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ABSTRACT

This work gives a brief overview of information theory based
approaches to genetic sequence and system analysis. The
state of research with regard to error-correction coding the-
ory methods for evaluating the genetic translation initiation
system is explored. We present research results of interest
in the area of error-control coding methods for modeling the
translation initiation system of Escherichia coli K-12.

1. INTRODUCTION

Roman-Roldan et al. suggest that living beings can be char-
acterized by their information processing ability and hence
information based analysis can be used in their study [1].
Viewing protein synthesis as an information processing sys-
tem allows nucleotide sequences to be analyzed as messages
without considering the physical-chemical elements for in-
formation processing [1]. Transfer of biological informa-
tion can be modeled as a communication channel with the
DNA sequence as the input and the amino acid sequence
which forms protein as the channel output [1]. The com-
munication channel view proposed by Roman-Roldan et al.
differs from the initial model presented by May et al. [2].
May et al.’s initial model defines the messenger RNA (mRNA)
as the output of the communication channel and incorpo-
rates a decoder that translates the mRNA into protein form-
ing amino acid chains. Roman-Roldan et al. designate the
process of mapping codons to amino acids as the transmis-
sion channel through which DNA is transmitted and protein
is received. May et al.’s initial model defines the genetic
channel as the DNA replication and transcription process
during which errors are introduced into the nucleotide se-
quence [2]. Both May et al. and Roman-Roldan et al. as-
sume the transmission channel to be stationary and memo-
ryless. Schneider et al. and Eigen also evaluate genetic pro-
cesses based on the systems information processing ability.
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1.1. Information Theory in Binding Site Analysis

Schneider et al. [3] analyze E. coli binding site (region on
DNA and RNA sequences to which macromolecules bind)
groups using two information based measures derived from
the Shannon entropy, H = −

∑M

i=1
pi log

2
pi (where pi is

the probability of each symbol i): (1) Rsequence - Measure
of the information in the binding site sequence patterns; (2)
Rfrequency - Amount of information needed to locate the
binding site, given that the binding site occurs with a certain
frequency in the genome. Rsequence and Rfrequency serve
as quantitative tools for studying how proteins locate their
respective binding sites among non-binding site sequences.
Schneider et al.’s information based evaluation of binding
sites led to two notable discoveries [4]: (1) The consen-
sus sequence (or the most “perfect” sequence) is improb-
able; (2) There exists an evolutionary relationship between
changes or variations of specific control points and the over-
all cellular control mechanism. This suggests that the ge-
netic translation system (most likely the genetic system as a
whole) permits, if not requires, some degree of error. There-
fore it must provide some method of error detection and er-
ror correction.

1.2. Information Theory and Genetic Evolution

Eigen [5] evaluates evolution based on a living system’s in-
formational capacity. He asserts that if reproduction is the
foundation for information conservation and if reproduc-
tion causes natural selection then there must exist an er-
ror threshold for reproduction. Above and below said er-
ror threshold, information is lost [5]. Only near the error
threshold of reproduction will there exist a large population
of viable variations or mutants. This mutant distribution or
“quasi-species” have a defined consensus sequence. Their
sequences are similar but non-identical [5]. The mutants
that form this set of quasi-species are the ones which sur-
vive, hence resulting in evolutionary flexibility.

Eigen further suggests that the genetic information, DNA,
has error correcting capabilities and that the complemen-
tary interactions found in the DNA molecule provide for



an encodable alphabet. The information space concept, or
sequence space, developed by Eigen maps nucleic acid se-
quences to a discrete point space [5]. The distance between
the points (sequences) in the sequence space is equal to the
number of positions in which the sequences differ from one
another [5]. Eigen’s sequence space can be paralleled to a
decoding sphere that is composed of n-symbol sequences
that are located around an n-symbol codeword [6]. The se-
quence distance concept is equivalent to the Hamming dis-
tance concept in coding theory [6]. Eigen and Schneider’s
work leads us towards a coding theory framework for the
analysis of genetic information.

2. CODING THEORY AND BIOLOGICAL
INFORMATION PROCESSING

Battail [7] argues, similar to Eigen, that for Dawkins’ model
of evolution to be tractable, error-correction coding must
be present in the genetic replication process. According to
Battail, proof-reading, a result of the error avoidance mech-
anism suggested by genome replication literature, does not
correct errors present in the original genetic message. Only
a genetic error correction mechanism can guarantee reliable
message regeneration in the presence of errors or mutations
due to thermal noise, radioactivity, and cosmic rays [7].
The survival of an organism necessitates the existence of
a reliable information replication process. Therefore error-
correcting codes must be used in replication or in another
process of information regeneration that precedes replica-
tion [7]. Battail also suggests that genetic information un-
dergoes nested encoding, where the result of a previous en-
coding process is combined with new information and en-
coded again. The more important genetic information is as-
sumed to be in the primary coded message [7].

Battail’s nested coding model mirrors coding theory’s
concept of concatenated codes [6]. Based on Battail and
Eigen’s works, the initial communication view of the ge-
netic system proposed by May et al. [2] is modified as
follows: (1) The replication process represents the error-
introducing channel; (2) Assuming a nested genetic encoder,
the genetic decoding process occurs over three levels: tran-
scription, translation initiation, and translation elongation
plus termination. Figure 1 depicts May et al.’s final cod-
ing theory view of translation initiation. Battail makes a
plea for increased research for the purpose of identifying
the error-correcting process proposed [7]. Though there is
little known research into error-correcting models for ge-
netic processes [2, 8, 9, 10], there is some research into cod-
ing theory based approaches to analyzing genetic sequences
[11, 12, 13, 14].
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Fig. 1. Modified Coding Theory View of the Central Dogma
of Genetics

2.1. Coding Theory and DNA Computing [11]

Kari et al. use circular codes to define heuristics for con-
structing codewords for DNA computing applications. In
DNA computing, the information storage capability of DNA
is combined with laboratory techniques that manipulate the
DNA to perform computations [11]. A key step in DNA
computing is encoding the problem in the DNA strand. The
challenge is to find codewords for encoding that do not form
undesirable bonds with itself or other codewords used or
produced during the computational process. Kari et al. used
coding theory to define rules for constructing “good” code-
words for DNA computing.

2.2. Coding Theory in Reading Frame Identification

Arques et al. statistically analyzed the results of 12,288 au-
tocorrelation functions of protein coding sequences. Based
on the results of the autocorrelation analysis, they identified
three sets of circular codes X0, X1, X2 which can be used
to distinguish the three possible reading frames in a protein
coding sequence [12]. A set of codons X is a circular code,
or a code without commas, if the code is able to be read in
only one frame without a designated initiation signal [12].
Crick et al. originally introduced the concept of codes with-
out commas in the alphabet A, C, G, T. It was later success-
fully addressed and extracted over the alphabet R, Y, N [12].
Arques et al. define a circular code over the A, C, G, T al-
phabet. They were able to use the three sets of circular codes
to retrieve the correct reading frame for a given protein se-
quence in a thirteen base window. They have used their
coding based model to analyze Kozak’s scanning mecha-
nism for eukaryotic translation initiation and other models
of translation [12].

2.3. Coding Theory Based Sequence Analysis

Stambuk also explored circular coding properties of nucleic
acid sequences [13] [15]. His approach was based on the



combinatorial necklace model which asks: “How many dif-
ferent necklaces of length m can be made from a bead of
q given colors [16, 13].” Using q = [A,C,G, T ] and q =
[R = Purine, Y = Pyrimidine,N = R or Y ], Stam-
buk applied the necklace model to genetic sequence analy-
sis, enabling the use of coding theory arithmetic in the anal-
ysis of the genetic code [13]. Although Stambuk did not
use error control coding in his analysis, his work provided
important insight into the structure of DNA sequences [13].

3. CHANNEL CODE MODELS FOR
TRANSLATION INITIATION

Although one does not know the exact mechanism employed
by the genetic decoder, by analyzing key elements involved
in initiating protein translation, it is hoped that we will gain
insight into possible decoding schemes used in the initia-
tion of translation in prokaryotic organisms. The key ele-
ments considered are: the 3’ end of the 16S ribosomal RNA,
the common features of bacterial ribosomal binding sites
(such as the existence and location of the Shine-Dalgarno
sequence), and RNA/DNA base-pairing principles. A block
coding model and convolutional coding model for the trans-
lation initiation system [2][8][9] were explored. Assuming
an encoding method, the corresponding decoding algorithm
was designed using the 16S ribosomal RNA.

3.1. Block Code Model [8]

In the block code model, the genetic encoder is modeled
as an (n, k) block code whose output is a systematic zero
parity check code [17] [2]. Codewords of length n = 5 and
n = 8 were developed based on the last thirteen bases of the
3’ end of 16S ribosomal RNA (which contains the hexamer
complementary to the Shine-Dalgarno sequence [18]) and
the proposed encoder model. The model employed a mini-
mum distance decoder to verify the block coding model for
translation initiation.

The E. coli K-12 strain MG1655 sequence data (down-
loaded from the NIH ftp site: ncbi.nlm.nih.gov) was used
to test the model. Figure 2 shows the resulting mean min-
imum distance by position for the (5,2) block code model.
The smaller the value on the vertical axis, the stronger the
bond formed between the ribosome and the mRNA. Zero
on the horizontal axis corresponds to the alignment of the
first base of a codeword with the first base of the initiation
codon.

As Figure 2 illustrates there is a significant difference
among the translated, hypothetical and the non-translated
sequence groups. For the translated and hypothetically trans-
lated sequence groups, a minimum distance trough occurs
between the -15 and -10 regions. The -15 to 0 region con-
tains large synchronization signals which can be used to de-
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Fig. 2. Results of Minimum Distance Block Decoding
Model for (5,2) Code

termine valid protein coding sequences or frames. There
are also smaller synchronization signals outside the -15 to 0
region which seem to oscillate with a frequency of three.

3.2. Convolutional Code Model [9]

The second error-correcting coding model investigated was
based on the principle hypothesis that the messenger RNA
(mRNA) sequence can be viewed as a noisy, convolution-
ally encoded signal. The ribosome was functionally paral-
leled to a table-based convolutional decoder. The 16S ribo-
somal RNA (rRNA) sequence was used to form decoding
masks for table-based decoding.

Convolutional coding produces encoded blocks based
on present and past information bits or blocks. The model-
ing assumption is that genetic operations such as initiation
and translation may involve “decisions” which are based
on immediate past and immediate future information. This
would allow error correction and other related functions.
The convolutional code model viewed the ribosome as a
mechanism with memory, which differs from Schneider’s
idea of macromolecular machines without memory [10]. Eval-
uating the messenger RNA as convolutionally encoded data
allowed the model to capture the inter-relatedness between
the bases in a mRNA sequence.

Figure 3 shows the frequency of the most frequent dis-
tance pattern among all possible two-symbol distance pat-
terns didj , where distance values range from zero to four.
The horizontal axis indicates position, with zero correspond-
ing to the alignment of the coding mask with the first base
of the initiation codon. The vertical axis indicates frequency
(0.04 corresponds to four percent, the expected frequency of
occurrence for a random, two-symbol distance pattern).

As shown in Figure 3, the convolutional code model was
able to distinguish between translated and non-translated
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sequence groups. The distinction among hypothetical and
translated groups is also evident. The convolutional code
model indicated greater information or occurrence of sig-
nificant activity in the area spanning the -15 to 0 region.
The Shine-Dalgarno sequence is located within this region
[18].

3.3. Analysis of Coding-Based Models

Three issues were critical to analyzing the effectiveness of
each error-control model for translation initiation: (1) Recog-
nition of regions within the mRNA leader sequence; (2)
Distinction between translated and non-translated sequence
groups; (3) Indication and recognition of the open read-
ing frame construct. Both models distinguished translated
sequence groups from the non-translated sequence group.
They both also indicated the existence of key regions within
the mRNA leader sequence. The block code model seemed
to recognize the ribosomal binding site (the location of the
Shine-Dalgarno sequence) more readily than the convolu-
tional code model. The block code model also indicated the
existence of a reading frame synchronization construct more
so than the convolutional code model. Additional results for
longer block codes and results for the longer gmask(twelve-
base masks) are presented in [2].

4. CONCLUSION

The results of the error-control coding models suggest that it
is possible to design a convolutional coding based heuristic
for distinguishing between protein coding and non-protein
coding genomic sequences by “decoding” the mRNA leader
region. Results also imply that genetic systems may use
methods which are functionally parallel to channel coding
techniques to protect and detect genetic signals. The suc-

cessful development and implementation of a channel cod-
ing model for the translation initiation system can lead to
the development of powerful methods for identifying and
manipulating protein coding sequences within a genome as
well as further our understanding of translation regulatory
mechanisms.

5. REFERENCES

[1] Ramon Roman-Roldan, Pedro Bernaola-Galvan, and Jose L. Oliver,
“Application of information theory to DNA sequence analysis: a re-
view,” Pattern Recognition, vol. 29, no. 7, pp. 1187–1194, 1996.

[2] Elebeoba E. May, “Comparative Analysis of Information Based
Models for Initiating Protein Translation in Escherichia coli K-12,”
M.S. thesis, NCSU, December 1998.

[3] Thomas D. Schneider, Gary D. Stormo, Larry Gold, and Andzej
Dhrenfeucht, “Information Content of Binding Sites on Nucelotide
Sequences,” Journal of Molecular Biology, vol. 188, pp. 415–431,
1986.

[4] Thomas D. Schneider, “Information content of individual genetic
sequences ,” Journal of Theoretical Biology, vol. 189, pp. 427–441,
1997.

[5] Manfred Eigen, “The origin of genetic information: viruses as mod-
els ,” Gene, vol. 135, pp. 37–47, 1993.

[6] Richard E. Blahut, Theory and Practice of Error Control Codes,
Addison-Wesley Publishing Company, Inc., Reading, MA, 1983.

[7] G. Battail, “Does information theory explain biological evolution? ,”
Europhysics Letters, vol. 40, no. 3, pp. 343–348, November 1997.

[8] Elebeoba E. May, Mladen A. Vouk, Donald L. Bitzer, and David I.
Rosnick, “Coding Model for Translation in E. coli K-12 ,” in First
Joint Conference of EMBS-BMES., 1999.

[9] Elebeoba E. May, Mladen A. Vouk, Donald L. Bitzer, and David I.
Rosnick, “The Ribosome as a Table-Driven Convolutional Decoder
for the Escherichia coli K-12 Translation Initiation System ,” in
World Congress on Medical Physics and Biomedical Engineering
Conference., 2000.

[10] Thomas D. Schneider, “Theory of Molecular Machines. I. Channel
Capacity of Molecular Machines,” Journal of Theoretical Biology,
vol. 148, pp. 83–123, 1991.

[11] Lila Kari, Rob Kitto, and Gabriel Thierrin, “Codes, Involutions and
DNA Encodings,” University of Western Ontario, London, Ontario,
Canada. Submitted.

[12] Didier G. Arques and Christian J. Michel, “A code in the protein
coding genes,” BioSystems, vol. 44, pp. 107–134, 1997.

[13] Nikola Stambuk, “On circular coding properties of gene and protein
sequences,” Croatica Chemica ACTA, vol. 72, no. 4, pp. 999–1008,
1999.

[14] Nikola Stambuk, “On the genetic origin of complementary protein
coding ,” Croatica Chemica ACTA, vol. 71, no. 3, pp. 573–589, 1998.

[15] Nikola Stambuk, “Symbolic Cantor Algorithm (SCA): A method for
analysis of gene and protein coding ,” Periodicum Biologorum, vol.
101, no. 4, pp. 355–361, 1999.

[16] Elwyn R. Berlekamp, Algebraic Coding Theory, McGraw-Hill Book
Company, New York, NY, 1968.

[17] Peter Sweeney, Error Control Coding an Introduction, Prentice Hall,
New York, NY, 1991.

[18] Benjamin Lewin, Genes V, Oxford University Press, New York, NY,
1995.


