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I
n this article, we investigate the possible existence of error-
detection/correction mechanisms in the genetic machinery
by means of a recently proposed coding strategy [11]. On
this basis, we numerically code exons, creating binary parity

strings and successively we study their dependence structure
by means of rigorous statistical methods (moving block boot-
strap, and a new entropy-based method). The results show that
parity sequences display complex dependence patterns enforc-
ing the hypothesis of the existence of deterministic error-cor-
rection mechanisms grounded on this particular parity coding.

Introduction
The rules governing the translation of RNA sequences into
proteins were discovered some 40 years ago [1]. The universal
biochemical translation table known as the genetic code con-
nects two different chemical worlds: that of the nucleic acids
with that of the biologically active proteins. The identification
of this table with a code (a man-made system implementing
symbolic representation for communication purposes) repre-
sents an early perception of the deep connection between bio-
logical information and coding theory. Coding theory is a
research area intimately related to information and communi-
cation systems theory; for this reason, the introduction of tools
from these related fields has represented a natural and
inevitable step in the study of genetic information flow [2]. 

Information theory aims at giving a theoretical framework
to processes characterized by some kind of information
exchange. The main practical problem faced by information
theory, and, in particular, by communication systems theory,
is that of the transmission of reliable information through
unreliable channels. To this aim, error detection and correction
using appropriate coding and decoding methods represent a
crucial step. All the methods of error-control coding are based
on the adding of redundancy to the transmitted information.
As the genetic information is redundant (evident, for example,
in the case of short repeats inside introns), and since the genetic
code is also redundant itself (intrinsic redundancy in the cod-
ing of amino acids), the possible existence of error-control
mechanisms represents a somehow natural hypothesis [2]–[9]
related to the biological task of ensuring a high degree of relia-
bility in the transmission and expression of genetic informa-
tion. In literature, such a hypothesis has been explored from a

constructive point of view by proposing possible coding
strategies that may be used in the organization of genetic
information [6]–[8] and also from a statistical point of view,
that is, by studying the dependence between symbols for
revealing the existence of underlying coding mechanisms [5].

In this article we investigate this problem from a point of
view that takes into account, to some extent, the two above
mentioned approaches. The article is composed of two main
parts. In the first part (“Parity Coding, Error Corrections, and
DNA” and “A Mathematical Theory for the Genetic Code”),
we present a new mathematical theory of the genetic code that
leads to a coding strategy of codons and amino acids showing
very interesting mathematical properties from the point of
view of coding theory. This first part represents a construc-
tivist part of the article in the sense that the natural coding we
propose suggests the existence of error-control/correction
mechanisms operating on the basis of its intrinsic mathemati-
cal structure.

In the second part (“Exploring the Structure of Binary
Sequences” and “Results: Analysis of DNA Binary
Sequences”), we study the statistical properties of real coding
sequences with methods tailored for the study of binary
sequences. The output of the aforementioned coding is a bina-
ry string obtained by sequentially appending 6-b words (bina-
ry words of 6 bits length) representing codons. As it will be
shown below, these 6-b words possess well-defined parity
properties; therefore, a simplified version of the coding can be
obtained by replacing the 6-b words with 1-b words contain-
ing only the parity information (recall that the parity of the 6-b
string can be defined as the parity of the summation of its
symbols: an even number of ones leads to an even string, an
odd number of ones to an odd string). The possible existence
of an error-correction mechanism based on this parity coding
is explored on an empirical basis. This hypothesis necessarily
implies that the binary symbols exhibit some structure of
dependence. The search for such structure of dependence by
means of rigorous statistical methods is thus the scope of the
second part of this article.

The sections are structured as follows: in the second section
we discuss the goal of the article and where the work fits into
the state of the art on coding theory applied to the study of
biological information flow.
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In the third section, we describe in some detail the new
mathematical theory of the genetic code [10], [11]; this theory
is based on the representation of natural numbers by means of
the so-called nonpower binary number representation systems.
The theory describes the degeneracy of the genetic code and
allows a 6-b binary characterization of codons. Moreover, hid-
den symmetry properties of the genetic code are highlighted.
Also, the role of the parity of the 6-b representation of codons
is shown. On this basis, we describe how to numerically code
exons (protein coding regions of DNA) and obtain parity
strings, i.e., strings formed by attaching a parity symbol to
every codon in a given sequence. This parity coding represents
the starting point for the statistical analysis performed in the
following sections.

In the fourth section, we describe two advanced statistical
methods for the study of the dependence structure in binary
strings, i.e., the moving block bootstrap (MBB) [12] and an
entropy-based dependence metric (the normalized
Bhattacharya-Hellinger-Matusita distance) [13]. 

In the fifth section, we show the results of applying the
methods described in section four to binary parity strings.
These strings are obtained from the coding described in sec-
tion three to the protein-coding sequences x80497 (phosphory-
lase kinase, Homo sapiens) and AF017114 (glycogen synthase
mRNA, Oryctolagus cuniculus).

The possible significance of these statistical results is dis-
cussed in the last section. The results suggest that the intrinsic
redundancy present in the genetic code, i.e., the existence of
synonymous codons, can be used to encode additional infor-
mation for error control and correction. Should this hypothesis
be proven correct, the theoretical description of redundancy in
the actual genetic code would represent a key point in eluci-
dating the genetic mechanism acting on this basis. In the con-
clusion section, we report on implications and suggestions
together with future research directions prompted by the
results obtained by combining the novel mathematical theory
for the genetic code and rigorous statistical methods.

Parity Coding, Error Correction, and DNA
We have mentioned the analogies between the genetic
machinery and communication processes. Basically, a com-
munication process is characterized by three main sub-
processes: the coding of the information to be communicated,
the transmission of the information along the communication
channel, and the decoding of the information at the receiver.
Usually, it is in the communication channel that unwanted
errors are introduced. In man-made communication systems,
the coding and decoding steps are tailored in such a way that
detection and correction of the errors introduced in the com-
munication channel can be achieved. Indeed, this is the main
purpose of communication theory, i.e., to transmit reliable

information through unreliable channels.
Different authors have modeled the genetic information

flow in the framework of communication theory ([2], [6], [14],
[15]). For example, in [16] a detailed view is given including
transcription, translation initiation, and translation elongation
in the decoding step, while replication is considered as the
main process related to the transmission channel. Even if a
thorough analysis in terms of communication theory is not the
main aim of this article, we make use of some general features
that every communication system, including the genetic one,
must possess. From this point of view, we need to remark that
it is very difficult to identify a coding step in the genetic sys-
tem. The information is transmitted along different genetic
processes (replication, transcription, and translation) as it is
determined at its source, the double helix of DNA (following
the central dogma of molecular biology, no additional infor-
mation is produced in these steps); that is, the information
arises already in coded format. Ignorance about these ab initio
coding rules implies ignorance about the constraints imposed
by these rules on the decoding mechanism. 

Our point of view in this regard is a pragmatic one. We
know that genetic information is coded; exons can be decoded
following the rules of the genetic code (introns or intergenic
regions also may convey biological information, but we do not
know a general decoding rule). Moreover, we know that the
genetic code is redundant; that is, a given amino acid may be
decoded starting from more than one different codon. Thus,
we have a decoding table—the genetic code—and a redundan-
cy associated to this table, the main ingredients needed to
implement an error-correction mechanism. Hence, the ques-
tion naturally arises: Can an error-correction mechanism be
implemented on this basis? To this regard, we need to distin-
guish between robustness to errors and error correction. The
robustness to errors of the genetic code has long been recog-
nized; a random error produced in a particular codon leads to
the same amino acid or to some similar one from the point of
view of physico-chemical properties. But this robustness is not
due to an error-correction mechanism. It must be remarked
that the natural robustness of the genetic code against errors
does not impose any constraint in the redundancy distribution.
Instead, an error-correction mechanism, implies the organiza-
tion of the redundancy in a mathematically structured way
(usually following the properties of finite groups). Thus, one
of the crucial points for the existence of error-correction
mechanisms is the existence of a mathematical structure in the
coded data or, equivalently for the genetic case, a mathemati-
cal structure in the genetic code evidencing the mathematical
structure in the data to be decoded.

The other crucial point concerns the redundancy: How is
redundancy encoded in the genetic information? The existence
of an error-correction mechanism automatically implies the

The new theory for the genetic code is based on a
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existence of dependencies between the symbols representing
the information. 

In this sense, our work is based on these two premises: the
founding in the genetic code of a strong mathematical orga-
nization and the study of the dependence of the data pro-
duced by coding real data on the basis of this mathematical
organization.

In literature, a few different mathematical models of the
genetic code, mainly dealing with the description of the first
level of degeneracy (the distribution of the number of synony-
mous codons), have been proposed [17]–[20]. Our approach is
radically different because it is the unique model that
describes exactly the first level of degeneracy of the genetic
code and gives a deep insight into the second level of degener-
acy (the association between specific codons and specific
amino acids). Moreover, the approach reveals many surprising
numeric and symmetry properties of the genetic code, as
explained in the next section. To the authors’ knowledge, this
is the unique mathematical model based on a nonpower binary
representation of natural numbers. A different model, pro-
posed in [19], is based on number representations and on the
number of nucleons on amino acids’ side chains and uses the
digital system and a modulus equivalence.

In literature, the structure of dependence has been studied
mainly with the aim of identifying protein-coding regions, that
is, discerning them from intronic and intergenic noncoding
regions of DNA (see, for example, [21]). The main aim of this
article is somehow different from existing approaches since, as
previously stated, we want to investigate the existence of
error-correction mechanisms suggested by the strong mathe-
matical structure found in the genetic code. However, the
results can be also interesting in relation to the study of long-
range correlations in genetic data. In fact, as shown in the next
section, the 6-b coding (and, consequently, also the parity cod-
ing) is not a fixed binary coding, that is, any of the four bases
is not represented by a fixed 2-b number.

In fact, the four bases of DNA are usually coded by a two-
digit binary number [22]. For example, we can assign to
thymine/uracil (T/U) the binary string (0,0), to cytosine (C)
(0,1), to adenine (A) (1,0), and to guanine (G) (1,1) (see also
[23]). This assignation is necessarily arbitrary as there is no
reason to assign to T the string (1,0) instead of (0,0) and so on.
Some researchers assign such numbers taking into account the
chemical properties of the base (such as the purine or pyrimi-
dine character) sometimes reducing the binary dimension of
the representation [21]. Also, in this case, the assignation is
arbitrary since this only shifts the problem: Why assign 1 to
purine and 0 to pyrimidine and not the reverse? or why not use
the other possible partition of bases as keto and amino or
strong and weak? For the coding of the four bases (T, C, A, G)
in a triplet, there is a total of 24 possible fixed 2-b different
choices or six different choices if the representation is 1-b (in
fact robustness against fixed code choice has been tested for
some alternatives regarding this last case [21]). Our approach,
on the contrary, provides a natural strategy for the numerical
coding of bases because it takes into account the degeneracy
properties of the genetic code. Moreover, codons can be char-
acterized by a parity bit in a nontrivial way, i.e., this character-
ization cannot be obtained with any of the fixed assignations
mentioned above; the numerical assignation in the nonpower
binary number representation is not fixed but context depen-
dent. Because of the uniqueness of the numerical values of the

basis describing the code degeneracy in the nonpower binary
representation, we denote it for simplicity as the genetic code
like binary representation (GCL binary representation).

The existence of correlations associated to this coding has
not been investigated before. A comparative study between
this and former approaches may give a deeper view about the
origin of correlations in the genomic data.

In literature, the use of parity coding at the genetic level has
been suggested in different contexts [3], [7], [8], [10], [11]. In
the approach described in [7], it is shown that a parity coding
is actually working at a chemical level for the selection of
complementary bases in DNA. Such an approach is relevant in
an evolutionary context in order to explain the actual use of
complementary bases in modern DNA. Our approach suggests
a similar coding acting along the double helix of DNA, where
biologically meaningful information is encoded; of course, the
same coding can be applied to both the DNA and the messen-
ger RNA (mRNA) by simply swapping T and U. 

Clearly, if some error-control mechanism is present, the
redundant information cannot be stochastically independent;
crucial information about the relative dependence of different
symbols can be obtained by statistical methods. The GCL cod-
ing gives a natural parity assignation for codons; therefore, in
the second part of the article, we study the dependence proper-
ties of binary parity sequences obtained from sequences of
DNA or mRNA. This statistical information represents a nec-
essary step in order to crack any eventual error-control mecha-
nism based on this specific coding and may be useful also in
order to gain understanding about the organization of the
genetic information along nucleic acid molecules (for exam-
ple, the existence of long-range correlations).

A Mathematical Theory for the Genetic Code
From a mathematical point of view, the new theory for the
genetic code is based on a nonunivocal representation of whole
numbers by means of the so-called nonpower binary bases.
Contrary to the usual number representation systems, that is,
systems in which the positional values grow as the powers of
some base (for example, the powers of 10 in the usual decimal
power representation), nonpower refers to the fact that the posi-
tional values of the representation system grow more slowly
than the power of some basis (the powers of 2 in the nonpower
binary systems). It is shown that there exists a unique nonpow-
er set of positional bases (called a genetic code like nonpower
binary representation system) capable of explaining all the log-
ical properties associated with the degeneracy of the genetic
code viewed as a generic correspondence or mapping between
two sets with a different number of elements (the 64 possible
codons formed by all the combinations of four letters, T/U, C,
A, G, and the 20 amino acids plus the stop signal).

Table 1. Degeneracy distribution
for the standard genetic code.

Degeneracy Amino Acids (#)

6 3

4 5

3 2

2 9

1 2
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Due to the redundancy of the code, some elements of the
codon set are necessarily mapped to the same element of the
amino acids set. In Table 1 we show the actual distribution of the
codons that codify the same amino acid in the standard genetic
code. Such a table represents the first level of degeneracy.

Besides the description that refers to this first level of
degeneracy, called the degeneracy distribution, it is important
to account for the distribution of codons and amino acids
inside the degeneracy distribution since each possesses a pre-
cise physicochemical and biological identity. The nonpower
representation theory of the genetic code also provides a deep
insight into this second level of degeneracy, that is, the specific
codon and amino acid assignation inside the given degeneracy
distribution. The theoretical representation proposed here is
also able to disclose the presence of a hidden symmetry of the
genetic code, the so-called palindromic symmetry. This sym-
metry is related to the existence of degeneracy-preserving
transformation rules which associate amino acids in pairs
(pairs of palindromic amino acids). Moreover, numerical ele-
ments in the nonpower representation can be associated with
biochemical elements in the genetic code. This association
uncovers another hidden property of the genetic code: individ-
ual codons are codified in parity, i.e., a parity bit can be
assigned to every codon. This last property is very appealing
since it can be related to the possible existence of error-correc-
tion mechanisms in the genetic machinery. Parity coding is
one of the simplest and most widely used strategies for error
control and correction in man made digital communication
systems. 

From the point of view of set theory, the genetic code is
a correspondence or mapping between two sets of different
cardinality: the 64 codons formed by all the possible com-
binations of the four bases, U, C, A, G, and the 20 amino
acids plus the stop signal. The correspondence defines the
starting and arriving sets; that is, an arrow points from a given
element of the codons set (starting set) to a corresponding ele-
ment in the amino acids set (arriving set). The direction of the
arrows is compatible with the central dogma of molecular
biology; that is, the genetic information flow is only from
nucleic acids to proteins. The different cardinality of the start-

ing and arriving sets implies the redundancy and degeneracy
properties of the code. Our aim is to build a mathematical
structure that possesses the degeneracy properties of the genet-
ic code from a logical point of view. In other words, we aim at
creating a structural isomorphism.

First, we define the properties of the genetic code from the
point of view of set theory: the code is a surjective, noninjec-
tive correspondence (that is, not one-to-many) between two
sets of different cardinality. The surjective property assures
that no elements in the arriving set are vacant (all amino acids
and the stop signal are coded by at least one codon). The non-
injective property refers to the fact that some elements in the
arriving set are represented by more than one element in the
starting set (some amino acids are represented by more than
one codon). This property viewed from the point of view of
the arriving set is called degeneracy: a given amino acid does
not uniquely specify the codon that originated it. From a math-
ematical point of view, this implies that the correspondence is
not invertible. In biological terms, this affirmation is equiva-
lent to saying that, given a coding sequence, we can know the
corresponding sequence of amino acids defining a particular
protein; but given a particular protein, we do not know the
specific sequence of codons that codify it at the mRNA or
DNA levels. The noninjective property viewed from the start-
ing set point of view implies the concept of redundancy: dif-
ferent elements of the starting set codify for the same element
in the arriving set (different codons codify the same amino
acid). The redundant elements are called in this biological case
synonymous codons. The “not one-to-many” property means
that a specific codon cannot codify for more than one amino
acid; this is a true statement for a given variant of the code and
excludes possible contex-dependent translation oddities. 

Theoretically, the properties we have just defined can iden-
tify infinite correspondences between sets of different cardi-
nality. We must now define a correspondence that takes into
account the actual cardinal numbers of the genetic code. For
this purpose, we first need to define degeneracy distribution,
that is, a table (see Table 1) where we report all the degenera-
cy values actually found in the code (left) along with the cor-
responding number of amino acids that share such a
degeneracy (right).

For different reasons (for example, the symmetry properties
of the code or some oddities in the characteristics of the
degeneracy-6 group of amino acids), different authors (see
[11] and references therein) have considered the degeneracy
distribution inside quartets of the genetic code, that is, inside
groups of four codons sharing their first two letters (for exam-
ple, the quartet UGU, UGC, UGA, UGG). From a mathemati-
cal point of view, this is equivalent to enlarging the arriving
set of 21 elements to 24 elements as follows: the degeneracy-6
amino acids are split into two elements, the first represented

Table 2. Degeneracy distribution inside quartets
for the Euplotid nuclear variant of the genetic code.

Degeneracy Amino Acids (#)

4 8

3 2

2 12

1 2

If some error-control mechanism is present,

the redundant information cannot be

stochastically independent. 
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by four codons and the second by two of them. In this way the
20 amino acids plus the stop signal are represented by 24 dif-
ferent sets. For reasons that will become clear below, this is
the representation which we aim at describing here. The
degeneracy distribution obtained from the genetic code corre-
spondence between the two sets of 64 and 24 elements is
shown in Table 2 for the euplotid nuclear variant of the code,
which differs from the standard one only in the assignation of
the TGA codon (cysteine instead of stop). Now, we describe
the mathematical model that enables us to build a structural
isomorphism having the same mathematical structure as the
genetic code. The theoretical framework is that of number the-
ory and, in particular, the theory of integer number representa-
tion. Usual power positional representation systems are based
on an additive process in which the powers of a given base are
multiplied for the positional digits and added together in order
to obtain a given integer. In the decimal representation system
the powers of 10 are used. The digits can range from 0 to n−1,
in this case, 0 to 9. For instance, the number 735 can be
obtained as 75 = 5 × 100 + 3 × 101 + 7 × 102 .

The fact that the digits are limited to the value of n−1,
ensures the one-to-one character of the representation: a
number is represented by only one combination of digits
and vice versa. However, we are interested in redundant
representation systems; redundancy can be obtained in two
ways, allowing for the digits to go over their range or
decreasing to some extent the values of the positional num-
bers (the ordered powers of the given base for power repre-
sentation systems). We use this second possibility starting
with the power representation system with the lowest inte-
ger base, i.e., 2, which defines the binary positional system.
Thus in our system we assign to the positional numbers dif-
ferent values that grow more slowly than the powers of two.
In particular, by taking the following set of positional val-
ues: [1 1 2 4 7 8], we can reproduce exactly the degeneracy
distribution of the genetic code presented in Table 2 (for
details see [11]).

At this point we have found a structural isomorphism
between two correspondences: on one side we have codons in
the starting set and amino acids in the arriving set, and on the
other side, we have six-digit binary strings in the starting set
and 24 whole numbers in the arriving one. The scheme
describes perfectly the degeneracy properties of the genetic
code. Nevertheless, it is well known that the identity of biolog-
ical elements matters: arbitrary permutations of codons inside
a given degeneracy distribution are not equivalent from a bio-
logical point of view. Surprisingly though, on the basis of the
analysis of the symmetry properties on both sides of the struc-
tural isomorphism, we can relate in a natural fashion numeri-
cal elements of the no-power representation to biochemical
elements of the genetic code. In this way, codons are mapped
into 6-b binary strings, just like amino acids are mapped into
integer numbers. The details of this mapping have been reported
in [11] and are summarized in Table 3. The table shows 
the representation of the first 24 whole numbers in the 
GCL nonpower binary system. Each whole number is repre-
sented by a set of length-6 binary strings, for example, the
number 6 is represented by the strings (001011) and (001100). 
In fact, 0 ∗ 8 + 0 ∗ 7 + 1 ∗ 4 + 0 ∗ 2 + 1 ∗ 1 + 1 ∗ 1 =
0 ∗ 8 + 0 ∗ 7 + 1 ∗ 4 + 1 ∗ 2 + 0 ∗ 1 + 0 ∗ 1 = 6 . The amino
acid corresponding to a given whole number is shown in the
central columns of the table. Observe that the number of binary
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strings representing a given whole number corresponds to the
degeneracy of the assigned amino acid describing exactly the
degeneracy distribution of the genetic code.

Two major consequences arising from this approach are in
order: 1) the uncovering of a hidden symmetry inside the
genetic code, i.e., the palindromic symmetry, and 2) the natur-
al classification of codons in definite parity classes. In Table 4,
we show graphically the palindromic symmetry that maps
quartets, preserving the degeneracy distribution; in 
Table 5, we show the parity distribution of codons. Every
codon is assigned a parity bit which corresponds to the parity
of the length-6 binary string shown in Table 3. Note that, as
remarked above, the parity of the binary string can be comput-
ed by summating its symbols: an even number of ones leads to

an even string and an odd number of ones to an odd string. We
can observe that the parity bit can be also derived easily on the
biochemical side by means of two complementary rules
applied to codons: if the codon ends with a purine base (A or
G), the parity is determined by such base (that is, an A defines
an odd codon, and a G defines an even codon); if instead, the
codon ends with a pyrimidine base (U or C), the parity bit is
determined by the second letter of the codon (i.e., C or A in
the second position give an even codon, and U or G deter-
mines an odd codon). 

As we have remarked above, in this article we focus mainly
on the parity coding because of its connection with hypotheti-
cal error-control mechanisms. Hence, in the next section we
try to fathom this hypothesis by analyzing the dependence
structure of parity sequences obtained through the application
of the nonpower parity bit assignation as shown in Table 5.

Exploring the Structure of Binary Sequences
In the bioinformatics literature, the dependence structure of
DNA sequences has been investigated in several studies, even
though a rigorous statistical approach is not always followed.
For an excellent statistics-oriented review on the topic see [24].

In order to investigate the dependence structure of DNA
parity sequences, we exploit statistical methods that are appro-
priate for the analysis of dependent data. In the next section,
we will discuss and motivate the use of such methods in our
context. In particular, we will give a reliable estimate of the
standard error and related confidence intervals for the propor-
tion p of zeros in the sequences. Moreover, as shown above,
we are able to assess quantitatively the presence of possible
dependencies in the data. In order to investigate further such
dependence, we will introduce a metric based on entropy as a
relevant tool for characterizing the structure of DNA
sequences.

Bootstrap Methods for Dependent Data
In this section, we outline a brief sketch about bootstrap meth-
ods. Such techniques introduced by Efron in 1979 [25] and
described more fully in [26] are intensive computational pro-
cedures based on resampling from the observed data. Let the
observed sample xn = (x1, x2 . . . , xn) be a realization of ran-
dom vector Xn = (X1, X2 . . . , Xn) having an unknown
underlying distribution function F. Let θ be the unknown para-
meter of interest (for example, the mean, median, correlation
coefficient, etc.), θ(Xn) be an estimator of θ , and θ(xn) be an
estimate based on the observed sample xn . The bootstrap
gives a somewhat “automatic” nonparametric method for pro-
viding an approximation of the unknown distribution of
θ(Xn), in particular for estimating its standard error, denoted
with σ(θ). In the following, we will denote the estimate of
σ(θ) with σ̂ (θ) or simply σ . Notice that even though F is
known, assessing the accuracy of an estimate is often a diffi-
cult task, except for rather simple cases. The basic idea of the
bootstrap is to resample the original data xn and make infer-
ence from the resamples. All this requires the following steps:
1) estimate F by F̂ , the empirical distribution function,
obtained by putting probability mass 1/n on each xn; 2) gener-
ate a bootstrap sample x∗

n = (x∗
1, x∗

2 . . . , x∗
n) from F̂ by mak-

ing independent random draws with replacement from the
data; 3) compute the bootstrap replication θ∗ = θ∗(xn), that is,
the value of the statistics pertaining to the bootstrap sample
x∗

n ; and 4) repeat the second and third steps B times to obtain B
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Table 4. Graphical representation of the palindromic
symmetry. All the quartets—defined by the same two first
letters (bases) of codons—are associated in pairs by the
palindromic transformation. Arrows of the same color
indicate a common operation at the triplet level.

T C A G

T

C

A

G

Table 5. Graphical representation of the parity
classification of triplets. Light gray boxes indicate odd
triplets, dark gray boxes indicate even triplets. The parity
of a codon corresponds to the parity of the length-6
binary string that represents it in the GCL nonpower
representation (see Table 3).

T C A G

TTT Phe TCT Ser TAT Tyr TGT Cys T

TTC Phe TCC Ser TAC Tyr TGC Cys C
T

TTA Leu TCA Ser TAA Stop TGA Cys A

TTG Leu TCG Ser TAG Stop TGG Trp G

C

CTT Leu CCT Pro CAT His CGT Arg T

CTC Leu CCC Pro CAT His CGC Arg C

CTA Leu CCA Pro CAA Gln CGA Arg A

CTG Leu CCG Pro CAG Gln CGG Arg G

A

ATT Ile ACT Thr AAT Asn AGT Ser T

ATC Ile ACC Thr AAC Asn AGC Ser C

ATA Ile ACA Thr AAA Lys AGA Arg A

ATG Met ACG Thr AAG Lys AGG Arg G

G

GTT Val GCT Ala GAT Asp GGT Gly T

GTC Val GCC Ala GAC Asp GGC Gly C

GTA Val GCA Ala GAA Glu GGA Gly A

GTG Val GCG Ala GAG Glu GGG Gly G
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bootstrap replications whose distribution approximates the
distribution of θ(Xn). The estimate of the standard error σ(θ)

is approximated by the bootstrap standard error σ̂ (θ∗), or sim-
ply σ̂ ∗, given by:

σ̂ ∗ =
[

B∑
b=1

(θ̂∗
b − θ̄∗

b )2

B − 1

]1/2

, (1)

where

θ̄∗ =
B∑

b=1

θ̂∗
b

B
.

If the observations are correlated, that is, they can no
longer be considered realizations of mutually indepen-
dent random variables with the same distribution func-
tion F, the bootstrap is not applicable in the form
outlined above, since the dependence structure of the
data is disregarded. So, the “classical” bootstrap for
independent and identically distributed (IID) variables,
call it an IID-bootstrap, must be replaced by the mov-
ing block bootstrap (MBB), which resamples not indi-
vidual observations but blocks of observations. The
MBB allows one to assign measures of accuracy to sta-
tistical estimates for dependent observations in the form
of finite time series. This problem is discussed also in
[27], here we recall summarily some basic points. 

Consider the stationary time series Xn =
(X1, X2, . . . , Xn) . Let µ, σ 2

0 , γk and
ρk k = (1, . . . , n − 1) be the mean, variance, covari-
ance, and autocorrelation function of Xn , respectively.
Note that γ0 = σ 2

0 and ρk = γk/γ0 The variance of the
estimator X̄ n of µ, is given by 

σ 2 = Var[X̄n] = σ 2
0

n
+ 2

n−1∑
k=1

n − k

n2
γk

= σ 2
0

n

[
1 + 2

n=1∑
k=1

n − k

n
ρk

]
(2)

Since it will be useful in the following, we recall that in sta-
tistical mechanics the variance of Xn is usually written as
(see, e.g., [28]) 

σ 2 = σ 2
0

(
1 + 2τ

δt

)
, (3)

where τ is the integrated correlation time

τ =
∞∫

0

ρ(t)dt,

and δt is the time interval between two successive observa-
tions. We will show through the MBB how it is possible to
estimate σ 2 directly and derive from it an estimate for τ
through (3). For a comparison of various approaches for esti-
mating σ 2, one can see also [29].

In order to estimate σ 2, the MBB considers in a chain of n
observations all possible contiguous blocks of length l such

that observations more than l apart are nearly statistically
independent. In this way q = n − l + 1 “moving blocks” are
obtained (Q1, . . . , Qq), where the ith block Qi with starting
point Xi contains l observations: Qi = (Xi, Xi+1 . . . , Xi+l−1).
From these q blocks Qi(i = 1, . . . , q), we draw at random
with replacement h blocks, with h × l = n. The h selected
blocks, placed one after the other, form the new sequence
Q∗ = (Q∗

1, . . . , Q∗
h). Analogously to the IID-bootstrap, we

can form a suitable number of MBB replications Q∗ from

each of which the statistic of interest is computed, and the
bootstrap estimate of the standard error σ̂ ∗ is derived through
(1). The idea of the MBB is due to [30] and was studied theo-
retically in [12] and [31]. In practice, by varying l, one sees
that when l is small the MBB estimate σ̂ ∗ is close to σ0

because the scheme does not manage to reproduce the correla-
tion structure at lag > l, which is present in the original data.
With increasing l, the data belonging to different blocks
become more and more independent of one another until the
blocks are actually IID random variables under the MBB
scheme, and at the same time, inside each block the correla-
tion is retained. In the presence of a positive (negative) cor-
relation in the series, the plot of σ̂ ∗ vs l shows an increase
(decrease) of σ̂ ∗ [see (2)] up to a region, call it a plateau, in
which the variations are less pronounced (see Figure 1
below for the application to DNA series). The reaching of
the plateau indicates: 1) a suitable choice for l, 2) the MBB
estimate σ̂ ∗ of σ , and 3) the “strength” of the correlation,
as derived from (3).

A Dependence Metric Based on Entropy
In the literature, there are many proposals of dependence
measures, each of them motivated by different needs and
built to characterize a specific aspect of the process under
study. An important class of such measures is based on
entropy functionals developed within information theory
(see, for example, [32] and the references therein). For

Fig. 1. Moving block bootstrap estimates σ̂ ∗ of the standard error of p
as a function of the block length l, computed for the sequence
AF017114 (coding region) (n = 736, filled symbols): c1: in frame; c2,
c3: out of frame. Results pertaining to IID binomial sequences having
the same proportion p as the original data are reported in empty
symbols (c1_iid, c2_iid, c3_iid).
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instance, Shannon mutual information has spread widely
in the context of nonlinear dynamics [33] as well as time
series analysis [34]. However, none of these entropies
define a metric since either they do not obey the triangu-
lar inequality or they are not commutative operators.
Also, there have been recent studies in the statistics com-
munity with the aim of describing the properties that an
ideal measure of dependence should possess (see, for
example, [13] and the references therein). For these rea-
sons, we have adopted the metric entropy measure Sρ(k),
a normalized version of the Bhattacharya- Hellinger-
Matusita distance, defined as follows:

Sρ(k) =1

2

+∞∫
−∞

+∞∫
−∞

(√
f(Xt,Xt+k)(x1, x2)

−
√

fXt(x1) fXt+κ
(x2)

)2

dx1dx2, (4)

where fXt(·) and f(Xt,Xt+k(·, ·) denote the probability densi-
ty function of X t and of the vector (X t,X t+k), respective-
ly. The measure is in precise relation to other entropy
functionals, such as Shannon entropy and Kullback-Leibler
divergence, and can be interpreted as a nonlinear autocorre-
lation function. Sρ(k) satisfies many desirable properties:
1) it is a metric and is defined for both continuous and dis-
crete variables; 2) it is normalized and takes the value 0 if
Xt and X t+k are independent and takes the value of 1 if
there is a measurable exact (nonlinear) relationship between
the variables; 3) it reduces to the linear autocorrelation
function in the case of Gaussian variables; and, notably, 4)
it is invariant with respect to continuous, strictly increasing
transformations. Among other things, [13] addresses the
issues of nonparametric kernel estimation of Sρ(k) and of
its utilization in the context of hypothesis testing of serial
dependence. The measure has been proven to have impres-
sive and robust power for characterizing nonlinear process-
es. In the case of binary series the measure becomes 

Sρ(k) =1

2

1∑
i=0

1∑
j=0

(√
Pr{Xt = i, Xt+k = j}

−
√

Pr{Xt = i}Pr{Xt+k = j}
)2

. (5)

Here, the probabilities have been estimated in a nonpara-
metric fashion by means of relative frequencies, and the
confidence bands at the 95% level under the null hypothe-
sis of independence have been obtained through Monte
Carlo simulation.

Results: Analysis of DNA Binary Sequences
In the following we show the results obtained from the appli-
cation of the methods described in the previous section to sev-
eral DNA parity sequences, derived from both codons and
anticodons, each of them considered both in-frame and out-
frame. Here, by anticodon we mean the complementary triplet
in the Watson-Crick sense. Since parity is defined by the sec-
ond and/or the third letter in the codon, the parity sequence
associated to the anticodons, which are read in reverse order,
carries completely different information. For this reason, we
have chosen to analyze the anticodon sequences also.
Moreover, as redundant information can be codified along the
sequences in unknown ways, it is also interesting to study the
out of frame versions of both codon and anticodon sequences.
Hence, from each codon we obtain and analyze six sequences.
In the following c1 (frame) and c2 (+1), c3 (−1) (out-frame)
refer to the codon sequence, whereas a1 (frame) and a2 (+1),
a3 (−1)(out-frame) refer to the anticodon sequence. Notice
that the length of the sequence n refers to the codon sequence
so that it has to be multiplied by three to obtain the length of
the base sequence. 

As remarked above, the studies where DNA sequences are
rendered dichotomous rely on somehow arbitrary choices for
the mechanism of dichotomization, without an underlying
model. In our case, such a procedure is encompassed naturally
within the approach presented in the previous sections so that
we expect the results to be well informative. In the following,
we will always refer to the protein-coding part of the DNA
sequences. Also, in this article, we will mainly concentrate on
the statistical aspects arising from the analysis of parity
sequences. Further investigations, including a comparison
with noncoding portions, are in progress and will be reported
in a future work.

The Moving Block Bootstrap
First, we apply the MBB in order to 1) obtain confidence
intervals for the proportion p of zeros in the sequence and 2)
investigate the dependence in the sequence. Recall that, for
independent data, i.e., realizations of IID binomial variables,
the standard error of the estimator of p is given by√

p̂(1 − p̂)/n, where p̂ denotes an estimate of p. In this
instance, both the IID-bootstrap and the MBB give the same
results. However, if there is some form of dependence, the
MBB is able to reveal it and, at the same time, estimate the
“true” standard error σ .

Figure 1 (filled symbols) shows the behavior of the
MBB estimates σ̂ ∗ of the standard errors of the estimator
of p as a function of the block length l for the parity
sequence AF017114 [35] (coding region), codon in frame

Fig. 2. Histograms of 1,000 moving block bootstrap replica-
tions of the proportion p for the c1 codon sequence
AF017114 (coding region) (continuous line) and for IID bino-
mial sequences (dotted line). The block length has been set
to l = 80.
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(c1) and out of frame (c2 (+1) , c3 (−1)). We also report
the results obtained by applying the MBB on binomial IID
sequences having the same proportions p of zeros as the
observed data (empty symbols). The bootstrap replications
B are 1,000 in all cases. 

If the data were independent there would be no statistical
difference in the standard errors estimates between observed
and IID sequences. The values of p̂ are 0.702,0.603,0.448 for
c1, c2, and c3, respectively. The values of σ̂0 are 0.017 (c1)
and 0.018 (c2, c3). At first sight, there is a clear difference
between the results from the observed and the IID sequences,
revealing the presence of a kind of dependence in the data.
For the IID sequences, in fact, σ̂ ∗ always remains close to σ̂0

while significant increases of σ̂ ∗ are displayed for the
observed sequences. Let us follow the trend referring, as an
example, to c1. At the beginning σ̂ ∗ is very close to σ̂0 as
expected. With increasing l, σ̂ ∗ grows. After l ≈70, σ̂ ∗

reaches a plateau. On the plateau, the actual dependence struc-
ture of data is captured, and the value found for σ̂ ∗ may be
retained as an estimate for the standard error σ . Here, it results
σ̂ ∗ = 0.023 By replacing σ̂0 and σ̂ ∗ in (3), it follows that
the integrated correlation time is τ̂ = 0.41. Similar trends
hold also for c2 and c3, for which τ̂ values are 0.25 and 0.39,
respectively. It has been proved [12], [31] that σ̂ ∗ is a consis-
tent estimator of σ if l grows to infinity with n, provided that
l/n → 0. In practice, as shown in [29], the MBB enables one
to assign accuracy even though the number of blocks is rather
small, say, n/ l ≈ 10, so that the last points of Figure 1, corre-
sponding to 4-6 blocks, are not reliable.

As remarked above, bootstrap methods can assess more
than standard errors. For instance, we report in Figure 2 the
bootstrap distributions of the estimator of p of the proportion
of zeros with B = 1, 000 for the IID-sequence (dotted line)
and the observed sequence (continuous line) taken at l = 80
for the c1 sequence. As expected from the central limit theo-
rem, both distributions are Gaussian with the same mean, but
the difference in the variance is clearly visible. Such a differ-
ence can be assessed easily through a test on the variances
that results significant. The trends of Figures 1 and 3 show
clearly that the difference between IID and MBB is due to
the autocorrelation of the sequence [the second term
between square brackets in (2)]. Notice that, in general, one
can build confidence intervals from bootstrap distributions
without having to make normal theory assumptions (see [26]
for a complete discussion on this point).

We have tested several DNA sequences. In most cases, the
trends of σ̂ ∗ vs l are qualitatively similar to those reported in
Figure 1, that is, a rise of σ̂ ∗ as l increases. However, some
sequences reveal no dependence; that is, σ̂ ∗ remain always
close to σ̂0, while other sequences display a decrease of σ̂ ∗

as l increases, as shown in Figure 3 for the anticodon a1 of
the AF017114 sequence (coding region). The decrease of σ̂ ∗

up to the plateau around l ≈ 80 − 100 indicates that in this
instance the correlation is negative. In analogy with Figure
2, we report in Figure 4 the MBB distribution of the estima-
tors of p (l = 90). In this instance, the MBB distribution has
a variability that is smaller than that of IID case, so the MBB
confidence interval will be more accurate. 

In Table 6 we summarize the results obtained by the
MBB for the sequence AF017114 (coding region). In the
columns are reported the sequence name, the estimate
p̂, σ̂0, σ̂

∗ and 95% confidence interval for p, obtained under

the IID binomial hypothesis ([C.I. 95]0) and, correctly,
through the MBB [C.I. 95]*. It is important to note that
even though in this instance the confidence intervals under
the IID assumption do not differ markedly from the MBB
intervals, the latter approach is the correct one for assessing
the accuracy in the presence of dependent data without
making distributional assumptions. For instance, assume we
wish to test the hypothesis that the proportion p is the same
for c1 and c2 at the 99% significance level. On the basis of
an IID confidence interval, one would erroneously reject
such a hypothesis. On the contrary, the hypothesis is not
rejected if the MBB is employed. 

Fig. 4. Histograms of 1,000 moving block bootstrap replica-
tions of the proportion p for the a1 codon sequence
AF017114 (coding region) (continuous line) and for IID bino-
mial sequences (dotted line). The block length has been set
to l = 80.

Fig. 3. Moving block bootstrap estimates σ̂ ∗ of the standard
error of p as a function of the block length l, computed for
the anticodon sequence AF017114 (coding region) (n = 736,
filled symbols): a1: in frame; a2, a3: out of frame. Results per-
taining to IID binomial sequences having the same propor-
tion p as the original data are reported in empty symbols
(a1_iid, a2_iid, a3_iid).
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The Entropy-Based Dependence Metric
The plot of Figure 5 shows the entropy-based dependence
metric Sρ(k) versus the lag k = 1, . . . , 300 computed on
the coding sequence of the gene X80497 [36], n = 1, 236
codons, in frame. We recall that the measure can be inter-
preted as a nonlinear autocorrelation function; that is, if
Sρ(k) exceeds the confidence band at lag k, then there is a
significant correlation between symbols that are distant k
steps in the sequence. As in the previous section, by signifi-
cant we mean consistently different from IID processes.
Here and in the following, in order to obtain good estimates
for Sρ(k), we chose a number of lags which is approximate-
ly one quarter of the length of the sequence as is well
known in time series analysis. Two remarkable aspects
emerge clearly from the inspection of the figure. First, the
appearance of a kind of long-range dependence, starting
from about lag 100. Second, the presence of several peaks
that extend well over the confidence band, indicating the
possible presence of periodicities. The strength of the peaks

and the distribution of the dis-
tances between them seem to con-
form to a kind of regularity that
may be gene specific, as also
shown in a recent study on human
chromosomes [37]. The long
memory content seems to be less
pronounced in out-frame
sequences, as shown in Figure 6.
Notice, however, that the peaks
show a significant dependent
structure also in this instance. 

In Figures 7 and 8, we show the
results of the computation of Sρ(k)
upon the anticodon sequence

X80497 in frame and out frame, respectively. In this
instance, the situation seems somehow reverted if compared
with the results for the codon. In fact, the long-range depen-
dence here is more evident for out-frame than for in-frame
sequences. Notice also the large peak at lag 1 for the first of
the two out-frame sequences [Figure 8 )]. In any case, the
anticodon parity series also shows a significant dependence
structure at several lags that cannot be attributed to statistical
fluctuations. 

The findings reported above show clearly that the
entropy-based metric has been able to disclose the exis-
tence of a nontrivial dependence structure in DNA parity
sequences. Further investigations along this line will
include testing for nonlinearity by exploiting, for instance,
surrogate data methods, a class of Monte Carlo tests aimed
at building distribution-free hypothesis testing for nonlin-
ear time series (for a review on the topic see [38]).
Another important topic is to assess how the correlation
structure of DNA sequences depends on the repetition of
certain patterns throughout the sequence. Also in this case,
it is possible to employ a suitable modification of surro-
gate data methods in order to build several statistical
hypotheses in a straightforward manner. A similar task is
pursued in [37], although the authors do not build statisti-
cal tests; rather, they seem to make comparisons on the
basis of a single sequence rather than building a random-
ization distribution.

Conclusions
In this article, we have employed a novel mathematical theory
for the genetic code in order to test the hypothesis that some
error-control mechanism based on parity coding may be active
inside the genetic machinery.

We have used this particular model mainly because
➤ it describes completely the degeneracy distribution of the

genetic code
➤ it uncovers strong numeric and symmetry properties (TC

degeneracy in the third letter, complement to 1 palindromy,
coding of the third letter, etc.)

➤ it gives a natural coding method for parity characterization
of codons

➤ there are not alternative nonpower representations describ-
ing the code degeneracy (the set of nonpower basis, [1 1 2
4 7 8], is unique).

Returning to error correction, it is known that different
biochemical error-control systems are actually working at
the level of amino acid translation in the ribosome, for

Table 6. Summary statistics and confidence intervals ([C.I. 95]) for the sequence
AF017114 obtained under the IID binomial hypothesis (0) and through the MBB (*).

Seq. AF017114 p̂ σ̂0 σ̂ ∗ [C.I. 95]0 [C.I. 95]*

c1 (0) 0.702 0.017 0.023 [0.670, 0.736] [0.654, 0.744]

c2 (+1) 0.602 0.018 0.022 [0.566, 0.637] [0.557, 0.643]

c3 (−1) 0.448 0.018 0.024 [0.409, 0.483] [0.401, 0.492]

a1 (0) 0.470 0.018 0.012 [0.435, 0.505] [0.446, 0.494]

a2 (+1) 0.739 0.016 0.021 [0.706, 0.770] [0.697, 0.781]

a3 (−1) 0.458 0.018 0.022 [0.423, 0.491] [0.417, 0.503]

Fig. 5. Sρ(k), k = 1, . . . , 300 for the codon sequence X80497 in
frame c1, n = 1, 236. The confidence band at the 95% level
(dashed line) was obtained through Monte Carlo generation
of 3,000 Bernoulli IID sequences.
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example, stopping a frame-shift reading [39]. However,
many aspects of error control are poorly understood and the
very low error rates associated with different genetic
processes are difficult to be described theoretically outside
a mathematical framework. Error discrimination and cor-
rection can be performed only if some mathematical tem-
plate is available (of course, in the case of genetic
processes, this template may represent some privileged
state in terms of chemical energy exchange). Moreover, it
is somehow accepted that the genetic code itself has gained
its actual form thanks to its self-correcting capabilities [40].
However, this error-minimizing ability of the genetic code
is usually studied within a probabilistic approach since ran-
dom mutations either do not modify or minimally modify a
synthesized protein. In this context, the decoding of an
exon is kept immune to random mutations due to the partic-
ular structure of the genetic code itself (see [41] for some
controversial related issues). 

For a given protein, mutations can be viewed as little
deviations from a coding template. Robustness of the pro-
tein synthesis is related to the fact that mutations usually
modify a codon either into a synonymous codon (without
noticeable changes in the protein) or into a codon codifying
for a chemically similar amino acid (introducing minimal
changes in the protein structure). However, the most striking
fact is the existence of a given template, that is, the reason
why nature has preferred a particular sequence of codons in
order to codify a particular protein. A relatively short pro-
tein 100 amino acids  long can be represented in 3100 (the
average degeneracy per codon is approximately 3 because
there are 61 codons representing 20 amino acids) or roughly
1047 different manners due to the freedom of choice
between synonymous codons. In fact, an important theoreti-
cal question we have tried to address here and will continue

to study in the future is how one or a few sequences are
selected as the good ones in the ocean of equally valid pos-
sibilities. Is this choice related to some organizational prin-
ciples in the genetic information such as error control and
correction? For different reasons, our approach seems to
point to an affirmative answer to this question. 

Fig. 7. Sρ(k), k = 1, . . . , 300 for the anticodon sequence
X80497 in frame a1, n = 1, 236. The confidence band at the
95% level (dashed line) was obtained through Monte Carlo
generation of 3,000 Bernoulli IID sequences.

Fig. 6. Sρ(k), k = 1, . . . , 300 for out-frame sequences of the gene X80497 c2 (a) and c3 (b), n = 1, 235. The confidence band at
the 95% level (dashed line) was obtained through Monte Carlo generation of 3,000 Bernoulli IID sequences.
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• The genetic code exhibits a strong mathematical structure
that is difficult to put in relation with biological advan-
tages other than error correction. It must be remarked that
the probability of random generation of a similar but less
restrictive mathematical ordering has been calculated to
be 3.09−32, that is, practically zero [11].

• Interestingly, this mathematical structure implies that
codons are parity coded (parity coding represents the
simplest and most widely used system for error check-
ing and correction in man-made digital data communi-
cation systems).

• The statistical analysis performed in this work clearly
shows that parity symbols exhibit strong and complicated
dependence patterns (a necessary condition for the exis-
tence of mechanistic constraints). 

From the point of view of the statistical analysis of the
sequences, we have introduced two methods for a rigorous
study of the serial dependence. In fact, the existence of error-
correction mechanisms implies the presence of a correlation
in the sequences. Both the approaches show the existence of
a significant dependence and prompt us to pursue further
investigation on the topic. As we have remarked above, the
MBB is a tool to assign the accuracy to estimates in presence
of dependent data. As a byproduct, it provides also a mea-
sure of the correlation of the sequence through (3). In partic-
ular, we have focused on the proportion p of even codons as
defined through the theoretical approach presented above.
Thus, the study of the variance associated to p gives substan-
tive information about the dependence of the data in this
coding framework. In addition, this analysis can be interest-
ing for a comparative study. In fact, as can be desumed from
Table 5, the proportion p does not depend explicitly on the
GC content of the sequences, potentially allowing for a non-

GC-biased comparison between organisms or regions of the
same genome that differ in the GC content.

The entropy-based metric Sρ(k) is tailored to explore the
dependence structure of a sequence and can be seen as a
nonlinear autocorrelation function. Since its relation with
several existing entropy-based measures and due to its
good properties, Sρ(k) has revealed a powerful and infor-
mative tool in this context. The computation of Sρ(k) upon
several parity sequences has highlighted the existence of a
long-range dependence together with high peaks that
might be associated to gene-specific periodicities. Even
though a detailed phenomenological discussion is out of
the scope of this article, it is clear that the results obtained
through the two methods are coherent and complement
each other. Hence, our approach appears to have a great
potential in different applied fields related to genomics and
bioinformatics.

These different findings prompt us to investigate the
issue further under different hypotheses. A matter we
intend to pursue is to assess whether the dependence we
have observed is of a nonlinear nature. This hypothesis can
be tested directly by means of nonparametric tests for non-
linearity based on surrogate data. Since the entropy-based
measure Sρ(k) was shown to have considerable power
against nonlinear alternatives, it is possible to employ it as
a test statistic and build the Monte Carlo distribution of
Sρ(k) under the null hypothesis that the series we have
observed is a realization of a correlated linear process. Our
guess is that a nonlinear dynamical system may represent a
very efficient decoding system for the management of non-
linearly correlated information. Moreover, the observed
dynamic complexity of such kind of systems (including
chaotic behavior and also self-correcting capabilities) can
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Fig. 8. Sρ(k), k = 1, . . . , 300 for out-frame sequences of the gene X80497 a2 (a) and a3 (b), n = 1, 235. The confidence band at
the 95% level (dashed line) was obtained through Monte Carlo generation of 3,000 Bernoulli IID sequences.
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offer an interesting possibility for determining the complex
and elusive rules underlying the biological encoding of
genetic information. 
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