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Abstract—We present a method for utilizing soft information in
decoding of variable length codes (VLCs). When compared with
traditional VLC decoding, which is performed using “hard” input
bits and a state machine, the soft-input VLC decoding offers im-
proved performance in terms of packet and symbol error rates.
Soft-input VLC decoding is free from the risk, encountered in hard
decision VLC decoders in noisy environments, of terminating the
decoding in an unsynchronized state, and it offers the possibility to
exploit a priori knowledge, if available, of the number of symbols
contained in the packet.

Index Terms—Soft decoding, variable length codes.

I. INTRODUCTION

In most applications of variable length codes (VLCs), de-
coding is performed bit by bit, with the input to the entropy de-
coder assumed to be a sequence of “hard” bits about which no
soft information is available. However, in noisy environments,
soft information can be associated with each information bit,
either by direct use of channel observations in the case of un-
coded transmission, or through soft-output channel decoders
when channel coding is used. It is intuitive that this soft infor-
mation, if it can be exploited, can be used to improve the per-
formance of VLC decoding.

In recent years, various algorithms [1]–[6] have been
proposed to explore the possibility of using soft information
for VLC decoding. These algorithms improved decoding
performance (as compared to traditional hard-bit-state-ma-
chine-based decoding) by optimizing decisions on symbols or
packets instead of bits. Such optimization is done by utilizing
source symbol distribution information and channel charac-
teristics. In [1], a forward–backward estimation of source
distribution was proposed. In [5] and [6], the authors explored
the advantage of using soft decoding on reversible variable
length codes (RVLCs). The redundancy in RVLCs, as expressed
by reversibility, can be implicitly exploited by the soft decoder.

The main contribution of the present paper is the introduc-
tion of a soft-in soft-out (SISO) dynamic decoding algorithm
for decoding of VLCs. The SISO approach is inspired by SISO
channel decoding algorithms such as the soft-output Viterbi al-
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gorithm (SOVA) [7] and methods for decoding of turbo codes
[8], although the application to VLCs is quite different in con-
cept and implementation. The SISO VLC decoder receives as
input a packet of known length containing VLC data that has
been corrupted by additive white Gaussian noise (AWGN) and
produces the codeword sequence which is most likely to have
been input to the VLC encoder at the transmitter. Simulation re-
sults show significant improvement in performance relative to
traditional hard decision decoding of VLCs. The SISO method
performs best whena priori information regarding the number
of symbols represented in the packet is available, though even
in the case that the number of symbols is unknown, the perfor-
mance is superior to hard decision methods.

II. SISO ALGORITHM DESCRIPTION

We consider a source producing symbols selected from an
alphabet , where symbol occurs
with probability and is represented using a binary codeword

of bits. The alphabet size may be infinite. The output of
the VLC encoder is transmitted using packets of lengthbits,
representing symbols. We use the integer to denote the
index to the symbol in theth position in the packet; for example,
if , then the symbol in theth position is . The vector
of symbol indices is mapped by
the VLC encoding to the binary sequence represented by the
concatenation .

The information available at the input to the VLC decoder
is the observation vector containing noise-corrupted bits

that can be divided into sub-
vectors , each containing the bits representing the
symbol , so that can also be written as the concatenation

. Based on the observation vector, the
optimal decoder selects the symbol vectorthat maximizes

, the posterior probability of the symbol sequence
given the observation. This is equivalent to maximizing

, the joint probability of the symbol sequence and
the observation. The vector that maximizes is
denoted as , and is associated
with probability .
For a packet of bits and symbols, and are calculated
from Bellman’s principle of dynamic programming [9], which
leads to recursive equations as follows:

(1)
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with

(2)

(3)

The principal underlying (1) is that if the optimal last codeword
in the packet is a codeword of length , the rest of the op-
timal packet, corresponding to symbols, must be the op-
timal symbol packet corresponding to the first
received values. Equations (2) and (3) involve selecting from the
alphabet the symbol that is most likely, as measured by the prod-
ucts of probabilities that constitute the argument for the max
function. The “SISO” terminology is used to describe the al-
gorithm because the decoder provides not only the optimal se-
quence but also the probability, or confidence level as-
sociated with that sequence.

In the above algorithm, we assume that the decoder hasa
priori knowledge of and , i.e., the length of the packet
and the number of symbols contained. This is a valid assump-
tion in many applications and practical systems. For example,
when compressed video content is transmitted over bit error
prone networks using the MPEG-4 error resilient syntax with
data partitioning, the length of packet and/or partition as well as
the number of macro blocks contained in the packet can be re-
covered by searching for unique markers and decoding packet
headers (with a large portion of information repeated), before
decoding of the VLC codewords contained in the packet and
partition is performed.

As an example, consider a simple VLC with an alphabet of
size , with symbols , , and and corresponding
codewords , , and . We assume that
the probabilities of symbols are ideally matched to the code
lengths (i.e., that ). In transmitting the encoded
sequence over the AWGN channel with noise standard devia-
tion , we represent binary 0 by1, and binary 1 by 1. Con-
sider a 3-bit packet “110” corresponding to the symbol vector

and transmitted as
and received as . We also assume that the
decoder knows the number of codewords a priori (e.g.,
from side information such as in a MPEG-4 error-resilient video
coding bitstream).

Because the noise (and thus the observed value for each bit)
is a continuous random variable, the SISO algorithm should op-
timize the joint probability density of packet makeup and obser-
vation, evaluated at the received observation vector, rather than
the joint probability. The maximization of (2) becomes a min-
imization of the cumulative square error between the received
and the originally transmitted values. Let denote the
global minimal cumulative square distortion of the firstbits
of the packet containing exactlycodewords. Equations (1) and

(2) give , and

(4)

Given the observation , (4) involves
finding the smaller of

, , and
. Next,

and are calculated as ,
and

so we have ,
. Therefore, the first

codeword is two bits in length and is most likely by the re-
sult of the minimization for above. The second code-
word, which contains only one bit, can only be, and there-
fore the corresponding decoded symbol sequence is correctly
identified as . In con-
trast with the above, when the traditional bitwise hard-decision
and look-up-table based decoding is used, the hard decisions
made on the received values would be which
would be incorrectly decoded as , i.e.,
the decoder will report loss of synchronization at the end of
the packet. For this particular example, a more intelligent “hard
bit” based decoder that is able to find the “most likely” packet
based on Hamming distance anda priori information will also
fail, because for the “hard bits” , both the packet

and the packet
will have a Hamming distance of 1 to the received “hard bits.”
Also, because the codeword probabilities are matched to the
code lengths, the decoder will not be able to find a better one
from these two possibilities.

The procedure illustrated with the example is recursive. How-
ever, one can also make the optimization nonrecursive, either by
using standard techniques of resolving recursive functions or by
more explicitly building a trellis and optimizing on the trellis. In
our simulations, we chose the recursive formulation of the algo-
rithm, for it could be trivially implemented with a programming
language such as C. Independent of the implementation, the
complexity of such a decoding is linear to the size of the packet
and the alphabet. It should be noted, however, to achieve this
complexity in the direct recursive implementation, care needs
to be taken to “remember” reduced-sized optimizations already
made. As an example, consider again the optimization of (4). In
(4), appeared twice. After the first time is
obtained, a flag should be set and the value of saved,
so that when the decoder needs to use again it does
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TABLE I
COMPARISON OFSISOAND BIT-WISE HARD DECISION (HD) BASED DECODING

TABLE II
STATISTICS OFINVALID DECODING RESULTS FORHD DECODING

not perform the recursion needed for calculating all
over again. This process of remembering performed optimiza-
tions can be mapped directly to the Bellman’s principal used
in optimization performed on a trellis, in which case the op-
timal path to each intermediate node in the trellis still needs to
be performed, as the need for calculating intermediate s,
however, only the optimal path to each node is saved, and it is
calculated only once.

Table I shows simulation results for packets containing
symbols drawn from the code , , ,

, , , ,
, , and

using symbol probabilities matched to the codeword length (i.e.,
the probability of a -bit codeword is ). For each value of
noise standard deviation, 20 packets were produced using
symbols following this probability distribution, and each packet
was corrupted by noise and then VLC decoded. One thousand
different noise realizations were used for each packet. Packet
error rate gives the fraction of packets in which one or more er-
rors are present in the output of the VLC decoder. Symbol error
rate gives the fraction of symbols which are incorrect. It is clear
from the table that when the number of symbolsis knowna
priori , the SISO approach gives significantly better performance
than hard decision decoding both in terms of packet and symbol
error rates over a wide range of noise levels.

Another advantage of SISO decoding is that it avoids the syn-
chronization problem inherent to hard decision VLC decoders,
which do not guarantee that the final bit of a packet will coin-
cide with the final bit of a codeword. Furthermore, in hard de-
cision VLC decoding, correct synchronization status at the end
of the packet can occur even when there are decoding errors,
due to the well-known self-resynchronizing property of VLC
codes. Another error that can occur in hard decision VLC de-

coders is an output containing an incorrect number of symbols.
The synchronization and number of codewords information is
what enables a hard decision based decoder to detect errors. As
a matter of fact, hard decision VLC decoders are highly effec-
tive at detecting errors using such information, but they can not
easily correct them. The SISO decoder, while not strictly able
to perform error correction, can at least impose a constraint on
the number of symbols produced during decoding, and gives the
output sequence that is most probable given the observation and
subject to the constraint. If one desires to use the output of a
SISO decoder for error detection (e.g., to estimate the location
of errors), one can compare the most likely packet with the re-
ceived one.

These issues are explored in Table II, which was generated
using the same simulation conditions as Table I.

The first column in Table II gives the fraction of packets for
which hard decision decoding terminates in an unsynchronized
state. Considering these numbers along with the hard decision
symbol error rate results from Table I confirms that, even in the
presence of large error rates, correct synchronization at the end
of the packet can be highly probable in hard decision decoding.
The second column in the table gives the fraction of packets for
which the hard decision decoder terminates in a synchronized
state but outputs an incorrect number of symbols. The third and
fourth columns in the table explore the performance of the SISO
decoder on these packets. This sheds light on the performance of
the SISO decoder on packets which would lead to (typically un-
correctable) error indications by a hard decision decoder. The
improvement shown by SISO decoding is significant. For ex-
ample, for an SNR of 8 dB, the table shows that for hard de-
cision decoding, 58% of the packets in error would be due to
an incorrect number of symbols. In SISO decoding, the packet
error rate is only 61%, meaning that 39% of the packets would



692 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 50, NO. 5, MAY 2002

be decoded with no error at all (correct number of symbols and
all symbols correct). The symbol error rate is only 15%.

In addition to using soft information and picking the “op-
timal” codeword concatenation usinga prior knowledge of the
symbol distribution and synchronization information, the algo-
rithm presented also outputs the “soft” likelihood information
associated with the optimal output. This information could used
in cases such as those whenand/or are unknown. In such
cases, assumptions on the values ofand/or can be made,
and the optimal decoding result for eachand/or can be ob-
tained using the algorithm presented here. Then, the “soft” like-
lihood of the optimal output associated with eachand/or as-
sumption can be use to pick one best decoding output. More dis-
cussions on this approach with simulation results can be found
in [1].

III. CONCLUSION

We have presented an algorithm for using soft information
in VLC decoding. Simulations demonstrate a significant im-
provement over traditional VLC decoding based on hard in-
puts. The method here exploits not only the presence of soft
values, but alsoa priori knowledge of the number of bits and
the number of symbols . This also helps to improve the per-
formance with respect to hard decision VLC methods, which
offer no means to enforce consistency between the expected

and actual number of symbols produced by the decoder. The
techniques presented here can be combined with source prob-
ability estimation methods to reduce or eliminate the perfor-
mance penalty due to mismatch.
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