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Abstract 

A powerful technique for  analyzing DNA and pro- 
tein sequences, the sequence logo, is now available to 
researchers. This method has advantages over the con- 
ventional method of creating a consensus. For exam- 
ple, a logo of DNA shows all the bases found in the 
binding site of a protein, indicates how much each base 
is conserved, and depicts the location of the conserva- 
tion with respect to the major and minor grooves of the 
D N A .  It is the intent of this paper t o  explain sequence 
logos, to show their usefulness for  biological and lin- 
guistic research, and to encourage their use b y  others. 

1 What is a Sequence Logo? 

The object of a sequence logo (Fig. 1) [l] is to  vi- 
sualize the information contained in a set of DNA, 
RNA, or protein sequences by examining the order 
and frequency of the chemical subunits which make 
up the sequences. The name “sequence logo” comes 
from the fact that a set of sequences is being repre- 
sented as a single graphic which contains one or more 
separate elements (that’s the definition of the word 
“logo” [a]). For example, when an economist wants to 
show a trend in a market, he creates a graph of the 
conditions of the market to  make the trend apparent 
with just a quick glance. The sequence logo functions 
in a similar manner by graphically representing the 
conservation (“informa.tion content”) of a set of se- 
quences in a clear, concise and mathematically sound 
manner. Sequence logos are generated by programs 
which look at the sequences and analyze them using 
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the information theory developed by Claude Shannon 
[3, 4, 51. The process of generating a sequence logo is 
somewhat similar to that of creating a consensus se- 
quence, but unlike a consensus, subtle features of the 
data are retained. To understand sequence logos one 
must first understand the concepts of information and 
uncertainty. 

2 Information and Uncertainty 

We said that a sequence logo is a graphic represen- 
tation of the amount of information to be found in a 
set of DNA, RNA, or protein sequences. But what is 
information? To understand that, we first must un- 
derstand the technical meaning of uncertainty. Imag- 
ine yourself seated in front of a television screen. We 
are going to test your psychic powers, except that you 
haven’t told us that you don’t have any. Still, we will 
test your powers by flashing random symbols on the 
screen to  see if you can guess them before we project 
them. Let’s start with the alphabet. You are very 
uncertain as to which symbol will appear next. Af- 
ter all, there are twenty-six of them, and you aren’t 
psychic. You are only able to  guess correctly about 
once every twenty-six times a new symbol is flashed 
on the screen. Now, say we throw out all of the letters 
except “a,” “c,” “g,” and “t” . We wouldn’t tell you 
though, as far as you know, there are still twenty-six 
possibilities. But you’re a smart person, so eventu- 
ally you start to realize that only those four letters 
are being displayed, and your uncertainty decreases. 
This makes sense because now you are certain that it 
will be either an “a,” “c,” “g,” or “t,” and not one 
of the other twenty-two letters. Next, we bring in a 
new person, and we consistently flash the same letter 
on the screen, an “a” for instance. Their uncertainty 
would be zero; they’d know that the symbol was al- 
ways going to  be an “a”, and if we started flashing 
other letters, like “c,” “g,” and “t” their uncertainty 
would suddenly increase. So, we see that whenever in- 
formation is gained, for example when you determined 
that we stopped using all twenty-six letters, the level 
of uncertainty decreases. Likewise when information 
is lost, as in the case where the person no longer knew 
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12 Lambda CI and cro binding sites 
Fig. 1. Some aligned sequences and their sequence logo. At the top of the figure are listed the 
12 DNA sequences from the PL and PR control regions In bacteriophage lambda. These are bound by 
both the cl and cro proteins [16]. Each even numbered sequence is the complement of the preceding 
odd numbered sequence. The sequence logo, described in detail in the text, Is at the bottom of the 
figure. The cosine wave is positioned to indicate that a minor groove faces the center of each 
symmetrical protein. Data which support this assignment are given in reference [17]. 
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that the symbol would always be an “a,” uncertainty 
increases. So how do you measure information and 
uncertainty? 

3 The Magnificent Bit 

The most common unit for measuring informa- 
tion and uncertainty is called the bit. A bit is the 
amount of information necessary to choose between 
two equally probable choices. To demonstrate this, 
let’s play a game of twenty questions. Say that I put 
1,048,576 identical boxes in a straight line and put a 
blue ball into one of them at  random. I’ll let you have 
twenty yes-or-no questions to find the ball, and if you 
do, I’ll give you the ball (it’s a special ball). Are you 
going to  play? Of course you are, it’s a really spe- 
cial ball. All of the boxes look identical, so what are 
you going to do? You can hope you get lucky, and 
guess randomly at  twenty boxes, but then you’d only 
win that really special ball about once every 52,429 
times you play. However, there is a better way! And 
best of all, you’ll always win! Can you guess the best 
method? Well, here i t  is: the best questions to  ask 
are the ones which eliminate the largest possible set of 
choices NO MATTER WHAT THE ANSWER IS .  In other 
words, whether I say “yes” or “ n ~ ” ,  you can eliminate 
the same number of choices. That number is one-half 
of the total number of choices. Therefore, your first 
question would be “IS the ball in the first half of the 
line of boxes?” My answer would be “Yes,” and now 
you only have 524,288 boxes left to chose from, and 
you still have 19 questions. Although this seems like a 
lot of boxes to choose from, notice that 1,048,576 (the 
number you started with) is equal to  220. So if you 
keep dividing the set of boxes in half, your twentieth 
question will determine which of the two remaining 
boxes contains that really special blue ball. The an- 
swer to  “Where is the blue ball?” is given by 20 bits 
of information. 

This method of searching is by no means a new con- 
cept (computer programmers call it a binary search 
and have been using it for quite a long time), and 
it has been used in biology before, but only re- 
cently has someone used it for studying binding sites 
[6, 7 ,  8,  9, 10, 111. It takes two bits of information 
to determine which of four equiprobable DNA bases 
occurs a t  a certain location. The first 1 bit decision 
divides the set in half, leaving only 2 choices. The 
second 1 bit decision determines which base is at the 
current location. 

4 The Nitty Gritty Bit 

Now that you have a basic understanding of infor- 
mation theory, we’ll give you a simplified mathemati- 
cal derivation of the formulas.’ 

First, we’ve seen that to  make a choice between 
two equiprobable symbols requires one bit of informa- 
tion, while four symbols require two bits. Going one 
step further, you should see that eight symbols require 
three bits to  pick one of them. From this we see the 
relationship: 

2b = M (1) 

b = log, M (2) 
or 

where b is the number of bits required to determine 
which of M different symbols is the current one. This 
formula assumes that all of the symbols are equally 
likely, but what if they are not? 

First, we rearrange equation (2). Since (A!-’)-’ = 
M ,  we can substitute into (2) yielding the equation 
b = log,[(M-’)-’]. By pulling out the exponent (ac- 
cording to  the rule that log, b” = n log, b )  and by 
using the rule that M-’ = & we obtain the equation: 

b = - log, (i) . (3) 

For M equally probable symbols, & is the probability 
of each symbol P, so: 

b = - log,(P). (4) 

While information theory [3, 4 ,  51 is based on prob- 
abilities, sequence data can only be used to  generate 
frequencies, so we have to  use them instead, and we 
have to  be a little bit careful since they differ. Prob- 
ability is the chance that something (in this case a 
particular symbol) will occur a t  any specific location 
in an infinite set; but frequency is the number of times 
something occurs in a finite set divided by the number 
of elements in the set (our sequence). That  is, proba- 
bility is from an entire population, while frequency is 
from a sample of that population. So, the larger the 
sample one is working with, the closer the frequency 
will be to the probability, but the frequency will only 
be an approximat,ion of the probability. Now, suppose 
that we have M different symbols (like a ,  b, c, etc.) 
and that each has a different probability Pi where i 

]This section is necessary for a thorough understanding of 
how sequence logos work, but is not necessary for understand- 
ing their function. However, if your mathematical background 
includes the calculus, we would recommend that you wade 
through all of this. 
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denotes which symbol is being referred to. From these, 
we create a sequence that is N symbols long (for ex- 
ample, the sequence aabcba has N = 6 and M = 3). 
When there is a large sample size, the frequency of a 
symbol approximates its probability, so we substitute 
frequency for probability in equation (4). Because of 
this substitution, it is important to  use a correction 
for small sample sizes [6], but we won’t discuss that  
here. Finally, we define probability so that the sum 
of the probabilities is 1 (100%). In other words no 
symbols which are not part of the set will appear. 

When each symbol appears, you are surprised to  
see it.  If a relatively common symbol appears, you are 
not very surprised, and if a very rare symbol appears, 
then you are extremely surprised to see it. Tribus [12] 
quantified this “surprisal” and defined it as: 

ui = - l0gz(Pi). (5) 

Thus, when the probability of a symbol is low, its 
surprisal is high and when the probability is high, then 
its surprisal is low. Notice the resemblance of equation 
(5) equation to (4). 

No matter what symbol you receive, your uncer- 
tainty before you receive it is the same because a sym- 
bol you don’t have can’t influence your uncertainty. 
So uncertainty is the average surprisal for all of the 
N symbols. Uncertainty, defined this way, has several 
properties which are desirable for information theory 
[3]. So if we sum the surprisals for each symbol re- 
ceived and divide by N (the total number of symbols), 
we obtain the average surprisal: 

(6) 
U 1  + 212 + U 3  + a . .  + U N  

N 
Using summation notation this can be expressed as: M 

H = - P; log, Pi (bits per symbol). 
i = l  

M 

Niui 

N 
i = l  

(13) 

(7) 

where, once again, M is the number of symbol types, 
N is the total number of symbols in the sequence, Ni 
is the number of times the i th symbol appears within 
the entire sequence, and ui is the surprisal for that 
symbol. This summation is equivalent to expression 
(6) because we have regrouped the surprisals. Instead 
of grouping them in the order in which they occur, 
we have grouped them by the symbol which they are 
related to. Consider the string xxyyzyyzzxxy. The 
first expression (6) would represent this as: 

u,+u,+uy+uy+u,+uy+uy+u,+u,+u,+u,+uy 
12 

(8) 

where the second expression (7) would represent it as: 

(9) 
4 x U ,  + 5 x uy + 3 x U ,  

12 

Now, by bringing the denominator inside the sum- 
mation of (?’), we get: 

Since the frequency of the i th symbol occurring (Fi)  is 
found by dividing the number of times the particular 
symbol occurs ( N i )  by the number of symbols ( N ) ,  Fi 
can be substituted for $$ giving: 

M 

C Fiui. (11) 
i=l 

Also since Fi gets closer to Pi as N gets larger, (math- 
ematically that’s Pi = lim Fi) ,  and since the num- 
ber of sequences one could be dealing with might be 
pretty high, (after all, life has existed for billions of 
years, and will continue, we hope, to flourish) Pi can 
be substituted for F, giving: 

N-CU 

M 

PiUi.  (12) 
i = l  

Finally, by substituting for ui from equation (5), 
we obtain Shannon’s famous general formula for un- 
certainty : 

5 Example 

Suppose the symbols “a,” “c,” “g,” and “t” are 
the four symbols a machine uses to generate a twelve 
letter sequence “gattttctcttt”. So far, we know that 
N = 12, M = 4, N,, = 1, N ,  = 2 ,  Ng  = 1, and 
Nt = 8. We find that the frequencies are Fa = A, 
F, = A, Fg = &, and Ft = A.  Now, let’s say that the 
frequencies are always the same no matter how many 
sequences the machine creates. In other words, if the 
set was infinite, then the frequency of each letter would 
equal its probability, and this makes Pi = F;. So, 
U, = -log,(O.O8) = 3.58 bits. Similarly, U, = 2.58, 
ug = 3.58, and ut = 0.58 bits. Using equation (13), 
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and substituting in the values for Pa, P,, Pg,  and Pt,  
we obtain the following: 

1 1 2 2 
12 12 12 

H = -[ - x log,(-) + - x log,($ 

so H = 1.42 bits. This follows with our earlier discus- 
sion, as we find that it requires an average of 1.42 bits 
to determine which symbol is located at any particu- 
lar position in the sequence. (Note - For equiprobable 
choices, equation (2) can be used and is much simpler, 
we just wanted to show you how the more general for- 
mula works. As an exercise, you can show that if all 
the Pi are equal, equation (13) reduces to the same 
form as (2).)  

6 From Uncertainty to Information 

Now that we have defined uncertainty and given it 
a unit of measure, we shall put information in terms of 
uncertainty. Let us examine our boxes with the blue 
ball again, but for simplicity, let’s say there are just 
eight boxes. At the start, before the ball’s location 
is known, there is an uncertainty of 3 bits (log28 = 
3) [equations (2) and (13)]. After the ball has been 
located, there is no uncertainty as to  where the ball 
is. After all, you are staring right a t  it. Since your 
uncertainty has gone from 3 bits to 0 bits, you have 
GAINED 3 bits of information. 

Now suppose we play the guessing game, but that I 
refuse to tell you the answer to the last yes-no question 
you ask. Before playing the game your uncertainty is 
3 bits, but after the game is over, you still don’t know 
which box the blue ball is in. Because you are still 
uncertain by 1 bit, you learned from me only 3 - 1 = 
2 bits. In other words, the uncertainty ( H )  before 
the input is received minus the uncertainty af t e r  it is 
received is the information you gained (R) :  

7 Tying This to  Sequence Logos 

Understanding the concepts of information and un- 
certainty is crucial to understanding how a sequence 
logo is designed and what it shows. On a logo, the hor- 
izontal axis represents the position of the base, and the 
vertical axis represents the amount of information (in 
bits) which that position holds. So, if there is a letter 
“T” that is two bits tall a t  position 7 on a logo, this 

tells us that whatever the number of sequences ana- 
lyzed, all, or close to all, had a “T” at that position. 

The sequence logo also stacks the letters at each 
position in order of importance. In other words, the 
most common letter at a position will be placed at  the 
top of the stack, while the least ‘common letters will 
be placed at  the bottom. So, the letters on top are 
the equivalent of the consensus sequence. 

While the height of the stack is the information 
content a t  that position, the height of each letter in 
the stack corresponds to the frequency of the letter a t  
that position. Take position +3 of the “Lambda CI 
and cro” logo (Fig. 1). Here, the predominant base is 
guanine, but there is a case of adenine. So, the “G” 
is both taller, and on top of the “A” meaning that 
guanine is more common than cytosine, adenine, and 
thymine at position +3. 

Looking now at column -9, you will see the same 
letters there-“gattttctcttt”-as we used in the ex- 
ample for calculating equation (14). That  was the 
calculation of Hafter, which is the uncertainty seen 
ufler  the sites are found. Before the sites are found 
the protein is not in contact with the DNA and all 
4 bases are possible. so the uncertainty H b e j o r e  is 2 
bits. Using equation (15), the informdon at  position 
-9 is 2 - 1.42 = 0.58 bits. A small-sample correction 
[SI reduces this to the 0.38 bits high you see in Fig. 1. 

This method is ideal for analysis of binding sites on 
both DNA and mRNA, as well as for analyzing pro- 
teins. In a consensus sequence, the base at  each posi- 
tion is merely the most common one appearing at  that 
location. This suggests that  each base of the binding 
site is of equal importance. However, the more highly 
conserved bases are usually the most important for 
binding, and if a consensus was a good model, then all 
of the bases across the binding site would be of equal 
importance and their corresponding letters on the logo 
would be of equal heights. With the exception of cer- 
tain restriction enzymes, logos almost invariably show 
that this is not the case, because they display varying 
conservation at different points in binding sites. In the 
sequence logo of Lambda CI and cro binding sites, the 
difference in importance of each position can easily be 
seen in the ups and downs of the logo. (It is curious 
that the conservation alternates between high and low 
values, but this is not true for other binding sites, so 
whether it is significant to the biology of these sites is 
unknown.) 

Also in the logo, you will notice that there are error 
bars on the top of each stack of letters. These bars, 
which look like the letter “I”, represent the error that 
is possible ( 1  standard deviation) in the value of the 
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-10.6 bases 43 

Fig 2. Many sequence logos printed on top of each other. There were 12 lambda cl and cro binding 
sites, 8 lambda 0 blndlng sites, 58 CRP binding sites, 34 ArgR binding sites, 38 LexA binding 
sites, 8 TrpR binding sites and 12 AraC binding sites. From Papp, et al. (submitted). 
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Fig. 3. Sequence logo of words In the English language. Words from the Unix dictionary, 
/usr/dict/words, were aligned by their first letter. Vowels are darker and consonants are lighter. 
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Fig. 4. Sequence logo of words in this paper. Words were aligned by their first letter. 
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entire letter stack (the height of the whole stack) due 
to a limited sample size. 

The cosine wave running above the logo represents 
the major and minor grooves of the DNA helix as seen 
from one side. The high points of the wave represent 
the major groove facing the protein, while the low 
points represent it facing away. Conversely, the low 
points of the wave represent the minor groove facing 
the protein, while the high points represent it facing 
away. This wave is there merely to help you visual- 
ize the grooves of the DNA and is not some sort of 
measurement of how much information should be at  
the site. However, the height of the wave on the ver- 
tical axis is significant. In B-form DNA, two bits of 
information can be conserved by protein contacts ap- 
proaching the DNA from the major groove, but only 
one bit of information can be found by those in the mi- 
nor groove (Papp, et al. submitted). The logo demon- 
strates this effect, since the st,acks of letters are not 
as high where the minor groove faces the protein in 
the middle. An overlay diagram (Fig. 2) shows many 
sequence logos printed on top of each other, and as 
you can see, the height of the letter stacks rarely goes 
above the wave. Those stacks that do, have error bars 
which allow for them to  pass under the wave. 

Now that we’ve cleared that up, let’s take a look 
at  what’s happening in that peculiar minor groove. 
The reason for the depression in the middle of these 
logos is that if a protein is using contacts to the minor 
groove, it is difficult or impossible to determine base 
pair orientation. That  is, it is possible to determine 
an A-T pair, or a G-C pair, but it is not possible to 
determine whether an A-T pair is oriented as A-T or 
T-A, and if a G-C pair Is G-C or C-G. The structure of 
the bases and phosphate backbone which make up the 
DNA are such that the minor groove will only allow 
a distinction between the two possible base pairs (a  
one bit decision) but not their orientation. The major 
groove will not only allow the distinction between A-T 
or G-C, but also the orientation of the individual base 
pairs.2 You may have noticed that the cosine wave 
is at a height of one bit in the minor groove. This is 
because, as we said earlier, only one binary question 
can be answered in the minor groove, so only one bit 
of information can be obtained there; and in the major 
groove, the cosine wave has a height of two bits, since 
two binary questions can be answered there. And now 
with this last loose end tied up, your sequence logo 
lesson is complete. 

Other strings can be analyzed by this method [3]. 

2For a complete description of why this is so, see reference 
1131. 

For example, in the logo for an English dictionary 
(Fig. 3), we can see that the first letter is predomi- 
nantly a consonant (s, c or p) , the second letter is a 
vowel, and that the third is again a consonant. Curi- 
ously, E trails over a hump for the remainder of the 
words. For the text of this paper the letter usage is 
different (Fig. 4). There are so many ‘the’s (7%) that 
they show up in the first three positions of the logo. 
The predominance of N and Y at position 11 is par- 
ticularly telling: it indicates the prominent use of the 
words probability, uncertainty and information in this 
paper. 

The sequence logo is a powerful tool for analyz- 
ing DNA, RNA, protein sequences and words in a 
language [l]. It goes far beyond the old consensus 
method. The logo method of analysis reveals the im- 
portance of each position in a sequence, along with the 
importance of each base occurring at  each position. A 
logo represents the amount of information present us- 
ing a standard unit of measure, which allows for com- 
parison of different types of sites. 
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Appendix: Obtaining Delila Files 

Delila programs (the ones which create sequence l e  
gos) are available on Internet by anonymous ftp from 
ncifcrf.gov in the directory pub/delila. In the ftp di- 
rectory, all files except README are compressed by 
the UNIX compress command. (So they end with a 
“.Z”). Don’t forget to use the binary transfer mode 
when you transport them. 

The uncompress program can be obtained by 
anonymous ftp from “uunet.uu.net” in “compress.tar” 
There is also a “help” file there. For VAX VMS users, 
it may also be obtained from genbank.bio.net in direc- 
tory pub/vms as the file “1zdcmp.exe” (Contact Dave 
Kristofferson, kristoff@genbank.bio.net for more infor- 
mation.) 

The files are also available to people on BIT- 
NET from Dan Davison (davison@uh.edu) on “gene- 
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server%bchs.uh.edu@CUNYVM” [14] (many thanks 
to Dan for this service). 

For additional assistance contact Tom Schneider 
(toms@ncifcrf.gov). Future significant upgrades will 
be announced on the newsgroup bionet.infetheory 
[15]. If you do obtain any programs, please contact 
us  with comments, so we may improve the archive for 
you. 
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