
  
Abstract— Using error-control coding theory, the translation of 
mRNA into amino acids can be functionally paralleled to the 
decoding of noisy, convolutionally encoded data parity streams. 
The ribosome is modeled as a table-based convolutional 
decoder. This work attempts to find plausible convolutional 
code generators for the Escherichia Coli K-12 translation 
initiation. The g-mask is chosen from the exposed part of the 
16s rRNA. The generators are calculated from the g-mask, 
using an algorithmic approach. The most plausible generators 
are chosen based on their ability to produce encoded sequences 
which provide a clear distinction between the translated and 
non-translated sequences. 
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I.  INTRODUCTION 
 
 Viewing protein synthesis as an information-processing 
system allows nucleotide sequences to be analyzed as 
messages [1]. May’s model defines a genetic channel as the 
DNA replication, transcription and translation process 
during which errors may be introduced, detected and 
possibly corrected [3]. The transfer of biological 
information can be modeled as a communication channel, 
with the DNA sequence as input, and the polypeptide amino 
acid sequence as the output. As in error-protected 
information channels, redundancy occurs within genomic 
sequences. The DNA encoded message, in its double-helix 
form, is doubly redundant. Hence, we could consider un-
replicated DNA as a half-rate systematic code, i.e., for each 
item (base) there is a corresponding parity item 
(complementary base). At the nucleic-acid level, messenger 
RNA (mRNA) sequences are mapped to amino-acids by 
grouping three nucleic acid bases together to form a codon. 
A codon, or three base nucleic acid vector, is mapped to a 
single amino acid information item. This process which 
occurs during translation, could be viewed as the decoding 
of a rate one-third code, i.e., each amino acid is encoded 
using three “parity” items, or it could be viewed as a code of 
different (non-systematic) rate depending on how much 
error detection capability is assumed to be present. 
 It is also known that leader regions of the messenger 
RNA (mRNA), and other prokaryotic regulatory regions 
contain consensus sequences which in some way signal or 
control translation. Examples are Shine-Dalgarno (SD) 
sequence in bacterial mRNA, and the TATA box and the 
Pribnow box in double helix DNA [5]. Specifically, the SD  
 

 
sequence always occurs before the start codon (usually 
AUG) of a translating mRNA sequence in E-coli. Our 
hypothesis is that, if there is a method in place that checks 
for the validity of the leader sequence (which includes SD), 
the ribosome would somehow have a way of recognizing it. 
Assuming there is a validating relationship among the leader 
sequence bases and/or codons, and assuming that the 
ribosome has an exposed region which is in contact with the 
mRNA leader for validation purposes, one may conjecture 
that the leader sequence may have embedded in it (or may 
be modeled as) an error detecting code such as a block code 
or a convolutional code. In Escherichia-Coli (E-coli), the 
exposed part of the 16s ribosomal RNA (rRNA) binds with 
the mRNA leader sequence during the initiation of 
translation. The same exposed part appears to remain in 
contact with mRNA (in addition to P and A sites and 
possibly other ribosomal regions) during the translation 
process. 
 The specific form of coding theory we apply in the 
present analysis is called table-driven convolutional coding. 
A brief overview of table-based convolutional coding [2],[9] 
is given in the Appendix. The mathematics of coding is 
carried out over a finite field, also referred to as Galois Field 
(GF), using a set of discrete source symbols [8]. The bases 
are mapped to the field of five, as follows: Inosine (I) = 0, 
Adenine (A) = 1, Guanine (G) = 2, Cytosine (C) = 3, Uracil 
(U) = 4. This calls for arithmetic operations such as addition 
and multiplication to be carried out in GF(5). The 
assignment of numerical values to the nucleotides is 
consistent with the bonding characteristics of the base pairs. 
In digital communication theory, checking the validity of an 
encoded message corresponds to matching of the message, 
piecewise, to a syndrome former (a sequence of symbols 
also known as the g-mask). A correct message is expected to 
yield zero syndrome when matched against the syndrome 
former. The syndrome former symbols (which will be the 
same symbols used to encode the sequence, A, U, G , C and 
I in our case) are “multiplied” (in this case base five) with 
corresponding portion of the encoded sequence, and these 
products are then “added” (base five) to form one symbol of 
the syndrome. The syndrome former is then moved 
downstream by a code-specific distance and the process is 
repeated. If the resulting syndrome is zero, the message is 
assumed to be error-free. However, the syndrome can 
contain any of the 5 operational symbols. Also, it must be 
noted that if the number of “errors” exceeds the error-
detecting capability of the code, the message may be flagged 
as correct even when it is not. It is interesting to note that  
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Fig. 1.  Frequency of most-occurring 2-symbol distance patterns, by 
position in leader sequence 

 
this reminds us very much of what happens in the case of 
cancers where erroneous genetic code is allowed to 
translate. To demonstrate the validity of the convolutional   
code   hypothesis, the results of sliding a g-mask of length 6 
over the mRNA leader sequences are shown in Fig. 1.  
 
 The genetic g-mask is formed from subsets of 
contiguous bases on the exposed part of the 16s rRNA. 
There are 8 possible g-masks of length 6 that can be formed 
from the 13-base long exposed part. Each g-mask is applied 
on three different sets of sequences: “certains” or translated 
sequences, “hypotheticals” or hypothetically-translated 
sequences and non-translated sequences. At every position, 
we measure how well a g-mask decodes the leader sequence 
at that position by calculating the syndrome at that position 
for all participating sequences (1000 in our case). Then we 
consider groups of adjacent syndrome values as a “distance 
pattern” [4]. And finally, at each position, we find the most 
frequent “distance pattern” and compute its relative 
frequency. If the pattern were truly random we might expect 
that relative frequency to be around 0.04. In Figure 1, 
relative frequency is shown on the vertical axis. The larger 
the frequency, the more the g-mask favors the sequence. The 
horizontal axis indicates position in the mRNA leader 
sequence, with zero corresponding to the location of the first 
base of the start codon (usually AUG). A clear peak is 
observed around position zero in the translated and 
hypothetically-translated sequences, the peak being more 
prominent in the former case. This indicates that the 
convolutional coding model may have the ability to 
distinguish between the three types of sequences 
 In order to fully understand the implications of the 
model based on the convolutional coding theory, we need to 
be able to back-track from the syndrome former (which 
appears to be physically expressed as SD sequence in the 

case of bacteria), to the codes that actually can produce that 
syndrome former. In general, this is a many to one 
relationship. We would expect that to be the case since the 
DNA information engine may employ errors to control 
translation efficiency and to “lock-in” into the translation 
frame [11].  We do assume that in the present study, the 
most important feature of a good code is its ability to 
distinguish the translated sequences from the hypothetical 
and non-translated sequences.  
 Genetic algorithms have been used with considerable 
success in constructing convolutional code models for 
translation initiation [6]. The optimal codes possess the 
following features: high similarity of the g-mask to the 3’ 
end of the 16s rRNA, ability of the g-mask to recognize key 
regions on the mRNA leader such as the non-random and 
Shine-Dalgarno domains, and potential to detect valid and 
invalid leader sequences. The genetic algorithms-based 
method searches the space of all possible codes of a given 
description, to find optimal generators. In this work, instead 
of using search-based methods, we apply analytical methods 
to find good generators. 
 
 

II. METHODOLOGY 
 

We now describe a numerical algorithm for finding the 
generators of a convolutional code, when the g-mask is 
known. The algorithm is based on concepts of matrix theory 
and linear algebra, and is easy to compute. 

The syndrome former and the generators of a 
convolutional code have the following relationship: 

Ca = 0   (1)  
C is the vector containing the generator coefficients, and a is 
the g-mask. An example of forming the above equation is 
described in the appendix. For a catastrophic code generator, 
C is not invertible [10]. This serves as a test for 
catastrophicity, and will hence be referred to as the "rank 
test". If r = k/n is the rate of the code, and L is the length of 
each generator, number of generator coefficients is (nL). 
 
Equation (1) may be re-arranged in the form  

Ac =0         (2)  
The matrix A now contains elements of the g-mask and c 
contains the generator coefficients. Given the g-mask 
coefficients, (2) may be solved to find the generator 
coefficients. There are (w+k) equations in (nL) unknowns. 
The number of "basis" solutions gk is N = nL - (w+k). Since 
the coding process is carried out in GF(5), any linear 
combination of these N vectors, may be treated as a possible 
solution. A possible generator may be expressed as 

pi = ∑
=

N

k 1
 αkgk  ,        αk ∈  GF(5)   (3) 

 
The set of all possible generators will have 5N-1 elements. 
Thus the search-space of possible generators grows 
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exponentially with the number of generators and the code 
constraint length.  

For example, a rate 1/3 code having L = 5, would yield 
w = 6, and N = 8. The search-space of possible generators 
has 58-1 elements, using the above method. In comparison, 
if we were to search the space of all possible codes having 
rate 1/3 and L = 5, we would have 515-1 elements. Thus, the 
algorithmic approach described above narrows-down the 
search-space, since the g-mask is known beforehand.  
 
 

III. RESULTS 
 

 For this analysis, we use the GeneBank dataset for the 
Escherichia coli K-12 strain MG1655 [12]. The sequence 
was parsed, and the translated, hypothetically-translated and 
non-translated sequences were extracted. The number of 
sequences in each group was selected to be 1000.  
 We now try to find a code model having the following 
parameters: Rate = ½, L = 3, g-mask length = 6. The number 
of possible generators that can be obtained using a single g-
mask is 4. There are 8 possible g-masks of length 6, but 2 of 
them are non-invertible. So, there result 24 possible 
generators.  We require a generator that is non-catastrophic. 
So each possible solution is first examined, using the rank 
test for catastrophicity. The first non-catastrophic generator 
is retained for further analysis. At the end of this step, there 
remain 6 generators, one from each g-mask. It is worth 
noting that all the generators that are derived from a 
particular g-mask exhibit the same behavior when their 
parity streams are decoded. In other words, the syndrome-
distance pattern obtained is identical for all generators 
derived from the same g-mask. It is therefore justified that 
selecting only one non-catasrophic generator per g-mask is a 
viable approach.  

The set of translated, hypothetically-translated and non-
translated sequences are used to produce the corresponding 
encoded parity streams. The g-masks are applied on all the 
obtained encoded data, and the average relative frequencies 
(referred to as just “frequency”) of 2-symbol distance 
patterns is calculated at each position in the parity stream. It 
is found that the region  -12 to -2 shows a good distinction 
between the three types of sequences (Fig. 2). This is in 
agreement with the biology of the system, since the region 
before the start codon is known to contain information that 
distinguishes the coding from non-coding sequences [5]. 

A plausible measure of fitness of each generator would 
be its ability to produce encoded sequences, that show a 
clear distinction in parity, based on whether they are coding 
or non-coding. In accordance with this, two possible fitness 
values can be assigned to each generator: one based on the 
ratio of translated to hypothetically-translated peak 
frequencies (Fitness1) and another based on the ratio of 
translated to non-translated peak frequencies (Fitness2), in  

 
 
Fig. 2.  Frequency of most-occurring 2-symbol distance patterns by position 

in parity stream, for rate ½ code 
 
the range -12 to -2. An example showing the calculation of 
each fitness ratio follows. Let us consider the fifth generator. 
For the translated sequences, it has a peak frequency of 
0.0786, and for the hypothetically-translated sequences, the 
 peak frequency is 0.0781. The ratio of the two (i.e., 
Fitness1) is about 1, which is not unexpected. Using non-
translated sequences, a peak frequency of 0.0559 is 
obtained. The ratio of the peak frequency of the translated 
sequences to the peak frequency of non-translated sequences 
(i.e., Fitness2) is about 1.4. If the distribution of the 
syndrome distance patterns is assumed to be random, an 
average relative frequency of 0.04 should result for non-
translated sequences. The fitness graphs for the two cases 
are depicted in Fig. 3. The horizontal axis identifies each 
selected generator. 

 
 

 
 

Fig. 3.  Fitness of chosen generators, for rate ½ code 
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IV. DISCUSSION 

 
 It is observed from Fig. 3 that a generator that has a 
high value of Fitness1, does not necessarily have a high 
value of Fitness2. Generator 5, for instance, has a relatively 
low value of Fitness1, which means that it does not perform 
very well in distinguishing translated from hypothetically-
translated sequences. But, the same generator has the 
highest value of Fitness2. In that sense, it can be considered 
optimal with regard to the distinction between translated and 
non-translated sequences.  
 Our current research is focused on determining whether 
the convolutional code generator has a meaning in the 
biological sense. For instance, a convolutional code 
generator could represent an enzyme, which recognizes 
specific patterns in DNA chains and repairs or breaks the 
DNA at those locations. 

 
 

V. CONCLUSION 
 

 A sequence-based model for prokaryotic translation 
initiation has been presented using the theory of 
convolutional codes. We have devised a novel method for 
finding the generators of the convolutional code model, 
using table-based coding techniques. The performance of 
each generator has been evaluated based on its ability to 
produce a clear distinction between translated, 
hypothetically-translated and non-translated sequences. 
More efficient g-masks would produce consistent syndrome 
patterns, and could be constructed using techniques such as 
binding vector analysis [6]; research into this continues. 
Generators determined using such g-masks would represent 
the translation initiation process with greater accuracy.  
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APPENDIX 
 
A.  Table-based convolutional coding 

A rate k/n convolutional code will have n generators, each of which 
operate on L input symbols at a time. The length L, which is also the length 
of each generator, is called the constraint length. Thus, an n-bit encoded 
block at time t depends on the k-bit information block at time t, and on m 
previous information blocks. The encoded data is also referred to as parity. 
Each generator is applied on the input data, and the encoded symbols are 
calculated. Then the generators are moved by k positions to the right, and 
the procedure is repeated. For a rate ½ code, with L = 3, assuming the 
generators to be G = [1 2 4, 1 3 2], input data u = [0 0 1 1 0 2 0 0], we get 
the following parity:  v = [4 2 1 0 3 4 4 0 4 1 2 2].  
 The syndrome-former, or g-mask enables one to check if the received 
parity stream is correct or not. The g-mask is and-ed with the received 
parity bits and the result is summed modulo-5, giving the syndrome. The 
procedure is repeated after shifting the g-mask n positions along the parity 
stream. The g-mask for the above code is [1 4 3 3 2 1]. In the absence of 
any errors, it can be verified that the syndrome is all zero. The window 
length w is defined as w = n(L-k)/(n-k). The length of the g-mask = w+n 
 
B.  Constructing matrix C  in (1) 
 The g-mask coefficients are contained in matrix a. The matrix C is 
formed as follows: Consider the rate ½ code, L = 3. First, choose a data  
vector having just one non-zero element, u = [0 0 0 0 1 0 0 0 0]; 
Apply the generators and obtain the parity stream. 
v = [0 0 0 0 4 2 2 3 1 1 0 0 0 0]; 
C will have (w+k) rows and (w+n) columns. Shift elements from the parity 
stream into the rows of the C matrix, n at a time. This yields                                   























=

000011
001132
113224
322400
240000

C

 

 
C.  Catastrophic codes 
 A convolutional code generator is said to be catastrophic if a finite 
number of errors in the parity stream produced by it, result in an infinite 
number of decoding errors. Catastrophicity is a very undesirable property of 
any generator. In genetic coding systems, a catastrophic generator would 
not be able to recognize individual mRNA leader sequences. Invertibility of 
C guarantees non-catastrophicity.  
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