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T
he advent of microarray technology enables us to mea-
sure simultaneously levels of thousands of genes for
entire genomes in a single experiment—producing
daunting amounts of data and genetic information.

After the Human Genome Project ended in 2003 with the suc-
cessful completion of the human genetic sequence [1], atten-
tion is turning to functional genomics. With gene expression
data available for different organisms and their genomes
already sequenced, a major goal is to understand the regula-
tion of genes at the gene level and at the chromosomal level.
Thus, an essential task is to define the role of the regulation
mechanism and to understand how the regulation of a set of
adjacent genes functions at the chromosomal level. In order to
make biological sense of the sequenced genomes and the gene
expression data that are available, all of the data must be orga-
nized in a manner that allows 1) the discovery of patterns that
may arise, and 2) the establishment of relations between the
gene expressions and the regulation mechanisms, e.g., the
transcriptional regulation.

Recent studies [2]–[5] confirm that the genomes are
divided into large domains that are composed of adjacent
genes on chromosomes with similar expression profiles.
There is evidence from budding yeast that some similarly
expressed genes are found in adjacent pairs or triplets on
chromosomes [3]. Larger domains are found to exist in the
human genome [2], [4] due to the strong clustering of high-
ly expressed genes in nearly all tissues. Also in their study,
Spellman et al.  [14] have found by analyzing the
Drosophila genome and high-density oligonucleotide
microarrays that its genes are clustered into coregulated
groups of adjacent genes on chromosomes. The mechanism
underlying the large domains is not yet known, but the
observed similarities in the expression of adjacent genes
are consistent with regulation at the level of chromatin
structure [5]. The method used by Spellman et al. [5] does
not provide a very good criterion for evaluating the quality
of segmentation into large domains.

We describe a new method for finding large domains of
similarly expressed genes using the minimum description
length (MDL) principle and a recursive segmentation pro-
cedure. For the recursive segmentation, we introduce a
new stopping criterion based also on the MDL principle.

Based on the MDL principle, we give a rigorous definition
of the quality of the segmentation of genomic profiles into
large domains.

Intuitively, a large domain can be considered a group of
adjacent genes on a chromosome, where the expression profiles
of the genes are similar. This can be described in a succinct
way by using the MDL principle, which has been introduced
by Rissanen [6], [7]. The MDL principle has been used in sta-
tistics, machine learning, data mining [8], and genomic signal
processing [9]–[11]. According to the MDL principle [6], the
model is selected based on its fitting performance, but it also
penalizes a very high complexity of the model.

Genomes can be divided into large domains that are impor-
tant in controlling the expression of groups of adjacent genes
[5]. The recursive segmentation can be used for finding their
borders. The recursive segmentation methods have been
applied to DNA segmentation into homogeneous domains; for
finding the borders between coding and noncoding regions in
DNA; for detecting the existence of the isochores, CpG islands,
and replication origin and terminus; for detecting complex pat-
terns such as telomers; and for evaluating the genomic com-
plexity [12]–[14]. The criterion for continuing the recursive
segmentation process can be based on 1) statistical significance
[12], 2) the Bayesian information criterion (BIC) [12]–[14], or
3) the MDL principle [11], [15]. Our approach uses only the
general properties of the large domains and, in this way, prior
training on data sets is not necessary. The training data sets that
contain the positions of large domains are not available. Also
throughout this study, we define the genome data as the data
containing measurements of gene levels versus experimental
conditions, and the gene profiles are ordered according to their
position on the chromosomes.

MDL Principle and Coding of Genome Data
Let X be a genome data represented as a n × m matrix where
the row i represents the activity of the gene i (gene profile i)
over different experimental conditions, and the column j rep-
resents the set of measurements for the experimental condi-
tion j. The genes in the genome data X are ordered according
to their positions along the chromosomes and its entries xi, j

take value in the set {0, 1, . . . , q − 1} due to quantization of
the genome data to q levels.
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MDL Principle
The MDL principle by Rissanen [6], [16] considers the
description length of the data and the model as follows

L(M, X) = L(M) + L(X|M), (1)

where L(M) is the length of the description of the model
and L(X|M) is the length of the description of the data,
where the data X is described using the model M. According
to the MDL principle, the best model that fits the data is the
model with the shortest length of the total description
L(M, X). Such a reduction indicates that the model M is
able to capture the patterns and the dependencies within the
data X. The goal is not to write down the encoded data but to
compare the code length of the encoded data for a class of
models. Thus, the model with the best fitting performance,
which gives the shortest overall code length, is selected but
in a balanced way; the models with a very high complexity
are penalized. The MDL principle has been used in various
applications [6], [9], [10].

Coding of Genome Data
The compression of a given genome data Y is done using the
model M1 , which takes into consideration the similarity
between all the gene profiles from Y. The genome data Y is a
n∗ × m∗ matrix that contains n∗ genes across m∗ different
experimental conditions, where the entries yi, j take value in the
set {0, 1, . . . , q − 1} due to quantization of Y to q levels. The
genes are ordered within Y according to their position on the
chromosomes. Further, Y is considered to be a submatrix of
the matrix X. We apply several transformations to the matrix Y
such that (matrix Y) → (matrix Z) → (string wn∗∗

). The proba-
bility of the observed genome data Y is computed using the
string wn∗∗

, which takes into consideration the similarity
between all gene profiles within the genome data Y.

We construct a q × m∗ matrix M such that entries mi, j are
the counts of the symbol (i − 1) within the column j of the
matrix Y .  Thus, one has 

∑q
i=1 mi, j = n∗ ,  where

j = 1, . . . , m∗ . The symbols observed at each column j of
the matrix Y are reordered by their counts from the matrix M
using a permutation vj(·), where j = 1, . . . , m∗ . The permu-
tations are used because their coding requires a relatively
short code length. A permutation aligns the histograms of
symbols of each Y’s column, such that all histograms are
monotonically decreasing, and collapses all histograms into
a single one [9]. A permutation vj(·) maps k → vj(k), where
k = 1, . . . , q, as follows

(
0 1 . . . q − 1
vj(0) vj(1) . . . vj(q − 1)

)
. (2)

The transformed matrix Z is obtained from the matrix Y by
using a set of permutations v = (v1(·), . . . , vm∗(·)) , where
zi, j = v(yi, j). Such a transformation is reversible due to the use
of permutation [9], i.e., one can recover Y from Z knowing v.
The matrix Z is transformed further into the string wn∗∗

of length
n∗∗ , where n∗∗ = n∗ × m∗ , by concatenating its rows. The
entries W of the string wn∗∗

take value in the set {1, . . . , q − 1}.
The entries of the matrices X, Y, and Z take value also in the
same set {1, . . . , q − 1}. The transformed string wn∗∗

is mod-
eled further as a multinomial trial process with parameters
P(W = 0) = θ0, . . . , P(W = q − 1) = θq−1 . The symbol l is
observed 

∑m∗
j=1 mvj(l), j times in the matrix Z and in the string

wn∗∗
. Also, one can recover Y from wn∗∗

knowing v.
For instance, one has for q = 2, n∗ = 3, m∗ = 2, and 

Y =
( 0 0

1 0
1 0

)
that M =

(
1 3
2 0

)
, v1 = (1 0), v2 = (0 1),

Z =
( 1 0

0 0
0 0

)
, wn∗∗ = (1 0 0 0 0 0), and n∗∗ = 6.

To conclude, the probability of the genome data Y is given by

P(Y; θ̂θθ, v̂ ) = P(wn∗∗
( v̂ ); θ̂ (wn∗∗

), v̂ (Y))

= θ̂

∑m∗
j=1

mvj(0), j

0 · . . . · θ̂
∑m∗

j=1
mvj (q−1), j

q−1 , (3)

where the set of permutations ̂v (Y) = {̂vi(·) : i = 1, . . . , m∗}
determines the string wn∗∗

, and the multinomial parameters of
the string wn∗∗

( v̂ ) are θ̂ (wn∗∗
) = (θ̂0(wn∗∗

), . . . , θ̂q−1(wn∗∗
)) .

The string wn∗∗
contains m∗

i values of i, where
θ̂i(wn∗∗

) = m∗
i

/
n∗∗ and i = 0, . . . , q − 1. Clearly, one has

m∗
i = ∑m∗

j=1 mvj(i), j.
The overall code length of the encoded n∗ × m∗ matrix Y

using the model M1 based on the MDL principle is as follows

L(M1, Y) = − log2 P(Y; θ̂θθ, v̂) + m∗ log2(q!)

+ log2 Nθ (n
∗∗, q), (4)

where the first part encodes the data Y given the model M1

with the parameters ̂θθθ and ̂v, the second part encodes the opti-
mal permutations ̂v, and the third part encodes the maximum
likelihood (ML) estimates of ̂θθθ and ̂v. In order to encode effi-
ciently, the set of probabilities, Nθ (n∗∗, q) is used because the
set of pairs (θ̂θθ , v̂) is redundant, and one can restrict
θ̂θθ = (θ̂0, . . . , θ̂q−1) such that θ̂0 � θ̂0 � . . . � θ̂q−1 [9]. The
length of the list containing all possible q-tuples

Our new segmentation method allows us

to find large domains of similarly expressed

genes without any a priori data for training.
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(n∗∗
0 , . . . , n∗∗

q−1) is Nθ (n∗∗, q) such that n∗∗
0 + · · ·+

n∗∗
q−1 = n∗∗ and n∗∗

0 � n∗∗
1 � . . . � n∗∗

q−1 [9]. The model M1

considers that the entire given genome data Y is encoded as a
single part, and no large domains of similarly expressed genes
exist within Y. Thus encoding the genome data Y with few
similarities between genes profiles will be penalized with a
larger code length than in the case when there are more simi-
larities between the gene profiles. We note that our approach
of computing the code length of encoded data Y, especially
of (3) and (4), is a modification of the approach used by
Tabus et al. [9] for computing the code length of encoded

class labels as a two-part code. The code length computed by
Tabus et al. [9] is based on gene expressions of each patient,
and it is used in the problem of class discrimination. The
major difference between our approach and the approach of
Tabus et al. [9] is that we compute the code length of the
encoded genome data Y in such way to take into consideration
the similarity between the gene profiles (the matrices M and Z
are constructed in this way). Furthermore, the computed code
length is used in the problem of segmentation into large
domains of similarly expressed genes.

Coding of Genome Data with Large
Domain of Similarly Expressed Genes
The encoding of a given genome data X is done also using the
model M3(i, j), which considers the existence of a large
domain (i, j) containing similarly expressed genes. A large
domain (i, j) starts with the ith gene profile and ends with the
jth gene profile within matrix X, and it splits the matrix X into
three submatrices X(a), X(b), and X(c), which contain the X’s
gene profiles from 1 to i − 1, i to j, and j+ 1 to n, respectively.
The submatrix X(b) is considered to be the only one that repre-
sents the large domain (i, j), and it cannot contain more than
the a priori established maximum number of gene profiles.
The number of genes contained in a large domain has been
determined previously using biological experiments or data
[2]–[5]. A large domain with similarly adjacent gene profiles
gives a submatrix X(b) that is encoded very effectively using
(4) based on the MDL principle.

According to the MDL principle, the overall code length of
the encoded genome data X using model M3(i, j) that consid-
ers the existence of a large domain (i, j) is

L(M3(i, j), X) =L
(
M1, X(a)

) + L
(
M1, X(b)

)
+ L

(
M1, X(c)

) + 2 · log2 n, (5)

Fig. 2. A 3-D representation of code length L(M1, T) − L(M3(i, j), T)based on the MDL principle, computed for all possible can-
didate large domains (maximum length of 30) for synthetic genome data of 100 genes from Figure 1. The maximum value for
the computed code length is circled on the graph and it corresponds to the large domain (51, 70).

Fig. 1. Synthetic genome data containing 100 gene profiles
across 100 experimental conditions. The first 50 gene profiles
are randomly generated, the next 20 gene profiles are iden-
tical, and the last 30 gene profiles are randomly generated.
The expression of genes have binary values.
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where the first three terms L(M1, X(a)), L(M1, X(b)), and
L(M1, X(c)) are computed using (4) based also on the MDL
principle, and they give the cost in bits of encoding the sub-
matrices X(a) , X(b) , and X(c) , respectively. The last term
2 · log2 n is needed to encode in bits the two positions where
the large domain starts and ends within the matrix X. When it
is assumed that no large domain exists within the genome the
data X, the code length of the encoded matrix X is L(M1, X),
and it is computed using the model M1 and relation (4).

Recursive Segmentation into Large Domains
In this study we use the recursive segmentation method pro-
posed by Bernaola-Galvan et al. [12] and Li [13] for finding
large domains of similarly expressed genes in the given genome
data. The recursive segmentation of a
given genome data X proceeds as fol-
lows. We sweep through the gene pro-
files of X and compute at every position i
and j, where i < j, i = 1, . . . , n − h and
j = i + 1, . . . , i + h , that divide the
matrix X into the upper submatrix X(a),
the middle submatrix X(b), which repre-
sents the large domain (i, j), and the
lower submatrix X(c), the code lengths
of the whole matrix, the upper, the mid-
dle, and the lower submatrices.
According to Spellman et al. [5], we
choose the maximum length of a large
domain to be h = 30 genes. The posi-
tions i and j are accepted as cutting
points, representing the large domain
(i, j) , when the code length,
L(M1, X) − L(M3(i, j), X), computed
using (4) and (5), reaches its maximum.
Further, we recursively apply the
segmentation to the upper submatrix
X(a) and to the lower submatrix X(b)

unti l  maximized code length
L(M1, X) − L(M3, X) is  above a
certain threshold. In this approach,
the threshold is based on the MDL
principle, where

L(M1, X) − L(M3, X)

= max
(i, j)

(L(M1, X) − L(M3(i, j), X))

= L(M1, X) − min
(i, j)

L(M3(i, j), X). (6)

Clearly, one has L(M3, X) = min(i, j) L(M3(i, j), X) . If the
maximized code length L(M1, X) − L(M3, X) is above the
threshold, the genome data is segmented, and if not, the seg-
mentation is stopped for the respective data. We note the

Fig. 3. Expression profiles of 200 adjacent genes on the right
arm of the Drosophila chromosome 3 (3R). 
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Fig. 4. Expression profiles of 200 adjacent genes (from Figure
3) on the right arm of the Drosophila chromosome 3 (3R)
quantized to binary values. For each square, a black color
denotes a lower relative expression than a white color for a
gene in an experiment.
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Fig. 5. 3-D representation of code length L(M1, X̃) − L(M3(i, j), X̃)based on the MDL
principle, computed for all possible candidate large domains (maximum length of
30) for data of 200 adjacent genes, from the right arm of Drosophila chromosome 3
(3R), shown in Figure 4. The maximum value for the computed code length is circled
on the graph, and it corresponds to the large domain (83, 104).
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similarity of this method with the approach when Jensen–
Shannon divergence is used [13], [14].

Figures 1–2 shown synthetic data T of 100 gene profiles
and the three-dimensional (3-D) representation of the code
length L(M1, T) − L(M3(i, j), T). The synthetic data T con-
sist of 100 gene profiles that take binary values, where the
first 50 gene profiles of data T are randomly generated, the
next 20 gene profiles are identical, and the last 30 gene pro-
files are randomly generated. The maximum value for the
computed code length is circled on Figure 2, and it corre-
sponds to the large domain (51, 70). Figure 2 shows that the

maximum value of the computed code length,
L(M1, T) − L(M3, T), finds exactly the start position and
the length of the large domain with 20 identical gene profiles
in the synthetic data T.

Stopping Criterion for Recursive Segmentation
The stopping criterion, in the case when relation (6) is
used, can be considered from the point of view of hypothe-
sis testing and the model selection framework. For the
hypothesis testing framework, the probability that the value
of L(M1, X) − L(M3, X) can be obtained by chance is

Fig. 6. Large domains of similarly expressed genes—gray or black rectangles in (b)—found using recursive segmentation
applied to data of 200 adjacent genes from the right arm of Drosophila chromosome 3 (3R), shown in Figure 4.
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computed by the null hypothesis that the genome data is
homogeneous. The exact form of the null distribution is
difficult to find [13].

The stopping criterion, based on Bayesian information crite-
rion (BIC), for segmentation using Jensen–Shannon diver-
gence has been introduced by Li in his study [13]. One can see
the subtle relations between (6) and the Jensen–Shannon
divergence or the Kullback-Leibler divergence [6]–[8], and
also between the BIC and the MDL principle, which give an
identical formula for certain cases [8].

In this study, we introduce a new stopping criterion for the
recursive segmentation, when using the code length
L(M1, X) − L(M3, X), based on model selection using the
MDL principle. Thus, the stopping criterion tests if a three-
random–submatrices model M3 gives a shorter code length
than the one-random–matrix model M1 . If the three-ran-
dom–submatrix model has a shorter code length (it better fits
the data), then the cuts are accepted (the large domain is
accepted); otherwise, it is not. The MDL principle assures us
of balancing the goodness-of-fit of the model with the com-
plexity of the model in relations (4) and (5), and a very high
complexity of the model is penalized. In order to continue
the recursive segmentation procedure and to decide if the
cuts i and j are significant or not (if the large domain (i, j) is
significant), the three-random-submatrices model must fit the
data better than the one-random model. This leads to a stop-
ping criterion that is as follows

L(M1, X) − L(M3, X) > 0, (7)

where L(M1, X), L(M3, X) are computed using (4) and (6),
respectively. Thus, the recursive segmentation continues, or
the cuts i and j, which represent the large domain (i, j), are
accepted as significant as long as criterion (7) is fulfilled.

Experimental Results
We illustrate the finding of large
domains of similarly expressed genes
based on the MDL principle and recur-
sive segmentation using the
Drosophila genome data of Spellman
et al. [5], publicly available [17], and
human genome data.

The microarray genome data of
Drosophila contains 13,165 gene
expression profiles, covering 89 dis-
tinct experimental conditions from 267
Affymetrix GeneChip Drosophila
Genome Arrays [5]. The experimental
conditions consist of adults and
embryos which are visible in Figures 3
and 4 as a vertical line. The data are in
log2 ratio format, all replicates are
averaged, and the values are time zero
corrected [5]. Data preprocessing and
experimental conditions are described
in detail in [5]. The genes in this
dataset are organized according to their
positions along the chromosome.
Visual inspection of the data, as shown
in Figures 3–4, reveals that groups of
adjacent genes with similar expression

patterns, which are not otherwise functionally related in any
obvious way, appear frequently [5].

The starting point is the gene expression data X, also called
genome data, where each entry xi, j indicates the expression
level of gene i for experimental condition j. We make the
assumption that the transcription machinery of a gene uses
the expressed/not expressed or upregulated/
downregulated states [18]. More precisely, we quantize each
gene profile independently to binary states [18] by applying
the Lloyd algorithm [9]. The quantization to discrete values
of genome data can be viewed also as removing the noise
from data [9]. In this study, the entries in X are quantized to
q = 2 levels, but the newly introduced method for finding
large domains can use more than two levels of quantization.
For the remainder of the article, we assume that the genome
data X is quantized to binary values (how many quantization
levels are chosen is outside the scope of this article). The
MDL principle can also be used to select an optimum q value
as suggested in [9].

In order to illustrate the segmentation procedure, we apply
the new segmentation method on a group, chosen arbitrarily
from the chromosome 3R of Drosophila, of 200 adjacent
genes, noted as X̃. Figure 3 shows the original expression pro-
files of the group of 200 gene profiles from X̃ that are ordered
accordingly to their position along the chromosome. Also,
Figure 4 shows the same 200 gene profiles from X̃ after quan-
tization to binary states using Lloyd algorithm, where a white
color indicates a higher relative expression of a gene in an
experiment than a black color. In Figure 3, and especially in
Figure 4, are visible groups of adjacent genes that have similar
expression profiles and the vertical separation between
embryos and adults of Drosophila.

Figure 5 illustrates the 3-D representation of the code length
L(M1, X̃) − L(M3(i, j), X̃) , where the other two axes

Fig. 7. The results of a recursive segmentation of Drosophila genome into large
domains of similarly expressed genes.
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represent i (position where the candidate large domain
star ts)  and j+ i − 1 (length of  the candidate  large
domain given as number of genes). The maximum value
of L(M1, X̃) − L(M3(i, j), X̃) is circled on Figure 5 and
it corresponds to the large domain (83, 104), which is
marked in Figure 4 on the right-hand side as a gray-
filled rectangle. This large domain is accepted as signifi-
cant because L(M1, X̃) − L(M3(83, 104), X̃) = 987.14 b
and L(M1, X̃) − L(M3(83, 104), X̃) > 0, where criterion
(7) is fulfilled.

Figure 6 shows the results of the recursive segmenta-
tion applied to the same 200 adjacent gene profiles X̃
from the Drosophila chromosome 3R. The new method
introduced in this study, based on the MDL principle
and recursive segmentation, is able to find successfully
the large domains of similarly expressed genes in X̃ as
shown in Figure 6.

The new recursive method based on the MDL principle is
applied to the genome of Drosophila [5] containing 13,615
genes, and it finds 750 large domains of similarly expressed
genes together with their exact positions on the chromosomes.
From these 750 large domains, 223 large domains are the
domains that contain between 10–30 similar gene profiles.
Figure 7 shows a histogram of the sizes of similar gene-profile

segments that result when the new recursive segmentation
method, based on the MDL principle, is applied to the
Drosophila genome data.

The human genome data contain 21,810 genes ordered
according to their position on the chromosomes versus 50
patients with colorectal tumors. The Affymetrix HG-133A
chips have been used for gene measurements. The gene 
profiles are quantized to binary using the Lloyd algorithm as
done for the Drosophila genome data. The new recursive
method finds 160 large domains of similarly expressed genes in
human genome data. From these 160 large domains, 40 large
domains are the large domains that contain between 10–30 simi-
lar gene profiles. Figure 8 shows a histogram of the sizes of
similar gene-profile segments that result when the new recursive
segmentation method is applied to the Human genome data.

Even though the biological significance of the detailed
results for the Drosophila genome data and the human
genome data remains to be later investigated and the underly-
ing mechanism of the large domains is unknown [5], our new
segmentation method permits us to find successfully large
domains of similarly expressed genes without any use of a pri-
ori data for training.

The novel method introduced in this study, based on the
MDL principle, for finding large domains of similarly

expressed genes is different in sever-
al aspects from the method intro-
duced in [11] for finding the large
domains based on the MDL principle
and normalized maximum likelihood
(NML) model. The major differences
are that in the current method, the
quantization is done using the Lloyd
algorithm and the similarity between
all genes from a large domain are
taken into consideration, which is
closer to the biological knowledge
available. In our previous study [11],
only the similarities between the first
gene profile and the rest of the gene
profiles from a given large domain
were taken into consideration.

Concluding Remarks
In this study, we have introduced a
new method for finding and defining
large domains of adjacent genes on a
chromosome with similar expression
profiles based on the use of the MDL
principle and the recursive segmenta-
tion procedure. For the recursive seg-
mentation, we used a newly introduced
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Fig. 8. The results of a recursive segmentation of the human genome into large
domains of similarly expressed genes.
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stopping criterion using the MDL principle. Together they
offer a novel method to view the large domains of similarly
expressed genes in genome data. The description of the
genome data and of the large domain is done according to
the MDL principle, which selects the model based on its fit-
ting performance and also penalizes a very high complexity
of the model. The success of segmentation comes from the
observation that the more similar the gene-expression pro-
files are in a large domain, the shorter the description of the
data that represents the large domain. We have applied the
new recursive segmentation method to the microarray
measurements of the Drosophila genome and human
genome in order to demonstrate the ability of the new
method to find large domains successfully.
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