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A
dvances in genomic sequencing have provided large
amounts of data and have spurred computational
tools for recognition and modeling of protein coding
regions and accurate identification of exact transla-

tion start sites [1]–[10]. For example, probabilistic methods,
such as Suzek et al.’s RBSFinder and Yada et al.’s
GeneHacker Plus [11] return the location of the initiation
codon for prokaryotic genes.  Besemer and Borodovsky's
GeneMarkS uses iterative hidden Markov models (HMMs) to
locate translation start sites with relatively high accuracy [12].
Walker, et al. couple statistical methods with comparative
genomics methods to identify start sites.  Hannenhalli et al.
incorporate several biological factors into their quantitative
description of translational start sites, including the binding
energy at the ribosome binding site (RBS), distance between
RBS and initiator, and the initiator codon. They use a mixed
integer linear program to determine parameters for their dis-
criminatory model. GeneLook identifies protein-coding
sequences using a two-stage, ab initio process [10].
Classification is based on structural characteristics of the
sequence such as properties of the ribosome binding site
(RBS), operon structure, and codon and nucleotide frequency.
Other computational techniques including support vector
machine, machine learning, combinatorial approaches, free
energy calculations, Bayesian methods, and information theo-
ry have also been used in quantifying and classifying transla-
tional start sites [7], [13]–[15], [8], [16]. 

Though current computational methods have provided tools
for locating start sites and increased the overall accuracy of
gene locater systems such as GLIMMER and GeneMark, they
usually require larger sequence windows for classification of
initiation sites. Several initiation site classification tools such
as RBSfinder use prior gene classification knowledge to aid in
start site identification, hence functioning more like a post-
processor. The ribosome, the protein translation machine,
makes initiation decisions based on “real-time” processing of
a single messenger RNA leader region. To construct a classifi-
cation system that can make sufficiently correct real-time clas-
sification decisions and use a relatively small classification
window that is relatively independent of other environmental
factors, we propose an approach based on information theory.
Drawing on parallels between genetic information processing

in living organisms and the processing of communications
data, we develop an error-control coding-based translation ini-
tiation classification system that uses an eleven base classifica-
tion window.

In the sections that follow, we begin with an overview of
channel codes and a summary of the translation initiation
process. We draw parallels between the two and briefly review
a channel code model for translation initiation. We present our
block-code Bayesian classifier and discuss the results of
applying our system to the translation start site location prob-
lem for Escherichia coli K-12.

Channel Codes and Translation Initiation

Overview of Channel Codes
In data communication, the need for coding theory and its
techniques stems from the need for error control mechanisms.
In an engineering communication system, a k-symbol block
(bits for a binary alphabet) of digitized information is encoded
by a (n, k) encoder that combines the input symbols with (n-k)
additional symbols based on a deterministic algorithm. In the
biological domain a “symbol” can be the designator for an
amino acid or nucleic acid base. The algorithm produces an (n,
k) code, and the encoder is referred to as the channel encoder
or the error-control encoder. The set of all valid n-symbol
sequences (each sequence is called a codeword) produced by
the (n, k) code make up the codebook [17], [18]. There are Qk

codewords for a Q-ary code. (In the context of genetics, the
term code usually refers to the mapping of symbols used to
identify nucleic acid bases to symbols used to identify amino
acids that form proteins. In the information theory domain, a
code is the result of algorithmic manipulation of basic symbols
used to describe information. The purpose of this type of code
is to provide robustness in data communication processes. We
believe that the latter principle may in fact be used in the
analysis of genetic sequences.)

The encoded information is transmitted through a poten-
tially noisy channel where the transmitted bits can be cor-
rupted in a random fashion. At the receiving end, the
received message is decoded by a complementary channel
decoder [17], [18]. The decoding process involves the
removal and possibly correction of errors introduced during
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transmission and removal of the n-k excess symbols in order
to recover the original k-symbols of transmitted information.
The decoding mechanism can only cope with errors that do
not exceed the code’s error-correction capability. Figure 1
shows an example of a (3, 1) binary repetition code that uses
a majority-logic decoding algorithm.

Channel codes can be broadly described as pat-
tern recognition systems [19]. The codewords
produced by the code are patterns the system
wants to recognize. A “good” code will separate
valid patterns in such a way that they can be rec-
ognized and will reject all other patterns. This
work defines a “good” code based on how well
the code recognizes the “patterns” or RNA bases
that form the leader region, that is, the RNA
bases upstream of (preceding) the location of
translation initiation site (e.g., AUG).

Translation Initiation in Prokaryotes
There are three main steps involved in converting
information contained in DNA sequences into
functioning polypeptide chains: replication, tran-
scription, and translation [20]. During replication,
DNA doubles, forming an identical copy of itself.
In transcription, information contained in DNA is
converted to its RNA equivalent. The result, for
gene-specifying DNA, is a messenger RNA
(mRNA). In the final process, translation, the
ribosome (a compact macromolecule made up of
two subunits; in prokaryotes this is the 30S and
50S subunits) locates a valid start site (initiation
process) and converts the mRNA sequence to a
sequence of amino acids, which specifies a pro-
tein (elongation process). Each three-base mRNA
sequence (a codon) corresponds to an amino acid.

Initiation, the longest phase in translation,
involves two principal steps. First, the 30S ribo-
somal subunit combines with a stabilizing pro-
tein, initiation factor three (IF3). The 30S/IF3
molecule then recognizes the ribosome binding
site of the bacterial mRNA. A special hexamer
called the Shine-Dalgarno [21] sequence is con-
tained in the ribosome binding site. Once the
30S/IF3 molecule attaches to the mRNA, IF3 is
relased, leaving the mRNA/30S complex, which
is called the initiation complex. The 30S associ-
ates with the mRNA sequence by forming hydro-
gen bonds between the 16S ribosomal RNA
(rRNA) in the 30S subunit and the bases of the
mRNA (Figure 2). 

We now draw a parallel between the infor-
mation communication processes and the genet-
ic processes [22]. Assume that the unreplicated
DNA is the output of a concatenated encoding
process, the genetic replication process then
represents the error-introducing channel. The
genetic decoding process is then: transcription,
translation initiation, and translation elongation
plus termination [23] ,[24], [22]. We can now
view the ribosome's interaction with the mRNA
similar to the interaction of a channel decoder
with an error-control encoded received data

stream. Ideally, to determine the decoding model for the
ribosome we would simply invert the encoding model that
produced the DNA. We have yet to satisfactorily identify
the genetic process that parallels the error-control encoding
process. Instead we analyze key elements involved in initi-
ating protein translation and constructed a plausible

Fig. 1. An example (n=3, k=1) binary repetition error-control coding system.
The encoder combines the one information bit with two additional bits,
which are simple repetitions of the information bit. As the encoded bit
stream is transmitted through the channel, some bits can become corrupt-
ed. The decoder uses simple majority logic to determine the original trans-
mitted message. In majority logic decoding, we estimate our original
information bit to be a 0 if the majority of the received bits are zeros and a
one otherwise.
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Fig. 2. An illustration of the translation initiation process. Genetic information
is processed 5′ (five prime) to 3′ (three prime). The region before
(upstream) the initiation codon (designated by AUG/GUG/UUG) is known
as the 5′ untranslated leader region (UTR). The region following (down-
stream) the initiation codon is the protein coding portion of the mRNA. The
interaction between the 16S rRNA and the leader region of the mRNA is
key in successful initiation. Therefore we use the 3′ end of the 16S rRNA as a
template for forming the codewords for our block coding model.  
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encoding and corresponding decoding scheme for describ-
ing the initiation process in prokaryotic organisms.  The key
biological elements considered in forming the coding model
are: the 3′ (three prime) end of the 16S ribosomal RNA, the
common features of bacterial ribosomal binding sites (such
as the existence and location of the Shine-Dalgarno
sequence), and RNA/DNA base-pairing principles. An
encoding method was assumed and the corresponding
decoding algorithm was developed using the 16S ribosomal
RNA [25].

Block Code Model of Translation Initiation
In the information theory block code model, a genetic encoding
is modeled as an (n, k) block code whose output is a systemat-
ic, zero parity check code [17], [25]. A systematic zero parity
code contains the k information symbols at the beginning of the
codeword, followed by n-k parity symbols selected such that
the “sum” of the codeword symbols is zero. In the binary space
(zeros and ones) the “sum” operator is the exclusiveOR opera-
tion, in higher-order field mathematics, special operator tables
need to be constructed. Codewords of length n = 5 are con-
structed using the last 13 bases of the 3′ end of 16S ribosomal
RNA, which contains the hexamer complementary to the
Shine-Dalgarno sequence [20]. We use minimum Hamming
distance decoding to test the block code model of translation
initiation.  (The Hamming distance between two sequences is
the number of positions where they differ when aligned. See
[25] for a detailed description of the model.) 

Sequence data from the E. coli K-12 [26] strain MG1655
genome (downloaded from the National Institutes of Health
ftp site:  www.ncbi.nlm.nih.gov) is used to construct and test
the model. Figure 3 shows the resulting mean minimum
Hamming distance values by position for the (5, 2) block code
model. The horizontal axis is the position of the RNA base rel-
ative to the first base of the start (initiation) codon.  The verti-
cal axis shows the ensample mean of the minimum Hamming
distance values aligned for each of the three sequence groups
(translated sequences, hypothetical translated sequences, and
nontranslated sequences; categorized based on GenBank anno-
tations). In general, the smaller the value on the vertical axis,
the stronger the hydrogen bond formed between the ribosome

and the mRNA. Zero on the horizontal axis corresponds to the
alignment of the first base of a codeword with the first base of
the initiation codon.

As Figure 3 illustrates, there is a significant difference
among the translated, hypothetical, and the nontranslated
sequence groups. For the translated and hypothetically trans-
lated sequence groups, a minimum distance trough occurs in
the –15 to –10 regions. These key regions contain the nonran-
dom domain and the Shine-Dalgarno domain [27]. All the
sequence groups in the (5, 2) block code model achieve a
global minimum mean distance value in the –5 to 0 region.
This is most likely a result of their shared initiation codons.

Block-Code-Based Bayesian Classifier
Using the results of the block code model, we designed four
Bayesian classification systems. The systems classify individ-
ual mRNA sequences as translation initiation sites or noninitia-
tion sites based on the average minimum Hamming distance
values in the −15 to −11 alignment window (this includes
mRNA bases from position −15 to −7). The −15 to −11
window appears to provide the greatest distinction between
the mean minimum Hamming distance values of leader (con-
tains valid initiation site) and nonleader (contains invalid initi-
ation site) sequences in E. coli K-12 (Figure 3).

The components of a Bayesian classifier are s, a measurable
classification variable; P(s/wi), the conditional probability of
measuring a value of s given classification class w; P(wi), the
probability of the occurrence of each classification class.

The discrimination function for the classifier is 

P(wi |s) = P(s |wi)
∗ P(wi)

P(s)
, (1)

where i designates the classification classes and

i = (Translated, Nontranslated) (2)

and

P(s) =
Nclass∑

i=1

P(s | wi)
∗P(wi). (3)

The constant Nclass is the number of classification classes;
Nclass is two for the current work. Since P(s) is the same for all
classification classes, we can (for the purpose of classification)
simplify the discrimination function, (1), to

P(wi | s) ≈ P(s | wi)
∗P(wi). (4)

Measurable Classification Variable 
In the discrimination function, the value of the classification
variable s is derived from the sum of the positional Hamming
distance values within the −15 to −11 alignment window: 

s =
−11∑

p=−15

Davgp
, (5)

where 

Davgp
= 1

N

N∑

j=1

dminp, j. (6)Fig. 3. Results of minimum distance block decoding model
for the (5, 2) code.
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The positional Hamming distance value Davgp
is the average of

the N lowest Hamming distance values dminp, j for the subse-
quence that begins at position p. In this work, N is set to a
value that equals 10% of the total number of codewords in the
codebook. Below are the steps for calculating s for a given
mRNA subsequence, R−15..−7 (alignment positions are from
−15 to −11).
1) Set s to zero and position counter, p, to position −15.
2) For position p, find the Hamming distance between subse-

quence Rp..(p+n−1) and all codewords in the codebook [25].
3) Find Davgp

using the Hamming distance values calculated
for subsequence Rp..(p+n−1) .

4) Increment s: s = s + Davgp
.

5) Increment p: p = p + 1.
6) If p > −11 then exit, else goto Step 2.

To illustrate, let the (n = 5, k = 2) block code model pro-
duce the following set of ten valid codewords (a codebook): 

AAGGU AAGUG AAAUC GCAGG GCGGA
GCGAG CUGUG CUAUC UGAAG UCGGU

for 

N = 0.20∗10 = 2, (7)

and as a simple example, assume the mRNA subsequence (the
received parity stream) from position −15 to position −7 is a
repetitive sequence of cytosine bases: 

R−15..−7 = C C C C C C C C C. (8)

The s value for R−15..−7 is calculated as follows: 
➤ Set s = 0 and p = −15
➤ For p = −15, 

R−15..(− 15 + 5 − 1) = R−15..−11 = C C C C C .

Table 1 lists the Hamming distance between subsequence
R−15..−11 and all codewords in the example codebook.

➤ The N = 2 lowest Hamming distance values from Table
1 are three (corresponding to codeword CUAUC) and
four (corresponding to codeword AAAUC). Using (6),
Davg−15

is: 

Davg−15
= 1

2
(4 + 3) = 3.5 .

➤ Increment s:

s = 0 + Davg−15
= 3.5 .

➤ Increment p: 

p = −15 + 1 = −14 .

➤ Continuing as illustrated in the previous steps, we find that
for alignment positions p = −15.. − 11, Davg−15..−11

is 

Davg−15..−11
= (3.5 3.5 3.5 3.5 3.5) ,

and the value for the classification variable, s, is: 

s = 3.5 + 3.5 + 3.5 + 3.5 + 3.5 = 17.5. (9)

This process is used to calculate the s statistic for every mRNA
subsequence in the training and test sets. We compiled our
data set using GenBank sequences and annotations. All open
reading frames (with AUG on the start codon) on the noncom-
plement strands that were not listed as a gene were categorized
as nontranslating genes. All genes on the noncomplement
strand were categorized as translating genes. The data set
(translating and nontranslating) was divided in half to form
the training and testing data sets.

Defining the Statistical Model: P(wi | s)
The distribution for s of the training set of E. coli leader and 
nonleader sequences are shown in Figure 4 and Figure 5, are
formed. In the probability distribution function (PDF),
Figure 2, and in the cumulative distribution function (CDF),
Figure 3, the horizontal axes are the s values, and the verti-
cal axes are the probability of the s value occurring for the
translated (valid leader) and nontranslated (invalid leader)
training set models. A Wilcoxon Rank-Sum test applied to
the two training sets verified that their corresponding

Table 1. Hamming distance between example codeword
set and CCCCC.

Codeword DHamming Codeword DHamming

AAGGU 5 AAGUG 5

AAAUC 4 GCAGG 4

GCGGA 4 GCGAG 4

CUGUG 4 CUAUC 3

UGAAG 5 UCGGU 4

Fig. 4. Probability distribution of s values for the (5, 2) block code model.  
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probability distributions were nonidentical. Both the PDF
and CDF are used to model the probability that s occurs,
given that we are in class wi. 

The PDF model is the probability of a single s value
occurring in a given classification group, P(S = s | wi); the
CDF model is the probability of a range of s values occuring,
P(S ≤ s | wi).

Incorporating Prior Knowledge, P(wi)
Two approaches for defining P(wi), the probability that
class wi occurs, are investigated. One approach defines
prior probabilities by assessing the number of valid leader
regions and the number of invalid leader regions in the E.
coli genome. Valid leader regions are leaders that are asso-
ciated with an annotated gene, as designated in the E. coli
K-12 MG1655 genome [26] (available through GenBank).
Invalid leaders are sequences upstream from an open read-
ing frame that is not designated as a valid gene in
GenBank. The open reading frames associated with invalid
leaders must contain at least 33 codons. We estimate the
prions by taking the ratio of valid leaders to the total num-
ber of potential leaders and the ratio of nonvalid leaders to
the total number of potential leaders: 

P(wTranslated) = 9.39%, (10)

P(wNontranslated ) = 90.61%. (11)

The second approach for defining P(wi) uses the coding
theory framework on which our model is constructed. From
a coding theory view, the decoder has no prior knowledge
regarding the probability that a received parity sequence
(the mRNA leader) being a valid or an invalid leader.
Therefore, each class can be viewed as equally probable.
This results in the following prior probability values:

P(wTranslated) = 50%, (12)

P(wNontranslated ) = 50%. (13)

Both approaches are used in our classification system.

Bayesian Classification Systems
We form four discriminate functions using all combinations of
equal and unequal priors. 
➤ Classification System 1: Uses PDF and unequal prior

probabilities. 
➤ Classification System 2: Uses PDF and equal prior proba-

bilities. 
➤ Classification System 3: Uses CDF and unequal prior

probabilities. 
➤ Classification System 4: Uses CDF and equal prior proba-

bilities. 
Given the discrimination function, the rule for deciding to

which class a received parity sequence (the mRNA test
sequence) belongs to is: 

IF P(wTranslated | s) > P(wNontranslated | s)THEN 

Select wi = wTranslated

ELSEIF P(wNontranslated | s) > P(wTranslated | s)THEN 

Select wNontranslated

ELSE 

Indicate a tie occurred.
Fig. 6. Probability distributions used for the (5, 2) Bayesian
classifiers.

Fig. 5. Cumulative distribution of s values for the (5, 2) block code model.  
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To illustrate, using the statistic calculated in (9), we can
classify our example mRNA “received” sequence,
R−15..−11. For R−15..−11, the classification variable s equals
17.5. The discrimination functions for Classification
System 1 and P(wTranslated | s) and P(wNontranslated | s) are cal-
culated as follows: 
➤ Discrimination function for translated class: 

P(wTranslated | s = 17.5) = P(17.5 | wTranslated)
∗ P(wTranslated)

= 0.05∗0.0939 = 0.0047. (14)

➤ Discrimination function for nontranslated class: 

P(wNontranslated | s = 17.5) = P(s | wNontranslated ) ∗

P(wNontranslated ) = 0.015 ∗ 0.9061 = 0.0136. (15)

Since the value of the discrimination function for the non-
translated class is greater than that of the translated class, the
example sequence is classified as a nonvalid leader region.

Results
The four classification systems are implemented using the
codebook generated from the (5, 2) block code model for 
E. coli K-12 genomic sequences [25]. Table 2 gives the 
number of sequences in the training and testing data
groups. 

The training set is used to construct the statistical models
for the four classification systems and the classifiers are
applied to the sequences in the testing set. Table 3 shows the
classification results for the four Bayesian classifiers. 

The true positive and false positive rates for each classifier
in Table 3 are calculated as follows [27]:

True Positive = # of leaders correctly classified

total # of leader sequences
(16)

False Positive = # of nonleaders in correctly classified

total # of nonleader sequences
(17)

True negative and false negative rates are calculated in a
similar manner to (16) and (17), respectively.

Of the four classification systems, Classifier 2 seems to
perform the best,  classifying leader and nonleader
sequences equally well while maintaining a relatively low
rate of incorrect classifications. Table 4 shows the correct
versus incorrect classification rates for all four classifica-
tion systems. 

The incorrect classification is calculated as follows [29]:

%Incorrect

= 1.0 − TruePos + TrueNeg

TruePos + FalsePos + FalseNeg + TrueNeg
.

(18)

The correct classification value flows naturally from (18).

Discussion

Classifiers 1 and 3 have correct classification percentages
above 50%, as shown in Table 4. This is elevated rates of
accuracy are a result of very high specificity or true negative
values. Classifiers 1 and 3 are able to effectively detect
“errors” (sequences that are not part of the codebook set).
Their high error detection rate (ability to accurately classify
nonleader sequences) is heavily biased by the use of unequal
prior probabilities. Since the prior probability for nontranslat-
ed sequences is large, only sequences with very few errors or
deviations from the coding model can be detected. From a
coding theory perspective, the classifiers detect errors
extremely well. From an engineering perspective, a decoding
system like Classifiers 1 and 3 wastes resources because it
causes the transmitter to resend information multiple times.
Multiple retransmission would be necessary since the decod-
ing system fails to recognize slightly errored transmissions.
The biological parallel to Classifiers 1 and 3 is a system where
only “perfect” sequences are recognized as translation initia-
tion sites. Such a system may not be evolutionally viable.

Classifier 4 has the inverse problem. It fails from a coding
theory standpoint. Classifier 4 fails to detect any errors, since
it classifies all received sequences as valid. The biological sys-
tem represented by Classifier 4, which indiscriminately initi-
ates translation at all potential initiation sites, would exist
below Eigen’s error threshold for viable mutants [24]. Such a
system would also be evolutionally inviable.

As an error-control decoding system, Classifier 2 outper-
forms the other classification systems. It detects received
sequences with slight variations from the codeword set

Table 3. Results of Bayesian Classifiers for (5, 2) Block
Code (values are in %).

True False False True 
Positive Positive Negative Negative

Classifier 1 19.91 1.78 80.09 98.22

Classifier 2 67.90 20.28 32.10 79.72

Classifier 3 26.73 2.52 73.27 97.48

Classifier 4 100 100 0.00 0.00

Table 4. Classification rates (in %) for (5, 2) Bayesian
classification systems.

Correct Classification Incorrect Classification

Classifier 1 59.065 40.935

Classifier 2 73.81 26.19

Classifier 3 62.105 37.895

Classifier 4 50 50

Table 2. Size of training set and test set.

Number in Training Set Number in Test Set

Leader 1,459 1,458

Non-eader 10,520 10,519
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67.9% of the time and detects nonsystem sequences at an
even higher rate. For a system where a false positive classifi-
cation (interpreting an invalid sequence as valid) is costly or
detrimental to the system, Classifier 2 is not as desirable as
Classifiers 1 and 3. Classifier 2 has a false positive rate of
20.28% while Classifiers 1 and 3 have false positive rates of
1.78% and 2.52%, respectively. For some communication
systems, it is better to retransmit than to decode the informa-
tion incorrectly. When compared to the other three classifica-
tion systems, Classifier 2 represents the most biologically
feasible system. It is able to detect a varied set of correct ini-
tiation sites, while rejecting sequences with errors beyond
the error threshold. The biological equivalent of Classifier 2
has the greatest prospect for evolutionary viability.

To improve the classification systems that use unequal prior
probabilities, the block code model would have to produce
codewords that have a greater minimum Hamming distance
separation than the present code. Figure 4 shows the translated
and nontranslated PDFs for the current (5, 2) block code.
Reducing the region of overlap between the coding-based
probability distribution of leader and nonleader sequence sets
would increase the sensitivity of the classifier and reduce
incorrect classification rates. To accomplish this, a more pow-
erful error-control code must be designed. Such a code would
contain codewords with larger Hamming distances between
the sequences in the codebook set, thus increasing the mini-
mum distance of the code. The larger the minimum distance of
a code, the more errors it can detect and correct.

Conclusion
The classification system presented uses an eleven base
classification window to identify translation initiation sites.
This is a relatively small decision window compared to
other classification methods. The 74% correct classification
rate of System 2 appears to be comparable to that of
GeneMarkS (tested on a set of 195 experimentally validated
E. coli genes [12]) after its intermediary Step 2 (67% accu-
racy following an initial coding region identification step);
but GeneMarkS exceeds System 2 after intermediary Step 4
(85% following prediction using GeneMark.hmm). Upon
completing all model iterations, the accuracy of GeneMarkS
increases to almost 95%. We use genomic data from
GenBank to test our classification system, which differs
from the dataset used by GeneMarkS, Glimmer (71% cor-
rect classification rate), and ORPHEUS (76% correct classi-
fication rate). Their classification rates also reflect correct
classification of both the 5′ and 3′ ends of the gene, which
corresponds to the transcribed mRNA. A better comparison
system for our work is Nishi et al.’s GeneLook system [10].
Using annotated gene sequences, GeneLook was able to
accurately identify 76% of selected E. coli genes. Our 74%
accurate classification rate is comparable to Nishi et al.'s.

Our classification system reflects the genetic initiation
process in several aspects. In practice, the small ribosomal
subunit does not “analyze” the entire open reading frame
before determining whether a three-base nucleic acid sequence
is an initiation site. Likewise, the classification systems pre-
sented use a relatively small window to detect potential ribo-
some binding sites. Similar to the biological model, the
error-control-based classifiers use the redundancy, or extra
information, present in the mRNA leader sequence to locate
valid translation initiation sites.

The results thus far are encouraging. They suggest that it is
highly possible to implement an error-control coding-based
scoring system that can be combined with Bayesian classifica-
tion for detecting and possibly designing prokaryotic transla-
tion initiation sites. Elucidating how genetic systems
incorporate and use redundancy, which is at the core of infor-
mation-based error correction, and understanding the function-
al significance of genetic errors from a coding theory
perspective will help provide insight into the fundamental
rules that govern genetic regulatory systems.
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