table II. These are lower for the predictive words dictive words. If they are very close together, it still

and higher for the nonpredictive words. The standard does well at detecting regulatory regions.

errors for the posterior probabilities are small here

also. In summary, if the data does not agree with the

assumption that rare words have increased probability EXAMPLES

in regulatory regions, the method still does well at

detecting regulatory regions (except for shorter ones) Three examples are considered. The regulatory re-

but won't do as well at finding and adjusting for gions are known for the first two examples but not for

nonpredictive words. the third. For each example, the diagnostic plots
Also consider what happens wheég and 0, get showed that a run length &f = 50,000sufficed for

closer. The same four scenarios are used and there areonvergence. First, the predictions made by the model

five medium frequency nonpredictive words wih for two datasets corresponding to sequences that con-

= wjn(1l/w;). First, considerf, = 0.25 and 6, tain known regulatory sequences are examined. Sub-

= 0.75. The results obtained here are very similar to sequently, a human genomic DNA whose regulatory

the results presented in Figure 1 and Table I. Also, sequences have not been experimentally defined is

considerf, = 0.4 andf, = 0.6. The results obtained analyzed.
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Table Il The Posterior Probability that a Word is Predictive for Data Generated Without the Assumption that
Rare Words Have Increased Probability in Regulatory Region$

Word PWP Word PWP Word PWP Word PWP
1 — 11 172 (4) 21 1.000 (0) 31 .996 (1)
2 — 12 .038(2) 22 .995 (1) 32 1.000 (0)
3 — 13 499 (8) 23 .090 (3) 33 .999 (0)
4 .853 (4) 14 .053 (3) 24 .976 (2) 34 1.000 (0)
5 — 15 .068 (4) 25 .934 (3) 35 1.000 (0)
6 — 16 .743 (16) 26 1.000 (0) 36 .929 (5)
7 — 17 .328 (23) 27 776 (5) 37 1.000 (0)
8 — 18 505 (20) 28 126 (3) 38 1.000 (0)
9 .348 (6) 19 .998 (0) 29 .998 (1) 39 1.000 (0)
10 — 20 .985 (3) 30 .674 (5) 40 1.000 (0)

26, = 0.1 andf, = 0.9. Words 1-10 are low frequency, words 11-30 are medium frequency, and words 31-40 are high frequency. Words
11-15 are nonpredictive. PWP is the posterior probability that a word is predictive. Words 1-3, 5—-8, and 10 did not occur in this simulation.
Values in parentheses multiplied by 10are the standard errors of the posterior probabilities.

The first dataset is Moloney Murine Sarcoma virus gene transfer experiments. These vectors are mosaic
(Mo-MuSV). The regulatory signals for this virus are in structure. They include regulatory segments de-
contained in the long terminal repeats at the two ends rived from viral genomes and bacterial-derived se-
of the sequence. Two regulatory regions (probabilities quences with desired biological properties. This data-
approximately one) are predicted by the model—see set is useful because it shows that the model can find
Figure 3(a). These correspond to the two long termi- regulatory regions, regardless of their location (that is,
nal repeats. There is a smaller peak (probability ap- they do not have to be close to the transcription
proximately 0.25) around 1820 base pairs. In sum- initiation site). The sequence selected for analysis
mary, there are two regulatory regions in this se- (pLNCX) contains 6620 base pairs: position 145—-733
quence and both are clearly detected. There is onecorresponds to the Mo-MuSV fong terminal repeat,
other small peak, which does not correspond to a 3666—4259 to the Moloney murine leukemia virus
regulatory region. (Mo-MuLV) 3’ long terminal repeat, and 2800—-3617

The second dataset is an artificial construct called to a regulatory segment (immediate early promoter)
pLNCX. This construct is selected as a prototype of a from human cytomegalovirus (CMV). The prediction
set of vectors designed by Miller and Rosnafor for this sequence is shown in Figure 3(b). The regu-

Probability
00 04 08

”.. A y, . A

1000 2000 3000 4000 5000
Nucleotide position

(a)

Probability
00 04 08

_NA

1000 2000 3000 4000 5000 6000
Nucleotide position

{b)

FIGURE 3 Posterior probability of a regulatory region for two DNA sequences. (a) Mo-MuSV
DNA (GenBank accession no. J02266); (b) pLNCX DNA (GenBank accession no. M28247).
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FIGURE 4 Distribution of words in HSGE6PDGEN DNA (GenBank accession no. X55448 and

no. Z29527). The words are shown on separate lines that define the DNA sequence. The names of
the words are on the left and the corresponding sequences are provided on the right. The ambiguity
codes in the sequences follow the standard notations: ¥C; R = A/G; W = A/T; S = G/C; K

= GIT; M = AIC; B = C/GIT; D= AIGIT; H = AICIT; V = AICI/G; N = AIGICIT.

latory regions corresponding to the Mo-MuSV and The model predicts five probable regulatory re-
Mo-MuLV viruses are clearly detected (probabilities gions in the HSG6PDGEN locus (Figure 5). The first
approximately one). The regulatory segment derived region precedes the transcription initiation site and
from CMV is seen as a smaller peak (probability includes exon 1 in the G6PD gene. The second reg-
approximately 0.39) at around 2970 base pairs. In ulatory region is in the immediate upstream of the
summary, there are three regulatory regions in this transcription initiation site of the 2-19 gene. Both of
sequence and two of these are clearly found. The third these regions have probabilities approximately one.
regulatory region is also detected but with consider- The other three probable regions have smaller prob-
ably lower posterior probability. abilities and occur in the 2-19 gene. The first of these
As an example of human genomic DNA, the nu- is contained in intron 2 and the second is contained in
cleotide sequence of HSG6PDGEN is analyzed. This intron 3. The third region begins in intron 3 and
locus has previously been sequenced to examine theextends to include exon 4, intron 4, exon 5 and part of
molecular basis of predisposition to hemolytic anemia intron 5 of the 2-19 gene. Note that these two exons
and how this predisposition can provide partial pro- are relatively short (124 and 59 base pairs, respective-
tection against malarial infectiorf. This locus in- ly). Currently, it is not known whether regulatory
cludes 52,173 base pairs. The locus contains two regions can extend into exons. Regardless of this
genes: G6PD and 2-19. Each gene is defined by possibility, the model implicates part of intron 3,
transcription initiation sites, the protein coding re-
gions of the genes and the corresponding intervening
sequences. Note that the regulatory regions of this
locus have not been reported. The distribution of the
words in the catalogue that occur in HSG6PDGEN
DNA is given in Figure 4. The name of each word and
its corresponding sequence are given with the distri-
bution. In the analysis, the site for GCF/TCF9 (which 10000 20000 30000 40000 50000
is listed in Figure 4) is not used, as there are clusters Nucleotide pasition
of occurrences of this word in some sequences, and FIGURE 5 Posterior probability of a regulatory region
these clusters obscure the predictions made by thefor HSGEBPDGEN DNA (GenBank accession no. X55448
model. and no. Z29527).
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intron 4, and part of intron 5, in functioning as regu- obtained. However, it does tend to underpredict reg-
latory segments. This prediction appears intriguing ulatory regions. This should become less of a problem
since regulatory regions localized in intronic regions as more experimental data becomes available to up-
are difficult to identify directly by experimental strat- date the catalogue. Future work on this method will
egies. Thus, the predictions made by the model locate include combining the method with methods that
segments that can be readily tested by experimentalwork well at locating basal promoters and looking at
biologists. ways of speeding up the algorithm.
The software to implement the method is available

from the author upon request.
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