
New Thesis Vol.: 01 (1) 2004 

Invited Paper 

Towards a Biological Coding Theory Discipline 
Elebeoba E. May 

Computational Biology Department, Sandia National Laboratories, Albuquerque, NM 87185 USA 
e-mail: eemay@sandia.gov 
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error control encoding, the received sequence, the messenger RNA 
(mRNA) can be analysed using coding theory principles. This work 
explores potential parallels between engineering communication 
systems and the central dogma of genetics and presents a coding 
theory approach to modelling the process of protein translation 
initiation. The messenger RNA is viewed as a noisy encoded sequence 
and the ribosome as an error control decoder. Decoding models 
based on chemical and biological characteristics of the ribosome and 
the ribosome binding site of the mRNA are developed and results of 
applying the models to the Escherichia coli K-12 are presented. 
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Introduction 
The translation of the messenger 

RNA (mRNA) sequence into chains of 
protein-forming amino acids can be 
compared to the decoding of a received 
information sequence in an engineering 
communication system. In a 
communication system, coding 
techniques are used to compensate for 
errors that occur during transmission of 
information (Sweeney, 1991). Error 
control is accomplished by introducing 
redundancy into the original information 
sequence. Therefore, there are more 
symbols in the transmitted sequence than 
in the original sequence (Sweeney, 
1991). Redundancy naturally occurs 
within RNA and DNA sequences 
(Lewin, 1995). The existence of tandem 
repeats, and sequences such as the Shine-
Dalgarno sequence, the Pribnow box, 
and the TATA box, leads us to believe 
that cellular communication systems use 
some method of coding to recognize 
valid information regions within a 
nucleotide sequence and correct for 

“transmission” errors such as mutations. 
Genetic mutations occur when 
replication errors are missed by genetic 
proofreading mechanisms. Since 
mutations corrupt the original message, 
in a communication sense, mutations can 
be viewed as transmission errors. 

The goal of this work is to 
provide a basic introduction to ideas in 
coding theory and show how these ideas 
can be used to analyse genetic processes 
and sequences. The application of coding 
theory to genetic sequence analysis can 
provide new computational methods for 
modelling the regulatory aspects of 
translation. The first part of this paper 
provides an introduction and overview of 
coding theory, specifically the two main 
types of codes: block codes and 
convolutional codes. This is followed by 
a discussion of how genetic processes 
can be viewed from a coding theory 
perspective. References to text that 
provide a more in depth coverage of 
coding theory and other work on 
biological communication models are 
provided throughout. 
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Coding Theory: An 
Introduction 

The need for coding theory and its 
techniques stems from the need for error 
control mechanisms in a communication 
system. Error control mechanisms can be 
categorized as forward error correction 
and retransmission error control. 
Forward error correction assumes that 
errors will occur and provides a 
mechanism that when applied to the 
received message, is able to correct the 
errors. Retransmission error control 
techniques detect the errors in the 
received message and requests 
retransmission of the message (Sweeney, 
1991). The system in Figure 1 illustrates 
how error control coding (ECC) is 
incorporated into a typical engineering 
communication system (Sweeney, 1991). 
Digitised information is encoded by the 
channel encoder and prepared for 
transmission (modulation). It is then 
transmitted via a potentially noisy 
channel where the transmitted 
information may be corrupted in a 
random fashion. At the receiving end, the 
received message is prepared for 
decoding (demodulation) and then it is 
decoded by the channel decoder. The 
decoding process involves removal of 
errors introduced during transmission. 
The decoding mechanism can only cope 
with errors that do not exceed its error 
correction capability. The elements we 
will focus on in this system are the 
encoder, the channel, and the decoder. 

 

Figure 1: Communication 
system that incorporates coding. 

a) Error Correcting Codes 
The mathematics of coding is 

carried out in a finite field also referred 
to as a Galois field (Sweeney, 1991; 

Anderson & Mohan, 1991). A q-ary 
finite field GF(q) is a Galois field with q 
elements that consists of a finite set of 
symbols, a set of two operations, and the 
inverses of those operations. The 
operations and their inverses, when 
applied to the set of symbols, can only 
yield values within that set. The binary 
field GF(2) consists of: 

 
• Finite set of symbols: 0,1 
• Operations: modulo 2 addition (+) 

and modulo 2 multiplication (*) 
• Corresponding inverse operations 
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Figure 2: Encoder. 

i) The Encoder 
The encoder, represented in 

Figure 2, encodes the digitised 
information frame by frame. An input 
frame consists of a fixed number, k, of 
symbols that are presented to the 
encoder. The output frame, the frame to 
be transmitted, consists of n (also fixed) 
output symbols, where n is larger than k. 
Since the number of output symbols is 
greater than the number of input 
symbols, redundancy has been 
introduced (Sweeney, 1991). The coding 
rate, 

nkR /=

Information

 (1) 
 
is the ratio of the number of input 

symbols in a frame to the number of 
output symbols in a frame. The lower the 
coding rate, the greater the degree of 
redundancy (Sweeney, 1991). 

The encoder combines the k input 
symbols with n − k symbols usually 
based on a deterministic algorithm, 
although random encoding methods, as 
illustrated by Shannon (Shannon & 
Weaver, 1949; Anderson & Mohan, 
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1991), can be used. Encoding results in a 
mapping of input frames into a set of 
output frames known as codewords. 
There must be a codeword for every 
possible information sequence. For a 
q-ary alphabet, the encoder will produce 
qk codewords. As an example, for a 
binary code (q = 2) with k = 2, there are 
22 or four possible information 
sequences therefore four codewords. The 
set of qk codewords comprise the 
codebook. Because encoding adds 
redundant bits, hence n is greater than k, 
there are a number of n-bit sequences 
(exactly qn − qk such sequences) which 
are not codewords. This allows error 
detection and correction. If a transmitted 
n-bit sequence does not map to a 
codeword, we assume one or more bits 
have been corrupted. The decoding task 
is to find the most likely changes in a 
transmitted n-bit sequence that will result 
in a valid codeword. 

The type of output produced is 
determined by the number of input 
frames used in the encoding process. 
Block coding uses only the current input 
frame. Convolutional coding uses the 
current frame plus m previous input 
frames (Sweeney, 1991; Dholakia, 
1994). Error control codes can be 
referred to as (n, k) codes or (n, k, m) 
codes in the case of convolutional codes 
where m is the memory length (a more 
detailed discussion of encoder memory is 
presented in (c)). 

ii) Communication Channel 
The communication channel is the 

medium through which information is 
transmitted to the receiver. The channel 
can corrupt the transmitted message 
through attenuation, distortion, 
interference, and addition of noise. The 
way in which transmitted binary symbols 
(0 or 1) are corrupted depends on various 
characteristics of the communication 
channel (Sweeney, 1991). If the channel 
is a: 

 
• Memoryless Channel: The 

probability of binary symbol error is 
statistically independent of the error 
history of the preceding symbols. 

• Symmetric Channel: For binary 
symbols, 0 and 1, the probability of 
0 being received instead of 1, due to 
transmission errors, is the same as 

the probability of 1 being received 
instead of 0. 

• Additive White Gaussian Noise 
(AWGN) Channel: This is a 
memoryless channel which adds 
wide-band, normally distributed 
noise to the amplitude modulated 
transmitted signal. 

• Bursty Channel: There are periods 
of high symbol error rates separated 
by periods of low, or zero, symbol 
error rates. 

• Compound Channel: The errors are 
a mix of bursty errors and random 
errors. 

iii) Decoder 
The method of decoding is 

dependent on the method of encoding. 
The aim of a coding system is to attempt 
to detect and correct the most likely 
errors. The decoder receives a series of 
frames that, given no errors in the 
transmitted sequence, should be 
composed only of codewords. If the 
received sequence has been corrupted 
during transmission, there will be 
sequences which do not map uniquely to 
any codewords. This is used to detect the 
presence of errors. Different mechanisms 
are then used to decide what the original 
codeword was and thus correct the error. 
When the error rate exceeds the 
correction capacity of the code, two 
things can occur: 1) The decoder can 
detect the error but cannot find a unique 
solution and thus correct the error or, 2) 
The decoder cannot detect the error 
because the corruption has mapped one 
legal codeword into another legal 
codeword. Errors that exceed the error 
correcting capabilities of the code may 
not be handled correctly. 

b) Basics of Linear Block Codes 
A linear block code is a code 

defined such that the sum of any two 
codewords results in another valid 
codeword in the code book set. A more 
rigorous discussion on linear block codes 
can be found in most coding theory texts 
(Sweeney, 1991; Anderson & Mohan, 
1991; Lin & Costello, 1983). 

i) Encoding 
There are several ways to produce 

codewords from a k bit information 
sequence (Lin & Costello, 1983). One 
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method, systematic encoding, produces 
codewords which contain the k 
information bits at the beginning of the 
codeword. The information bits are then 
followed by n − k parity bits. All non-
systematic linear block codes can be 
reduced to an equivalent systematic code 
(Anderson & Mohan, 1991). The value 
of these n − k bits is determined by the 
encoding algorithm represented by the 
generator matrix G. The generator matrix 
is used to encode the k-bit information 

vector, u, and form the n-bit transmitted 
codeword vector, v. The relationship 
between u, v, and G is: 

 
uGv =

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

knkk

n

k

ggg

ggg
uuuv

L

MMMM

L

L

21

11211

21

[ ]nvvvv L21=

[ ]PIG k ;=

⎥
⎦

⎤
⎢
⎣

⎡
=

110
101

G

 (2) 
 
The generator matrix, G, is k by n, 

u is 1 by k, and v is 1 by n; this yields the 
following matrix representation of the 
above equation: 

 

 (3) 

 
where, 
 

 (4) 
 
The codeword, v, is produced by 

the modulo q (where q = 2 for binary 
sequences) addition of basis codewords 
(Sweeney, 1991). The basis codewords 
are the k linearly independent codewords 
which form the generator matrix. 
Linearly independent codewords are the 
set of k codewords that cannot be 
produced by linear combinations of two 
or more codewords in the codebook set. 

When the generator matrix is in 
systematic form, G is of the form: 

 
 (5) 

 
where Ik is the k by k identity 

matrix and P is a k by n − k matrix 
(Anderson & Mohan, 1991). Equation 6 
and Table 1 show the generator and 
corresponding data to parity mapping for 
a simple (3,2) linear block code. 

 

 (6) 

 
From Table 1 we note that the 

codebook set is SC = (000, 011, 101, 
110). 

 
 
 
 
 

 
u v = uG 

00 000 
01 011 
10 101 
11 110 

Table 1: Data to parity 
mapping for simple (3,2) linear block 
code. 

ii) Decoding 
Decoding involves two steps. 

First the decoder must check whether the 
sequence corresponds to a codeword. 
Second, if the decoder is an error 
correcting decoder, then it must identify 
the error pattern. There are various 
decoding methods. One method, 
minimum distance decoding, is a 
maximum likelihood approach based on 
comparative Hamming distance values 
between a received sequence and 
codewords in the codebook. The 
Hamming distance between two 
sequences, d(a, b) is the number of 
differences between sequence a and 
sequence b (Sweeney, 1991). For a 
received sequence r, the minimum 
distance, dmin of r is the minimum of 
d(r, Sc), where Sc is the set of all 
codewords in the codebook. In minimum 
distance decoding, we decode r to the 
codeword for which d(r, Sc) is the least. 
If the minimum distance computation 
results in the same distance value for 
more than one codeword, although an 
error is detected, it is not correctable 
because of the degeneracy of the 
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 mapping. Minimizing the distance is the 
optimum decoding approach for a 
channel in which symbol errors are 
independent (memoryless channel) 
(Sweeney, 1991). 

Another decoding technique, 
syndrome decoding, is based on the 
relationship between r the received 
sequence (a potentially noisy version of 
v) and the (n − k) by n parity-check 
matrix H. The H matrix is the generator 
for the dual code space with respect to 
the code space generated by G 
(Anderson & Mohan, 1991). The parity-
check matrix has the form: 
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 (13) 
 

 (7) 
 
where PT is the transpose of the P 

matrix of G (see Equation 5) and In − k is 
the n − k by n − k identity matrix 
(Anderson & Mohan, 1991). The 
relationship between H and G is: 

 
 (8) 

 
For every valid codeword, v, in 

the coding space of G: 
 

 (9) 
 
If we represent the n-symbol 

received vector, r, as r = v + e, where e 
represents the error vector introduced by 
the channel, we can define the syndrome 
of r as: 

 

From this simple illustration, we 
note that the non-zero s2 syndrome value 
accurately indicates the presence of an 
error in r2 while the zero s1 value 
indicates the absence of errors in the 
received r1 sequence. In later sections we 
theorize that this syndrome checking 
framework can be paralleled to the 
behaviour of various macromolecules, 
such as the ribosome, that operate on 
genetic messages. 
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Figure 3: A (2,1,2) 

convolutional encoder. 

 
 (10) 

 
The syndrome is the error pattern 

present in the received information 
sequence. In the absence of detectable 
errors s = 0. The syndrome pattern can 
be used to correct and decode the 
received information sequence. Using 
the simple (3,2) code in Equation 6, the 
corresponding H matrix is: 

 
 (11) 

c) Basics of Convolutional 
Codes 

Block codes produce encoded 
blocks from the present information 
block at time i. In contrast convolutional 
coding produces encoded blocks based 
on present and past information bits or 
blocks. Convolutional coding, like block 
coding, is carried out over a finite field, 
using a set of discrete source symbols. 
For now, we consider the binary field, 
consisting of [0, 1] and the operations 
modulo two addition and modulo two 
multiplication. In convolutional 
encoding, an n-bit encoded block at time 
i depends on the k-bit information block 
at time i and on m previous information 
blocks (Dholakia, 1994). Hence, a 
convolutional encoder requires memory. 
Convolutional codes are referred to as (n, 
k, m) codes. 

 
Given two received messages r1 = 

[011] and r2 = [010] we can calculate the 
syndrome values for each, potentially 
noisy sequence: 
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i) Encoding Methodology 
A convolutional encoder is a 

mechanism with a k-bit input vector ui, 
n-bit output vector vi, and m memory 
elements. Figure 3 (Dholakia, 1994) 
illustrates a (2, 1, 2) convolutional 
encoder, where the blocks indicate 
memory. Figure 3 shows a k = 1, n = 2, 
or 1/2 rate encoding scheme where a 
block is equal to one bit. That is, for 
every input bit encoding produces two 
parity bits. The general encoding 
procedure is as follows (Sweeney, 1991; 
Dholakia, 1994): 

 
• A k-bit input block at time i, ui, is 

modulo two added to the previous m 
input bits to form the n-bit output 
vector vi. 

• The most recent k input bit is shifted 
into the memory register and the rest 
of the bits in the register are shifted 
to the right. 

• The new input block is then modulo 
two added to the contents of the 
memory register to produce a new 
output vector. 

• The process is repeated until all 
input data has been encoded. 

 
A set of n generator vectors 

completely specify the encoder. The 
generators are m + 1 bits long and 
indicate which elements are modulo two 
added to produce each bit in the output 
vector. For the encoder illustrated in 
Figure 3, the generator vectors are as 
follows: 

 
[ ]1011 =g

[ ]1112 =g

2
1 1)( xxg +=

2
2 1)( xxxg ++=

[ ]001000)( =tu
5..0=t

[ ],11011100)( =tv
5..2=t

 (14) 
 

 (15) 
 
The generator vectors can also be 

represented as generator polynomials: 
 

 (16) 
 

 (17) 
 
For xD, D represents the number 

of delay units. Each generator vector or 
polynomial is associated with one of the 
n output bits in the output vector v. The 
encoding process depends not only on 

the present input but also on the previous 
m inputs. This forms an interdependence 
among the transmitted data bits. Given 
the following information stream: 

 
, 

  
 (18) 

 
We can use the convolution code 

specified by Equation 14 and Equation 
15 to produce the corresponding 
codeword sequence: 

 
 

  
 (19) 

 
In the above example, note that 

the first two valid outputs for v occur at 
time t = 2. 

ii) Decoding Methodology 
There are various approaches for 

decoding convolutionally encoded data. 
Similar to block decoding, the maximum 
likelihood decoding approach compares 
the received sequence with every 
possible code sequence the encoding 
system could have produced. Given a 
received sequence and the state diagram 
of the encoding system, maximum 
likelihood decoding produces the most 
likely estimate of the transmitted vector, 
v. The Viterbi decoding algorithm 
(Sweeney, 1991; Dholakia, 1994) is a 
maximum likelihood decoding algorithm 
which uses a code trellis to estimate the 
transmitted vector given a received 
vector. 

Another decoding approach uses 
syndrome decoding methods and a 
decoding window which consists of m+1 
frames (Sweeney, 1991; Dholakia et al., 
1995; Bitzer et al., 1998). The received 
sequence is treated like a block code and 
a syndrome value is generated for each 
received block. As in block codes, the 
value of the syndrome indicates the 
presence or absence of an error in the 
received sequence. Although not a 
maximum likelihood method, syndrome-
based decoding of convolutional codes is 
more computationally efficient. Table-
based codes (discussed in detail in the 
section which follows) make use of 
syndrome decoding techniques 
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(Dholakia et al., 1995; Bitzer et al., 
1998). 

d) Table-Based Codes 
This section describes a specific 

method for implementing convolutional 
coding: table-based encoding and 
decoding. All methods described for 
table-based encoding and decoding are 
based on concepts developed and 
presented by Bitzer et al. (in Bitzer & 
Vouk, 1991; Dholakia et al., 1995; Bitzer 
et al., 1998). 

i) Table-Based Encoding 
The existence of a one to one 

mapping between data bits and parity 
bits is the foundation for table-based 
encoding. A set of w-bit data block must 
correspond uniquely to a set of w-bit 
parity block. Parity bits are the bits 
generated by the encoder and they make 
up the output vector v. For an (n, k, m) 
convolutional code: 

 

kn
kLnw

−
−

=

1+= mL

[ ]1011 =C

[ ]1112 =C

 (20) 

 
where 
 

 (21) 
 
Table-based encoding is 

implemented as follows: based on the 
knowledge of the encoder and the 
parameters n, k, L we can construct an 
encoding table that associates each w-bit 
data sequence with a unique parity 
sequence. For binary data there are 2w 
possible data sequences. Depending on 
the value of w, the encoding table can 
become extremely large. We can 
construct a reduced encoding table with 
only w data elements and the 
corresponding w parity elements. For the 
reduced encoding table each data 
sequence is w-bits long and contains a 
single bit equal to one in the ith position, 
where i goes from position one to 
position w. These w data sequences are 
the basis vectors (the fundamental 
vectors that can be combined to form all 
other vectors or sequences) for the set of 
all possible w-bit data sequences. For 
instance, the data sequences, or basis 
vectors, for a reduced encoding table 
with w = 3 are [100  010  001]. 

The encoding masks, which are 
equivalent to the generator vector, are 
used to form the corresponding parity 
bits for each w-bit data sequence. In the 
following example a w = 4 bit parity 
sequence is generated for the encoder 
illustrated in Figure 3. For a given data 
sequence, parity bits are generated by 
ANDing (multiplication modulo two) the 
data bits with the encoding mask and 
XORing (addition modulo two) the 
results. For the data sequence databits = 
1000 and encoding mask C1 and C2 (note 
C1 and C2 are equivalent to g1 and g2 in 
Equation 14 and Equation 15) defined as: 

 
 (22) 

 
 (23) 

 
the parity bits P1,1, P2,1, P1,2, P2,2 

are calculated as follows: 
 

1  0  0  0  
1  0  1    
1 + 0 + 0   = P1,1 = 1 

 
 

1  0  0  0  
1  1  1    
1 + 0 + 0   = P2,1 = 1 

 
Shift C1 by k = 1 to get the next 

parity bit: 
 

1  0  0  0  
  1  0  1  
  0 + 0 + 0 = P1,2 = 0 

 
Shift C2 by k = 1 to get the next 

parity bit: 
 

1  0  0  0  
  1  1  1  
  0 + 0 + 0 = P2,2 = 0 

 
From the example above, 1100 is 

the corresponding parity bits for data 
sequence 1000. Following the same 
procedure we obtain Table 2 as the 
resulting reduced encoding table for the 
encoder in Figure 3. 

Table-based encoding works as 
follows for an encoding window w data 
bits wide: 
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1. Using the reduced encoding table, 
process the present w data bits into 
w parity bits. 

2. Shift into the encoding window k 
new data bits and process the data 
bits in the window to produce a new 
block of w parity bits. The new 
parity bits overlap the old parity 
block with the first w − n bits of the 
new block. These overlapping bits 
are identical. 

3. Repeat the encoding process until all 
data bits have been processed. 

 
Data Bits Parity Bits 

1000 1100 
0100 0111 
0010 1101 
0001 0011 

Table 2: Reduced Encoding 
Table 

For table-based encoding to work, 
the proper encoding mask (derived from 
the generator vector) must be selected. 
The encoding mask must be chosen such 
that there exists a one to one 
correspondence between the data and 
parity bits. For error correcting systems, 
the encoding mask must produce codes 
that have sufficient error correcting 
capabilities for a given correction 
algorithm. 

ii) Table-Based Decoding 
Decoding tables are used to 

perform table-based decoding on 
received sequences or parity bits. A 
decoding table can be constructed if 
there exists a unique one to one mapping 
between data blocks and parity blocks. 
Therefore, table-based codes are 
invertible codes. The size of a decoding 
table for binary data would be 2w. As in 
table-based encoding, we can construct a 
reduced decoding table which contains w 
elements instead of 2w elements. Each of 
the parity sequences in the reduced table 
are w bits wide and the ith parity 
sequence has a single bit equal to one in 
the ith position, where i goes from one to 
w. For a reduced decoding table with w = 
2, the parity sequences are: [10  01] 

Given a reduced encoding table, 
we can construct the corresponding 
reduced decoding table as follows: 

 

1. Sum the x w-bit parity blocks in the 
reduced encoding table needed to 
form the parity block for the reduced 
decoding table. 

2. Sum the x w-bit data blocks 
associated with the x parity blocks 
from the encoding table to produce 
the w-bit data block that corresponds 
to the needed parity block in step 
one. 

3. Continue this process for all w parity 
block entries in the reduced 
decoding table. 

 
The following is an illustration of 

the above method using the reduced 
encoding table in Table 2. To construct 
the corresponding reduced decoding 
table, we must find the corresponding 
data blocks for the following four-bit 
parity blocks: 

 
[1000  0100  0010  0001] 

 
For parity block = 1000: 
 

1. 1000 = 1100 + 0111 + 0011 
2. The corresponding four-bit data 

block is: 1000 + 0100 + 0001 = 
1101 

3. After repeating steps one and two 
for the other three parity blocks, we 
obtain the resulting reduced 
decoding table shown in Table 3. 

 
Parity Bits Data Bits 

1000 1101 
0100 0101 
0010 1011 
0001 1010 

Table 3: Reduced Decoding 
Table 

Given a decoding window w 
parity bits wide, we can decode a parity 
stream as follows: 

 
• Using the encoding table, a block of 

w parity bits is mapped to w data 
bits, producing the associated w-bit 
data block. 

• n new parity bits are shifted into the 
decoding window. 

• From the w parity bits now in the 
decoding window, produce the next 
block of data. The w − k bits at the 
beginning of the new data block will 
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overlap the w − k bits at the end of 
the previous data block. 

• The above process repeats until all 
parity bits are decoded. 

 
If there are no errors in the parity 

stream, the overlapping w − k data bits 
will match producing zero values when 
exclusive-ORed bit by bit. But, if there is 
an error in the parity stream, the 
exclusive-ORing of the overlapping bits 
will result in non-zero values. 

The results from performing the 
exclusive-OR operation on the 
overlapping data bits are called 
syndrome values or syndromes. A 
syndrome vector consists of a series of 
syndrome values. The syndrome vector 
is zero if there are no detectable errors in 
the parity stream (i.e. exact match 
between overlapping bits); otherwise, for 
binary data, the syndrome value is one. 
The number of syndrome values in a 
syndrome vector is equivalent to the 
number of overlaps used to determine the 
vector. 

iii) Formation of the Gmask 
The syndrome vector, which is 

used to detect errors in the parity stream, 
can be generated by repeated application 
of the decoding table to the parity 
stream, but this can become 
computationally expensive. The gmask 
provides an efficient method for 
syndrome vector generation. A gmask is 
a vector or sequence that is applied to the 
received sequence to generate syndrome 
vectors. The values that comprise the 
gmask are based on the codewords of the 
encoding system. The gmask is w + n 
bits long. The following procedure 
describes how to generate the gmask, 
given a decoding table. 

 
• Consider parity streams with single 

bit errors in each position of the n 
bit parity block [P1  P2 … Pn] 

• Find the syndrome vector Si for 
parity stream with error in parity bit 
Pi for i = 1, 2 … , n. 

• The gmask is formed by interleaving 
the n syndrome vectors generated 
from parity streams containing 
single-bit errors. For instance, if n = 
3 and S1 = 001, S2 = 101, and S3 = 
110 then the gmask is be defined as 
 

gmask = [  S1(3)  S2(3)  S3(3)  S1(2)  
S2(2)  S3(2)  S1(1)  S2(1)  S3(1)  ] 
 
where Si(j) is the jth bit in the ith 
syndrome vector. The resulting 
gmask is: 
 
gmask = [1  1  0  0  0  1  0  1  1] 

 
There will be n − k gmasks for an 

(n, k, m) code. Once the gmask has been 
constructed, it can be used to calculate 
the syndrome vector for received parity 
streams. To calculate the syndrome 
vector using the gmask: 

 
• The gmask is ANDed with the first 

w + n parity bits. 
• The result is exclusive-ORed to 

produce a syndrome value. 
• The received parity stream is shifted 

by n bits. 
• The process is repeated until all 

syndrome values for the syndrome 
vector are produced. Each shift 
results in one syndrome value. 

 
Based on the value of the 

syndrome vector, the received parity 
sequences can be used to decode the 
transmitted sequence to data or used to 
detect errors in the transmission. The 
concept of a decoding mask, the gmask, 
is employed in the convolutional coding 
model for the translation-initiation 
system. 

Biological Communication 
Information theoretic principles 

have been used to develop effective 
coding theory and cryptographic 
algorithms to successfully transmit 
information from a source to a receiver 
in engineered systems (Shannon & 
Weaver, 1949; Lin & Jr., 1983). Living 
systems also successfully transmit their 
biological information through genetic 
processes such as replication, 
transcription, and translation, where the 
genome of an organism is the contents of 
the transmission. The study of the 
information processing capabilities of 
living systems was revived in the later 
part of the 1980s, due to the increase in 
genomic data, which spurred a renewed 
interest in the use of information theory 
in the study of genomics (Roman-Roldan 
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et al., 1996; Sarkar et al., 1978; Fowler, 
1979; Eigen, 1993). Information 
measures, such as entropy, have been 
used in recognition of DNA patterns, 
classification of genetic sequences, and 
various other computational studies of 
genetic sequences (Roman-Roldan et al., 
1996; Palaniappan & Jernigan, 1984; 
Almagor, 1985; Schneider, 1991a; 
Schneider, 1991b; Altschul, 1991; 
Salamon & Konopka, 1992; Oliver et al., 
1993; DeLaVega et al., 1996; Schneider 
& Mastronarde, 1996; Strait & Dewey, 
1996; Pavesi et al., 1997; Loewenstern & 
Yianilos, 1997; Schneider, 1997; 
Schneider, 1999). Schneider et al.’s 
information theoretical methods 
contributed significant statistical 
evidence used to identify key regions on 
the mRNA leader sequence (Schneider et 
al., 1986). Recently Schultzaberger et al. 
developed an information-based method 
that incorporates key factors that 
influence translation initiation: Shine-
Dalgarno sequence (SD), initiator codon, 
spacing between SD and initiator 
(Shultzaberger et al., 2001). Applying 
techniques from coding theory, a sub-
field of information theory, is a logical 
next step in the study of the information 
processing mechanisms of genetic 
systems. While information theoretic 
analysis of genetic sequences and 
processes provides insight into 
informational properties of the genetic 
system, coding theoretic techniques 
provide the method for analysing and 
constructing genetic messages that 
survive mutational, environmental, and 
evolutional noise. 

Application of coding theory to 
genetic data dates back to the late 1950s 
(Hayes, 1998; Golomb, 1962) with the 
mapping of the genetic code (the codon 
to amino acid mapping). Since then 
coding theoretic methods have been used 
for frame determination, motif 
classification, oligo-nucleotide chip 
design, and DNA computing 
(Loewenstern & Yianilos, 1997; 
Sengupta & Tompa, 2002; Kari et al., 
1999). Loewenstern applied source 
coding (compression) methods to 
genomic sequences for the purpose of 
motif identification. Kari and colleagues 
apply circular coding methods to the 
forward encoding problem for DNA 
computing applications. The forward 

problem being, how can one encode an 
algorithm using DNA such that one 
avoids undesirable folding. Sengupta and 
Tompa approach the problem of oligo 
array design from a combinatorial design 
framework and use ECC methods to 
increase the fidelity of oligo array 
construction. 

 

Figure 4: Central dogma of 
genetics. 

a) Coding Theory and the 
Central Dogma of Genetics 

The relationship between the error 
control coding process and protein 
translation may not be obvious. Figure 4 
illustrates the central dogma of genetics. 
The central premise of genetics is that 
genes are perpetuated in the form of 
nucleic acid sequences but function once 
expressed as proteins (Lewin, 1995). 
Three-base nucleic acid sequences, 
called codons, designate amino acids. 
There are sixty-four possible codons and 
twenty amino acids. Hence different 
codons can specify the same amino acid. 
This codon/amino acid designation is 
known as the genetic code (Watson et 
al., 1987). There are three stages which 
transform genes from nucleic acid 
sequences to functional proteins. 

 
• Stage 1: Replication - A DNA 

sequence replicates to form two 
identical DNA sequences. 

• Stage 2: Transcription - Using one 
of the DNA strands as a template 
sequence, the information contained 
in the DNA sequence is transcribed 
to its RNA equivalence. The result is 
a messenger RNA (mRNA) 
sequence which contains the 
complement sequence of the DNA 
template strand. The difference is 
that in mRNA, Uracil replaces 
Thymine bases (Watson et al., 
1987). 

Protein

DNA

Replication

DNA

mRNA TranscriptionTranslation
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• 
as a template for producing 

Figure 5: Central dogma of 
genetics as a coding system. 

ndamental 
investi
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bi hich behaves 
as a g

the DNA 
se f a genetic 
encode

Errors

Stage 3: Translation - The mRNA 
serves 
polypeptide chains or proteins. A 
polypeptide chain is a sequence of 
amino acids bound together by 
peptide bonds (Lewin, 1995). The 
ribosome is an important part of the 
mechanism which translates mRNA 
information into proteins. 

 

Researchers, such as Hubert 
Yockey who performed fu

gations of error correcting coding 
(ECC) properties of genetic systems, 
have explored the ECC properties of 
genetic sequences and systems (Yockey, 
1992; May, 2002; Rosen & Moore, 2003; 
Liebovitch et al., 1996; MacDonaill, 
2002). Several researchers have 
developed communication models for 
genetic processes (Gatlin, 1972; Yockey, 
1992; Roman-Roldan et al., 1996; 
Battail, 1997; May, 2002). Our analogy 
of genetic information transmission to a 
communication system is illustrated in 
Figure 5. The un-replicated DNA 
sequence is the output of an ECC genetic 
encoder that adds redundancy to 
inherently noisy genetic information. 
The noise in the source can be thought of 
as mutations transferred from parent to 
offspring. The genetic channel is the 
DNA replication process during which 
errors are introduced into the nucleotide 
sequence (May, 2002). Incorporating the 
nested coding idea proposed by Battail 
(Battail, 1997), error-correcting decoding 
occurs in three phases represented by 
transcription, translation initiation, and 
translation elongation plus termination. 
We can see the parallel between this 
“genetic” communication system and a 
typical communication system 

(illustrated in Figure 1) by examining: 
the genetic encoder, the genetic channel, 
and the genetic decoder in our model. 

i) The Genetic Encoder 
s what It is not obviou

ological mechanism is w
enetic encoder. But, it is fairly 

obvious that redundancy is present in the 
transmitted messages. For example, the 
number of DNA bases in an E. coli 
genome exceeds the number of bases 
needed to code for all the proteins 
produced by the E. coli genome. In 
general, there are sixty-four codons, 
three of which have specific control 
purposes. The sixty-one remaining 
codons code for twenty amino acids 
which are used to form proteins. The 
number of codons exceeds the number of 
amino acids represented, hence there 
exists redundant information in the 
genetic code. The coding rate and the 
type of code used to encode the DNA 
sequences are at the present unknown. In 
order to evaluate the validity of 
analysing translation from a coding 
theory perspective May et al. assume 
values for the coding rate. 

ii) The Genetic Channel 
If we assume that 

quence is the output o
r, the genetic channel is the 

medium or sequence of events that take 
the genomic DNA sequence and transmit 
it to the genetic decoder. Since channels 
do not change the alphabet of the 
message and only introduce errors, it is 
assumed that the replication process 
forms the genetic channel. As in an 
engineering communication channel, the 
genetic channel can introduce errors and 
noise into the transmitted message. 
However, it is also possible that the 
incoming message (DNA) is already 
“errored” due to some other biological 
event. During replication various types 
of errors can occur: deletion of DNA 
bases, insertion of incorrect DNA bases, 
and frame shifts. These errors or 
mutations in the genetic code can 
attenuate, corrupt, and distort the genetic 
signal which is vital to the survival of the 
organism. In this work the following 
assumptions about the genetic channel 
and the errors resulting from the channel 
are made: 

Genetic Encoder

DNA

Genetic   Channel

Replication

DNA

Genetic Decoder

Translation
Elongation Transcription

Translation
Initiation mRNAmRNA

Coding Sequence Leader

Genetic 
Information

Errors

Protein=
Received
Information
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• The probability of a nucleotide base 

error is independent from one 

• 
eing replaced 

above characteristics 
translate into a memoryless, symmetric 
channe

 decoders, 
tr  are the two 
decodi

 is not clear what decoding 
metho

inding sites has 
reveale

 codon 
(A G or less often GUG or UUG) 

e 

uence protected 
by the acterial ribosome is thirty-five to 
forty b

c 
encode

from a finite field as in binary 
codes.

nucleotide to the next. 
For all DNA bases (A,T,C,G), the 
probability of base i b
by base j is the same as the 
probability of base j being replaced 
by base i. 

 
The 

l. The replication channel can also 
exhibit characteristics of compound 
channels, resulting in DNA sequences 
with seemingly random base errors and 
sequences with regions of high mutation 
probability. 

iii) The Genetic Decoder 
Similar to nested

anscription and translation
ng phases. May et al.’s work 

focuses on the parallel between the 
translation process and the decoding step 
in an engineering communication 
system. Translation is the process by 
which genetic information stored in the 
messenger RNA is decoded into 
sequences of amino acids which form 
proteins. The ribosome is part of the 
cellular decoding mechanism. Once 
translation has been initiated, the 
ribosome (in conjunction with the tRNA 
and other protein factors) decodes the 
transmitted message by associating tri-
nucleotide sequences (codons) in mRNA 
with corresponding tri-nucleotide 
sequences in charged tRNA (anti-
codons). During the elongation phase, 
sequences of valid codewords will 
translate into viable proteins. By 
analysing the elongation phase of protein 
translation, we see that the ribosome, like 
a decoder in an engineering system, 
associates a fixed length received 
sequence or codeword with specific 
information. 

During the initiation phase of 
translation, it

d the ribosomal subunit employs. 
In initiation the small subunit along with 
initiation factor three (IF3) attach to the 
ribosomal binding site of messenger 
RNA. If we view the small subunit/IF3 
complex as a decoding mechanism, we 
assert that error control coding theory 
could be used to classify the series of 

bases in that region as valid for 
translated sequences and invalid for 
untranslated sequences. 

Analysis of several different E. 
coli mRNA ribosomal b

d two common features in these 
sequences (Lewin, 1995): 

 
• Presence of an initiation

U
• Presence of the Shine-Dalgarno 

sequence: a short sequenc
complementary to the 3’ end of the 
16S rRNA (the rRNA hexamer: 
3’...UCCUCC...5’). 

 
The initiation seq

 b
ases long (Lewin, 1995). Within 

this initiation sequence, not all six bases 
of the Shine-Dalgarno were present in 
each ribosomal binding site analysed; 
usually four to five bases in the sequence 
match the hexamer. Hence, the small 
subunit of the ribosome must have a 
mechanism for detecting the presence of 
valid codewords that are indicators for 
the initiation of protein translation. The 
decoding mechanism must be able to 
detect these valid codewords in the 
presence of noise introduced by the 
genetic channel. A mistake in decoding 
could result in the ribosome translating a 
protein sequence incorrectly, which is 
potentially detrimental to the organism. 

As mentioned earlier, the 
encoding mechanism used in the geneti

r is unknown. Therefore, we do 
not know the exact mechanism employed 
by the genetic decoder. By analysing key 
elements involved in initiating protein 
translation, it is hoped that we will gain 
insight into a possible decoding scheme 
used in the initiation phase of translation 
in E. coli. The key elements taken into 
consideration are: the 3’ end of the 
rRNA, the common features of bacterial 
ribosomal binding sites, and base-pairing 
principles between the rRNA and the 
mRNA. 

The coding alphabet must be 
derived 

 Using base pairing, wobble 
pairing, and translation initiation 
information (Lewin, 1995) the RNA 
bases were mapped to the field of five as 
follows: Inosine(I) = 0, Adenine(A) = 1, 
Guanine(G) = 2, Cytosine(C) = 3, and 
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Thymine(T)/Uracil(U) = 4. 
Multiplication and addition are modulo 
five. The RNA bases were
that in modulo five addition the sum of 
bases that form hydrogen pairs is zero. 
Hydrogen pairs or hydrogen bonds are 
weak, noncovalent bonds that hold 
macromolecules such as DNA and RNA 
together (Alberts et al., 1998). These 
definitions were used to construct the 
block code and convolutional code 
models for the protein translation 
initiation process. 

In our work on biological coding 
theory, we illustrat

 defined so 

e how a coding theory 
framew

info  DNA is encoded in a 
manne

 = 5 and n 
= on the last 
thirtee

CUCCACUAG...5’ (24) 

mRNA contains the nucleotide sequence 
which 

...3’ (25) 

symbol  from all (n-k)-base sub-
sequen i

lected so that the 
follow

∑ ∑ =+genetic sParityBaseu
1 1

0  

 (26) 
 

inform ion vector and ParityBases is 
the n − p

1

Hence (U A A) is selected as our parity 
bases. The resulting codeword is: 

nce 
de ro-
parity 

ork can be used to analyse 
genetic processes and sequences (May, 
1998; May et al., 1999; May et al., 2000; 
May, 2002). The next two sections 
describe some of our initial work. 

b) Messenger RNA as a Block 
Code 

If it is assumed that genetic 
rmation in

r equivalent to block encoding, 
then the received message, the mRNA, 
can be viewed as a received parity 
sequence of a block encoded data stream. 
In the block code model, the genetic 
encoder is modelled as an (n, k) block 
code whose output is a systematic zero 
parity check code (Sweeney, 1991; May, 
1998). 

i) Genetic Encoder Model 
Codewords of length n

 8 bases are developed based 
n bases of the 3’ end of 16S 

ribosomal RNA (which contains the 
hexamer complementary to the Shine-
Dalgarno sequence (Lewin, 1995)) and 
the proposed encoder model. The (5, 2) 
and (8, 2) models reflect the effect of 
two or more and three or more codons, 
respectfully. Specifically, the last 
thirteen bases of the 16S rRNA that 
interact with the Shine-Dalgarno domain 
and other sequences on the 5’ 
untranslated mRNA leader, are (Lewin, 
1995): 

 
3’AUUC

 
Since our received sequence, the 
, 
base pairs with the 16S rRNA, we 

use the Watson-Crick complement of the 

thirteen base sequence in forming our 
codewords. The complement of the 3’ 
end of the 16S rRNA is: 

 
5’UAAGGAGGUGAUC

 
We select the n − k parity 
s
ces of the th rteen base 

complement in Equation 25. For 
instance, if we desire a (5,2) code, we 
would select our parity symbols from all 
three-base sub-sequences of the thirteen 
base complement. 

The three base parity sub-
sequences are se

ing equation is satisfied: 
 

−k kn

where ugenetic is the k-base 
at
 k base arity vector. To illustrate, 

if we define the information sequence as 
ugenetic = (C A), using the mapping from 
(a, iii, this part) the corresponding 
numerical representation is u = (3 1). We 
select a set of parity symbols such that 

∑ =++
3

21 0sParityBaseuu . 

Codeword = (3 1 4 1 1). The equivalent 
genetic codeword is: Codewordgenetic = 
(C A U A A). We generate codewords 
for all possible k-base genetic 
information vectors. For a (5,2) code our 
information vectors would be drawn 
from every possible two-base RNA 
sequence; there are sixteen such 
sequences. A codeword is produced, as 
previously illustrated, for each possible 
two-base RNA sequence. If the resulting 
codeword satisfies Equation 26, then it is 
included in the codeword list (the 
codebook) otherwise it is excluded. 

ii) Decoder for Model Verification 
A minimum Hamming dista

coder, based on the systematic, ze
check encoding methodology, was 

designed to analyse the proposed block 
coding model. The analysis sequence is 
composed of: the thirty bases of the 
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mRNA leader sequence preceding the 
initiation (start) signal, the initiation 
signal (usually AUG), and twenty-seven 
bases from the coding region 
immediately following the initiation 
signal. The received sequence is an n-
base subset of the analysis sequence. 

The decoding process normally 
corrects the received sequence to the 
codew

 K-12 strain MG1655 
se ata accession number 
U0000

s there is a 
signifi

 

ord with the lowest minimum 
distance value and recovers the 
transmitted information sequence, u. 
Since our objective is to analyse the 
coding model, the minimum distance is 
recorded for each received genetic 
sequence in the analysis stream. This 
distance is used to evaluate how well the 
proposed block coding model captures 
the biological aspects of the initiation 
process. 

iii) Results 
The E. coli

quence d
96 (downloaded from the NIH 

site: ncbi.nlm.nih.gov) was used to test 
the model. Using the information in the 
GenBank data file, known and possible 
reading frames were divided into three 
sequence groups: translated, 
hypothetical, and non-translated. The 
translated sequence group contained 
open reading frames classified as protein 

producing regions. Hypothetical 
sequences were open reading frames that 
GenBank classified as hypothetical 
proteins. Open reading frames that did 
not appear in the GenBank annotation 
file as translated or hypothetical are 
included in the non-translated sequence 
group. Figure 6 shows the resulting mean 
minimum distance by position for the 
(5,2) block code model. The smaller the 
value on the vertical axis, the stronger 
the bond formed between the ribosome 
and the mRNA. Zero on the horizontal 
axis corresponds to the alignment of the 
first base of a codeword with the first 
base of the initiation codon. 

As Figure 6 illustrate
cant difference among the 

translated, hypothetical and the non-
translated sequence groups. For the 
translated and hypothetically translated 
sequence groups, a minimum distance 
trough occurs between the -15 and -10 
regions. The -15 to 0 region contains 
large synchronization signals which can 
be used to determine valid protein coding 
sequences or frames. There are also 
smaller synchronization signals outside 
the -15 to 0 region which exhibit a weak 
oscillatory behaviour. 
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Figure 6: Average minimum Hamming distance values of mRNA leader 

sequences using the (5, 2) block decoding model. 
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c) Messenger RNA as a 
Convolutional Code 

The second error-correcting 
coding model investigated is based on 
the principle hypothesis that the 
messenger RNA (mRNA) sequence can 
be viewed as a noisy, convolutionally 
encoded signal. The ribosome is 
functionally paralleled to a table-based 
convolutional decoder. The 16S 
ribosomal RNA (rRNA) sequence is 
used to form decoding masks for table-
based decoding. 

i) Genetic Encoding Framework 
Convolutional coding produces 

encoded blocks based on present and 
past information bits or blocks. The 
modelling assumption is that genetic 
operations such as initiation and 
translation may involve “decisions” 
which are based on immediate past and 
immediate future information. This 
would allow error correction and other 
related functions. The convolutional 
code model views the ribosome as a 
mechanism with memory. Evaluating the 
messenger RNA as convolutionally 
encoded data allows the model to capture 
the inter-relatedness between the bases in 
a mRNA sequence. The formation of 
bonds between the mRNA and the 16S 
rRNA significantly influence the 
initiation of protein translation. When a 
base on the mRNA pairs with a base on 
the 16S rRNA, hydrogen bonds are 
formed. The greater the number of 
consecutive pairings formed between 
these two RNA molecules, the greater 
the probability of translation initiation. 
Every time the 16S ribosomal subunit 
attaches to the mRNA, a bonding pattern 
is formed. The bonding pattern that 
results in a positive signal is the bonding 
pattern with high numbers of consecutive 
hydrogen bonds. This process of locating 
regions on the mRNA which form high 
numbers of consecutive hydrogen bonds 
can be paralleled to locating parity 
blocks which produce zero syndrome 
vectors for a received parity stream. 

The messenger RNA is modelled 
as a received parity sequence of a 
convolutional encoded data stream 
(Bitzer et al., 1992). We use the 
syndrome concept developed for table-
driven decoding to check whether a 

mRNA translation initiation region can 
be interpreted using a covolutional 
coding model. In order to use the table-
driven decoding model, we must define 
biological coding constructs which are 
analogous to the following coding 
concepts: the decoding mask, syndrome, 
and interpretation of syndrome values. 

ii) Genetic Gmask Based on 16S 
rRNA 

The gmask selects which bits are 
included in the exclusive-OR operation. 
For binary data, the bits in the decoding 
window associated with the gmask are 
the bits used to determine the syndrome 
vector. For the genetic model, the genetic 
gmask is derived from the 16S rRNA 
sequence: 

 
3’AUUCCUCCACUAG...5’ 

 
The equivalent GF(5) mapping is: 
 

3’...1 4 4 3 3 4 3 3 1 3 4 1 2...5’ 
 
The genetic gmask is formed 

from subsets of contiguous bases of the 
16S rRNA. The subsets indicate which 
(n+w)-base region is being included in 
the exclusive-OR operation of the 
ribosome. Selecting subsets of the 16S 
rRNA corresponds to base pairing 
between regions of the 3’ end of the 16S 
rRNA and regions within the mRNA 
sequence. Assuming a coding model 
with n=2, k = 1, L = 3 (m = 2), and w = 4, 
the length of the genetic gmask is w + n 
or six. On average, five nucleotides on 
the mRNA leader complement pair with 
the exposed part of the 16S rRNA (Gold 
& Stormo, 1987). The coding parameters 
result in a genetic gmask length that 
reflects this. A gmask for the translation 
initiation system can be selected from a 
table of eight possible six-base genetic 
gmask values derived from the 16S 
rRNA (May, 1998). The eight gmasks 
are all the possible six-base sub-
sequences of the 3’ end of the 16S rRNA 
as indicated above. 

For the chosen gmask, the 
syndrome values of a stream of mRNA 
codons can be calculated. The received 
mRNA parity (or codon) sequence 
includes the last thirty bases of the leader 
region, the initiation codon, and the first 
nine codons of the translated region: 
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[ ]29312930 ++−−−= bbGUAbbbmRNA LL

[ ]UCGAbi ,,,=

 (27) 
 

with, 
 

 (28) 
 

iii) Syndrome Calculation 
The syndrome value for a given 

mRNA is calculated by ANDing the 
received codon bases with the genetic 
gmask and exclusive-ORing the result. 
Multiplication (AND) and addition 
(XOR) are modulo-five. For example, 
given the following mRNA sequence: 

 
mRNA = [A  U  G  U  G  A  U  C  U  C] 

 
and the following six-base gmask 

(which is in essence an element of the 
Shine-Dalgarno sequence) 

 
gmask = [C  A  C  U  A  G] 

 
the first three syndrome values 

are calculated as follows: 
 

A U G U G A U C U C ⇐ mRNA 
C A C U A G ⇐ gmask 

 
The numerical equivalences are: 
 

1 4 2 4 2 1 4 3 4 3 ⇐ mRNA 
3 1 3 4 1 2 ⇐ gmask 
————————– 
3+4+1+1+2+2 = s1 = 3 

 
Shift by n=2: 
 

G U G A U C U C ⇐ mRNA 
C A C U A G ⇐ gmask 

 
The numerical equivalences are: 
 

2 4 2 1 4 3 4 3 
3 1 3 4 1 2 
————————– 
1+4+1+4+4+1 = s2 = 0 

 
Note: this is an exact pairing 

match between the mRNA sub-sequence 
and the gmask 

 
Shift by n=2 again: 
 

G A U C U C ⇐ mRNA 
C A C U A G ⇐ gmask 

 
The numerical equivalences are: 
 

2 1 4 3 4 3 
3 1 3 4 1 2 
————————– 
1+1+2+2+4+1 = s3 = 1 

 
This work looks for a correlation 

between syndrome values and the 
position of the genetic gmask relative to 
the translation initiation codon. 

iv) Distance Value Derivations 
In binary table-driven decoding, a 

syndrome value of zero indicates that 
there are no detectable errors within the 
parity stream. For the translation 
initiation system, it would be ideal if 
syndrome values could be used to 
determine the presence or absence of 
valid ribosome binding sites. The 
presence of a valid ribosome binding site 
would indicate a valid translation 
initiation site. 

In the example in the preceding 
section our syndrome vector S was [3, 0, 
1]. The zero syndrome value occurred 
when an exact complement of the six-
base genetic gmask appeared in the 
decoding window. Theoretically, a zero 
syndrome value should occur when an 
exact complement to the genetic gmask 
is present in the decoding window. But 
experiments indicate that the genetic 
gmask match value (the syndrome value 
resulting from the presence of an exact 
complement to the genetic gmask in the 
decoding window) does not always result 
in a zero syndrome value (May, 1998). 

Since various gmasks yield 
different mask match values, syndrome 
values are normalized by transforming 
each syndrome value to represent the 
distance of the syndrome value from the 
genetic gmask match value. For 
example, if the genetic gmask match 
value is three and the resulting syndrome 
value is four then the normalized 
syndrome value or distance 
representation is one because 3 + 1 = 4. 
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Hence the normalization equation for a 
syndrome value s, given a genetic gmask 
match value mm, is as follows: 

 
distance = [(s + 5) – mm] mod 5 (29) 

 
The algorithm and table for 

conversion from syndrome value to 
distance value is presented in (May, 
1998) for different values of mm. These 
normalized distance values are used to 
evaluate the convolutional coding model 
of the translation-initiation system. 

v) Results 
The Escherichia coli K-12 strain 

MG1655 sequence data accession 
number U000096 (downloaded from the 
NIH ftp site: ncbi.nlm.nih.gov) was used 
to test the model for two genetic gmask 
lengths. The data was divided into three 
sequence groups (translated, 
hypothetical, and non-translated) as 
previously described in (b, iii, this part). 
Figure 7 shows the frequency of the most 

frequent distance pattern among all 
possible two-symbol distance patterns 
didj , where distance values range from 
zero to four for a six-base gmask. The 
horizontal axis indicates position, with 
zero corresponding to the alignment of 
the coding mask with the first base of the 
initiation codon. The vertical axis 
indicates frequency (0.04 corresponds to 
four percent, the expected frequency of 
occurrence for a random, two-symbol 
distance pattern). As shown in Figure 7, 
the convolutional code model was able to 
distinguish between translated and non-
translated sequence groups. The 
distinction among hypothetical and 
translated groups is also evident. The 
convolutional code model indicated 
relative occurrence of significant activity 
in the -15 area and following the -10 
region. The Shine- Dalgarno sequence is 
located within this region (Lewin, 1995). 
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Figure 7: Frequency of two-pattern syndrome distance values of mRNA leader 

regions using the (2,1,2) convolutional code model. 
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d) Analysis of Coding-Based 
Models 

Three issues were critical to 
analysing the effectiveness of each error-
control model for translation initiation: 
(1) Recognition of regions within the 
mRNA leader sequence; (2) Distinction 
between translated and non-translated 
sequence groups; (3) Indication and 
recognition of the open reading frame 
construct. Both models distinguished 
translated sequence groups from the non-
translated sequence group. They both 
also indicated the existence of key 
regions within the mRNA leader 
sequence. The block code model seemed 
to recognize the ribosomal binding site 
(the location of the Shine-Dalgarno 
sequence) more readily than the 
convolutional code model. The block 
code model also indicated the existence 
of a reading frame synchronization 
construct more so than the convolutional 
code model. Additional results for longer 
block codes and results for the longer 
gmask (twelve-base masks) are presented 
in May (1998). More detailed 
investigations of convolutional code 
models for translation initiation have 
been conducted (May, 2002). 

Conclusion 
The block code model is a sliding 

block code. Therefore a convolutional 
code more accurately depicts the 
behaviour of the ribosome as a decoder 
that incorporates memory in its 
translation (or decoding) decisions. The 
results of the error-control coding 
models suggest that it is possible to 
design a convolutional coding based 
heuristic for distinguishing between 
protein coding and non-protein coding 
genomic sequences by “decoding” the 
mRNA leader region. Results also imply 
that genetic systems may use methods 
that functionally parallel channel coding 
techniques to protect and detect genetic 
signals. The successful development and 
implementation of a channel coding 
model for the translation initiation 
system can lead to the development of 
powerful methods for identifying and 
manipulating protein coding sequences 
within a genome as well as further our 

understanding of translation regulatory 
mechanisms. 
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