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Abstract

This paper presents an algorithm for combining pattern recognition-based exon prediction
and database homology search in gene model construction. The goal is to use homologous genes
or partial genes existing in the database as reference models while constructing (multiple) gene
models from exon candidates predicted by pattern recognition methods. A unified framework for
gene modeling is used for genes ranging from situations with strong homology to no homology
in the database. To maximally use the homology information available, the algorithm applies
homology on three levels: (1) exon candidate evaluation, (2) gene-segment construction with
a reference model, and (3) (complete) gene modeling. Preliminary testing has been done on
the algorithm. Test results show that (a) perfect gene modeling can be expected when the
initial exon predictions are reasonably good and a strong homology exists in the database; (b)
homology (not necessarily strong) in general helps improve the accuracy of gene modeling; (c)

multiple gene modeling becomes feasible when homology exists in the database for the involved
genes,

Key words: Exon prediction. gene structure prediction, database homology search, dynamic pro-
gramming.
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1 Introduction

Identification of genes in anonymous DN A sequences involves recognizing coding regions and parsing
recognized coding regions into gene models. With different coding recognition methods and different
parsing strategies. a number of computer programs have been developed for the gene identification
problem (Uberbacher and Mural. 1991: Xu et al., 1994a; Fields and Soderlund, 1990; Gelfand, 1990:
Guigo ¢t al.. 1992: Hutchingson and Hayden. 1992; Snyder and Stormo, 1993; Dong and Searls.
199-: Krogh. Mian and Haussler, 199.). Though varying in how the information is processed and
applied. common to all these gene prediction methods is the basic information used: (1) content
statistics measuring the positional/compositional biases imposed on the DNA sequence in coding
regions by the genetic code. and/or (2) homologous sequences existing in the database. While
content-statistics based methods are more general and robust they may fail on “abnormal” or short
DNAs: Also this type of method tends to be “less objective” in the gene parsing phase due to
the lack of discernible biological constraints. Typically, a (single) gene structure is predicted by
selecting a set of recognized coding regions that satisfy the adjacent-exon spliceability condition
and also optimize some (simple) objective function, which in general does not guarantee a perfect
correspondence with the actual gene structure (Xu et al., 1994b). Homology based methods can
provide more direct evidence of coding characters and possibly a reference model in the gene parsing
phase. but they may not be generally applicable as more than 50% of the newly discovered genes
have no detectable homologs in the database.

We previously developed a gene prediction system, GRAIL, based on content statistics measur-
ing exon related properties of a DNA (Uberbacher and Mural, 1991; Xu et al., 1994a). The system
first extracts over a dozen features from each potential exon candidate. Each of these features
exhibits some discriminating power between an exon and a non-exonic region. A neural network
was trained to score the partial correctness of each exon candidate based on the extracted features.
The result of the neural network evaluation is a set of scored candidates, each having a pair of
boundaries and a fixed translation frame. Two exon candidates can be defined to be spliceable
if a certain relationship holds among their boundaries and translation frames. The GRAIL gene
structure prediction subsystem predicts a (single) gene model by selecting a subset of the scored
candidates so that adjacent candidates are spliceable and the total score is maximized. Though
enforcing the spliceability condition has increased the accuracy of (final) exon prediction and gene
structure prediction. it does not guarantee to generate the correct (single) gene model even when
all the components to form the correct model are present in the exon candidate pool. A typical
example for such a case may be as follows. A high scoring false exon was predicted in between of
two adjacent true exons. If this false exon happens to be spliceable to both of the true exons it
may be included in the predicted gene model.

Though it may not be universally applicable, homology information, when available, can be used
to provide reference models in both exon prediction and gene structure prediction. Some recent
work has been done to incorporate homology information in the process of exon (re)evaluation
(Snyder and Stormo. 1994; Guigo and Knudsen, manuscript in preparation).

We have developed a framework for incorporating homology information in the GRAIL gene



prediction process. Our goal is to maximally use the available homology information in both exon
prediction and gene structure prediction. The framework consists of three main steps: (1) exon
candidate re-evaluation. (2) reference-based gene-segment construction, and (3) (multiple) gene
structure prediction. The algorithm first uses the GRAIL exon prediction subsystem to predict a
set of exon candidates. The predicted candidates form a set of clusters. each containing overlapping
exon candidates. In general, each cluster represents different predictions of a presumed exon with
different boundaries. The algorithm then selects a few high-scoring candidates from each cluster
to do database homology search. If homology is found. the search results are processed to form a
reference exon model for the cluster, and all the candidates of the cluster are re-scored according to
this reference model. In the next step. the algorithm combines the search results for all the clusters
to form a set of maximal reference models (each one covers more than one exon). An optimal partial
gene model. or gene segment, is constructed based on each reference model. In t
models are constructed from the gene segments and exon candid
function more general than to the one used in Xu et al.. 199.1b. In
2 and 3 are combined into one single step.

Preliminary tests have been done on this algorithm. In general.

he third step, gene
ates by optimizing an objective
the actual implementation, steps

as expected, incorporating
homology information into the gene prediction process improves the accuracy of individual exon

predictions (mainly boundaries of exons). By applying reference-based gene-segment construction.
the algorithm significantly reduces the false positive rate by not including exon candidates that
are obviously inconsistent with the reference models. Based on our limited tests, a perfect (single)
gene model can be expected when the correct exon candidates are present in the candidate pool
and a strong homology exists in the database. The database search also may

indicating the start and end of a gene. and hence makes automated multi
feasible.

provide information
ple gene model prediction

2 Exon Prediction by Pattern Recognition

This section reviews the GRAIL exon prediction algorithm (Uberbacher and Mural, 1991: Xu ¢f al..
1994a: Uberbacher et al., 1996). As in any pattern recognition problem. to recognize exons we need
to select a set of features that are associated with exons. and to design a method to discriminate
exons from non-exonic regions.

To determine the likelihood of a DN A segment being an exon involves determination of coding
potentials of the region and evaluation of the potential splice junctions (or translation starts/stops)
bounding the region. GRAIL uses a frame-dependent 6-tuple preference model (Uberbacher and
Mural, 1991; Claverie et al. 1990) and a 5% order non-homogeneous Markov chain model to
calculate coding potentials of each candidate region and its two 60-base surrounding regions (as
background signal). These coding measures are used as features in the exon discrimination process.

Recognition of coding regions using the 6-tuple (or in general k-tuple. for any fixed k) method
is known to have strong dependence on the G+C composition. and is more difficult in G4C poor
domains. If we estimate the frequencies of frame-dependent coding 6-tuples and noncoding 6-tuples
in the high G+C domain, and use these frequencies to calculate coding measures for a set of coding
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Figure 1: The X-axis represents the G+C composition of an exon candidate and Y-axis represents
the 6-tuple scores measured by the frame-dependent preference model. Each tick mark on the
horizontal axis represents 10% in G+C composition with 0% on the left and 100% on the right.

The large squares represent the coding regions and the small dots represent the regions flanking
coding regions.

regions and their 60-base flanks in all ranges of G+C composition, an unexpected pattern is shown
in Figure 1. The coding measures for both the coding regions and their flanks are much lower in
the G+C poor domain compared to the G+4C rich domain. A very similar behavior is observed if
the 6-tuple frequencies are collected from low G+C DNA sequences. Hence GRAIL uses the G+C
compositions of both a candidate region and a 2000-base region centered around the candidate as
correction factors in the exon discrimination process.

A number of measures including a 5-tuple preference model, long-distance correlations between
single bases. etc. have been used in a separate process for evaluating the strength of a potential
splice junction. The result of this evaluation is used as a feature in the exon discrimination process.

One interesting observation we recently made indicates that shorter exons tend to have stronger
splice junction sites and hence higher scores. Also short false exon candidates may have better
chance to accidentally have high coding measures. Based on these considerations, we have included
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Figure 2: An example of FASTA search result.

the exon candidate length as another feature in the exon discrimination process.

The extracted features over each candidate region are fed to a neural network. which h
trained to score the partial correctness of a candidate. The result of the ne
is a set of scored candidates with each having a’ fixed translation frame.
divides the candidates into clusters of overlapping candidates. e
prediction of a presumed exon.

as been
ural network evaluation
A clustering procedure
ach of which represents a different

3 Database Homology Search

By doing database search. we attempt to achieve the following goals: (1) to collect
information to help locate where the corresponding coding region starts and ends for each candidate
cluster: (2) to collect as much information as available to piece together protein segments to form
long, hopefully complete protein sequence(s) (in the sense of a complete gene)

In the current implementation. we use Swissprot as the target database. The search for homol-
ogy is done by the FASTA program version 2.0 (Pearson and Lipman. 198%)

BLOSUMS50. Experiments on other databases with different search progr
done in the near future.

“suflicient”™

using the score matrix
ams are expected to he

To conduct a database search. an exon candidate is first translated into a protein sequence in
its translation frame. and then this protein sequence is used as a query in the search.
search. FASTA returns a number of hits from different proteins. possibly of different org
typical FASTA hit is shown in Figure 2.

For each database hit. the following information can be extracted: (

For each
anisms. A

1) the starting and ending
positions of the matched portion of the query sequence. from which we can calculate the starting

and ending positions of the corresponding coding DNA segment: (2) the portion (subsequence and
location) of the protein that the query sequence matches. from which we can further know if this
portion is the beginning or end of the protein, or somewhere in between.

In the current implementation. we use the top five highest-scoring candidates from each cluster
to do the database search. The reason we use five instead of one or all candidates of a cluster is
due to the consideration of (1) having a good representative set. and (2) the.computation time
constraint. The search results are sorted into different gene groups. For each group. the union of
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the matched protein portions is used as the reference model (this is a simplified statement but gives
the basic idea). Thus each cluster has a number of reference models from different genes.

After the database search is done for all the clusters, matched protein segments are sorted into
different gene groups. A set of non-overlapping maximal gene segments are formed based on the
protein segments obtained from the search for each gene group (note that each protein segment
could be longer than the matched portion of the protein as can be seen in Figure 2). These gene
segments will serve as reference models in the reference-based partial gene model

Labels are marked on gene segments that start and/or end a gene, which will b
multiple gene model construction.

construction.
e used in the

4 Gene Modeling

Gene model construction is currently done in GRAIL by selecting a subset of non-overlapping
exon candidates from the predicted candidate pool such that adjacent candidates (in their spatial
relationship) satisfy the following spliceability condition and the tota] (normalized) neural-net score

is maximized (Xu et al.. 1994b). We classify exons into three classes: (1) initial exons: the exons

that start with a translation start AT, (2) internal exons: the exons that start with an acceptor

junction and end with a donor junction, and (3) terminal exons: the exons that end with a in-frame
translation stop codon. Note that an exon can be both initial and terminal exon. An exon E, is
said to be spliccable to exon E, if the following conditions hold. We use I(E), r(E) and f(E) to
represent the left boundary, right boundary and translation frame of E. respectively.

(1) Ey is a non-terminal exon, and E; is a non-initial exon;

(2) (Ey) — r(Ey) > K, (in GRAIL, & = 60);

(3) J(£2) = (U E2) — r(E1) = 1 + f(E})) mod 3;

(4) no in-frame stop are formed at the Joint point when appending E; to Es.

The basic assumption for such a mathematical model for gene modeling to be effective is that
the score of an exon candidate is, in general. an accurate reflection of the partial correctness of it
being a true exon. When this assumption is violated we may see that high-scoring false candidates
are included in the gene model. or low-scoring true exons are excluded from the gene model. The
problem is caused by a lack of detectable biological constraints used in this mathematical model.

In this section, we extend this model by applying homology information in addition to splice-
ability condition when appending exon candidates to form a gene model. Because of the markers

of the start/end of a gene from the database search, we can further extend this model to construct
multiple gene models.

4.1 Exon re-evaluation

For each cluster, all the candidates will be re-scored based on the reference models if the homology
is above some threshold. Let E be an exon candidate, P be its corresponding protein, and R be
a reference model. Recall the format of a FASTA output. We replace each identity match (“:™)



between P and R by a value 1, each similar match (“.”) by 0.5 and a miss match by 0. The total
of all these values is defined to be the match score between P and R. denoted by match(P, R). The
new score of £ with respect to the reference model R is given by

_ match( P, R)?

scorep(E) —lW,

where || R|| represents the cardinality of R.

To be consistent in the scoring scheme, we also re-score the exon candidates with no database
homology as follows (note that the neural net score does not explicitly reflect the length of a

candidate but the above does). For each such candidate E, let net(E) represent E’s neural net
score (scaled to the range of [0.1]).

scorcg( E) = net(E)?||E||/3.

where  indicates that the score does not depend on any reference model and I1E}}/3 gives the
length of £'s corresponding protein. We also define scorep(E) = —x for all such Es.

4.2 Reference-based gene model construction

This subsection presents an algorithm for constructing a (multiple) gene model from a set of pre-

dicted exon candidates that maximizes the total exon candidate scores under the constraint that
the model is consistent with a set of given reference models.

4.2.1 An example

We first use an example. shown in F igure 3. to explain the basic idea of the algorithm. In this
example. every cluster except clusters number 7 and number 11 has some homology in the database.
To make our discussion simple. we assume that the homology between R;’s and the corresponding
DNA segments is strong. We want to construct a gene model that are the most probable based
on the given neural net scores and the homology information. Recall that the neural net scores of
the candidates in Figure 3(b) represent the confidence level of a candidate being an exon without
any knowledge of database homology. In our early work (Xu et al.. 1994b), the most probable gene
model is totally determined by these scores. Our new algorithm has extended this to the following
strategy: apply homology information whenever possible, otherwise use neural network scores.

Note that each of the 5 reference models in Figure 3(c) is part of a protein possibly from different
organisms, and these reference models could be inconsistent. We need to determine, for each exon
candidate, which reference model to use while constructing a gene model. Our strategy is to use
as few reference models (of highest quality) as possible under the condition that the maximum
number of clusters are covered by these reference models. The rationale is that fewer number of
reference models implies fewer splicings between exons covered by different reference models. or
put it differently, more splicings between exons covered by the same reference model.

Based on the above discussion. a possible optimal gene model for this example could be
{E\, Es, E3, E4, Es, Es, Egg, E10, E11}, and the reference models are Rs and Rg, where E; is from

7
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Figure 3: A schematic of a candidate cluster and database homology. (a) and (b) represent a set
of clusters. Each hollow rectangle in (b) represents an exon candidate. The width and height of a
rectangle represent the length and the “probability” being a true exon, scored by the neural net. of
an exon candidate. respectively. The symbols in (a) indicate the eleven clusters these candidates
form. Each R, in (c) represents a continuous gene segment or reference model. A short line of each
R; represents the matched portion with the corresponding DNA segment, and the broken gaps are

only used to indicate the reference model matches a number of DNA segments.
reference models in this example.

There are five

cluster number i. for i € {1.2.3,+,5.6,10, 11} and Egg is a candidate from cluster 8 or 9. Clus-
ter number 7 (marked by “*”) is excluded because of its inconsistency with the reference model
Rs. Inclusion of a candidate from cluster 11 will increase the total score and does not cause any
inconsistency with any reference model. Thus E,; is part of the gene model.

4.2.2 The problem

Our goal is to define and solve the reference-based multiple gene modeling problem. But first we
define a simpler problem, the reference-based partial gene modeling problem, which models a single
gene and does not require a gene model to start with an initial exon and to end with a terminal
exon.

We first introduce some notations. Let C denote the set of all candidates and {Ri,..., Ri}
be all the reference models. We add a special Ro = 0 to the reference model set to simplify the
notations. For each E € C and each R;, M(E, R;) represents the portion of R; that matched E’s
corresponding protein (by FASTA version 2.0). M(E, R;) = 0 if there is no match.

A reference-based partial gene modeling problem is defined as follows. We want to select a
subset {Ej, ..., Ez} of non-overlapping candidates from C and a mapping R from {E,..., En} to
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{Ro, ..., Rt} so that the following function is maximized. We assume that r(E1) < ... < r(Ey).
maximize Y1, scorep(g,)(Ei) + Y7y P(R(E;_y), R(E;))

subject to: (1) E, is spliceable with Eiypforallie[l,n— 1},
(2) R(E;)=R(E,)and i < j implies r(M(E;, R(E,))) < I(M(E'J,R(Ej))).

where P(X,Y)=Pif X =Y and ¥ # 0 otherwise P(X,Y)
between exons with the same reference model.

Informally, we want to select a number of exons Ey,..., E, from C and a reference model for
each E, so that the total scores of these exons is maximized. Such a set of exons should satisfy
the adjacent-exon spliceability condition. and also the relative order of exons should be kept in
their matched portions in the reference model. To encourage to use the same reference model for
adjacent exons. we also add a reward factor in the ob Jective function for splicings between adjacent

exons using the same reference model. In our current implementation, P is chosen to be larger
than the score of one “average” false candidate.

=0, and P is used to reward splicings

In the general reference-based gene modeling problem, we also include the information about
the start and the end of a gene. For each exon E and a reference model R;, we define B(E,R,) =1
if M(E.R,) is a prefix of R,'s corresponding protein, and B(E,R,) = 0 otherwise. Similarly,
L(E,R,) = Lif M(E,R,) is a suffix of R,’s corresponding protein, and L(E, R;) = 0 otherwise.

A refcrence-based multiple gence modeling problem is defined as follows. We want to find a
list {E,...,E,} of non-overlapping exon candidates from C, a mapping R from {E1,....,E.} to
{Ro,.... R}, and a partition of {E\,....E;} into D sublists, {El.... Eel(l)}, {Elz,...,Efm},
{EP.... ECD(D)}, so that the following function is maximized. where €(d) represents the last exon of
the d** sublist. We assume that r(Ey) < ... < r(ER).

D

maximize o1 (08 scorepieay(ET) + 559 P(R(EL.,), R(EY)) + Py(ED) + PyEZ, )

subject to:  for all g € [1. D).
(I)Z(Eg(g_,_l))—r(Ej(g))>,C, forg<1D, 1
(2) L{Egy), R(EL ) = 1, or B(E{™!, R(E{*")) = 1, for g < D,
(3) B(EZ, R(E{)) = 1 implies p = 1, and L(Eg,R(Eg)) = 1 implies ¢ = ¢(g),

(4) E? is spliceable with Ef  forallig[1,e(g)— 1],

(5) R(E}) = R(E) and i < j implies r(M(E{, R(E?))) < I(M(EZ, R(ED))).

where penalty factor Ps(E) is a fixed negative value if E is not an initial exon otherwise it is zero,
similarly P,(E) is a fixed negative value if E is not a terminal exon, otherwise it is zero, and £ is the
minimum distance between two genes (£ = 1000 in our current implementation). Note that D is
not a predetermined value, but a part of the optimal solution. In the following, we say {E1, ..., Eq}
form a gene model under mapping R and the partition given above if conditions (1) - (5) hold.



The main difference between the general gene modeling problem and the partial gene modeling
problem is the treatment of the start and the end of a gene. By utilizing the information about
the start/end of a gene from the database search, we are able to deal with multiple genes in a
DNA sequence. By requiring conditions (2) and (3), a list of exons will be divided into two genes
if and only if there is a start or end of a gene based on the database search information. To model
a complete gene. we penalize gene models missing the translation start in its first exon or the
translation stop in its last exon by using the two penalty factors P; and P,.

4.2.3 The algorithm

We now present a dynamic programming algorithm to solve the reference-based multiple gene
modeling problem defined in Section 1.2.2. The partial gene modeling problem can be solved as a
special case.

The input to the algorithm is a set of exon candidates sorted in the increasing order of their right
boundaries. The algorithm scans through the exon candidates from left to right and constructs
optimal solutions for the subset containing all candidates from the first to the current one. based
on optimal solutions for previous subsets. We call these solutions the optimal solutions for this
candidate. For each candidate. at most k + 1 optimal solutions are constructed, i.e., at most one
for each of the & + 1 reference models {Ro, Ry, ..., Rx}. To construct an optimal solution for the
candidate and a reference model. the algorithm tries to splice this candidate with all the previous
candidates. and to find the one giving the highest total score with respect to the reference model.
P is rewarded to cach splicing between candidates using the same reference model. Conditions (1)
- () are checked while trying to splice two candidates. The algorithm stops when all candidates
are processed. The model having the highest total score is output as the solution. As we give
more details in the following. it can be seen that this output corresponds to the solution to the
reference-based multiple gene modeling problem.

Let {E,..... Ejcyi} be the set of given exon candidates sorted in the increasing order of r(E,)s.
We use modcl(E,, R,) to denote the value of the objective function of the optimal gene model. for
the subset {£,..... E}. that ends with E, using reference model R;. By definition.

ien.ﬂf}l\em,k] model( E;, R;)
corresponds to the solution of the reference-based multiple gene modeling problem.

To calculate model( E;, R,;), the following recurrences can be proved using inductive proofs.
which we omit here. To simplify the recurrences, we introduce another quantity modely( E;, R;).
which is defined the same as model( E;, R;) except that the Py() term (in the objective function) is
ignored for the last sublist in the partition of {E1, ..., E}.

There are two cases we need to consider in calculating both model( E;, R;) and modelo( E;, R)).
Case # 1: When E, is the first exon of a gene,

model(E,. R,)

= MaXpe(1,-1]qefo.] {model( E;, R;), model(E,, R,) + scorer, (E;) + Pr(E;) + Py E;),
when (1) L(E,,R;) =1 or B(E;, R;) =1, (2) I(E;) — ™ Ep) > L.}

10
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Figure -I: Reference-based gene modeling. The X-axis represents the sequence axis. (a) Each solid
bar represents an exon. (b) The predicted exons and gene structures.
bars represent splicings between exons of the same gene. (c) The neural net predictions of exon
candidates. The Y-axis represents the axis of exon scores. (d) The re-scored exon candidates using
homology information. The lines in the bottom indicate the reference models used in gene segment
construction. The sequence is HUMIFNRFLA.

The lines between solid

and
modclo( £, R))
= MaXpe(y,i-1],0€[0.4] {modcly( E,. R;).model(E,.R,) + scorep (E) + Py(E,). ‘
when (1) L(E,.R,) = L or B(FE,. R)=1.(2)I(E,) - r(E,) > L.}
Case # 2: When E, is not the first exon of a gene.
model(E,, R))
= MaXpe(ri-1)efok] {model(E,, R)). modelo( E,. R,) + scorep (L) + P(R,, R)) + Py E,).
when (1) E, is spliceable to E,. (2) L(E,.R,)=0and B(E;,R;) = 0.
(3) r(M(Ep, Ry)) < l(M(E;i.R))) if R,=R,.}
and
modelo( £y, R,)
= MaXye(1,i—1],gef0.4] {modely( E,. R,;), modelo( E,, R,) + scorer (E;) + P(Rg, R;).
when (1) E, is spliceable to E;, (2) L(E,.R,)=0 and B(E;, R;) = 0.
(3) r(M(Ep, Rg)) < UM(E..R)))if R, = R;. }
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In the general case. model(E,, R,;) equals the highest value of the two cases. The same is true
for modely( E,. R;). The initial values of model( E;, R;) and modely( E;, R;) are defined as follows.

modcl(L,, R,) = scorep, (E;) + Py( E;) + P E,).
modelo(E,, R)) = scorep (L;) + Py E)).

Using these recurrences. model( L\, R,)) can be calculated in the increasing order of i for all
J € [0.k]. Tt is easy to see that these quantities can be calculated in O(J|C||*k?) time and O(|IC}jk)
space. To recover the set of candidates that achieves max; ; modcl( £;, R,) some simple bookkeeping
needs to be done. which can be accomplished in O(||IC|[2k?) time and O(||Clik) space. We omit
further details.

Figure -t shows an example of reference-hased gene modeling. An interesting thing is that the
best reference models for the first two exon clusters are not Human but Mouse proteins while the
best reference models for all the other clusters are Muman proteins. Database search results show

that the matches with Mouse proteins are 100% but only 96.6% with Human proteins for both
clusters.

5 Results and Discussions

We have presented a framework for using homology information to guide gene structure predictions.
The framework uses exons predicted by content-statistics based methods as basic building blocks
and database homology information as references in constructing gene models. The mathematical
model we used for the gene modeling problem rewards any application of homology information
in the gene modeling process as an attempt to maximally use the known homology. Minimal
“Inconsistency™ between predicted gene structures and database homology is the basic rule used in
this gene modeling framework.

Preliminary tests have been done to test the effectiveness of applying homology information in
gene modelings. Based on the test results on 59 genes. we conclude that (1) homology information
has helped improve the prediction accuracy of exon boundaries in the (single) exon re-evaluation
step. (2) homologs corresponding to a series of exons has helped greatly in eliminating false exons.
and also has further helped improve the exon boundary predictions. and (3) the availability of
information about the start/end of a protein makes it feasible to do multiple gene modeling.

The following table lists the test result on 59 single genes. While conducting these tests. the
gene tested on is removed from the database. The first column in the table gives the sequence name
and the number of exons in this sequence. The Exons columns give the prediction performance in
terms of number of exons that are “correctly”™ and falsely predicted: We list the number of missing
exons and false exons if there is any (a blank means no missing and false exons). Similarly the
Edges columns give the number of exon boundaries that are incorrectly predicted.
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Table I: Test results

GRAIL GRAIL with db search
Sequence Exons Edges Exons Edges
HUMALIFA (3) 1 edge off
1 false
HUMALPHA (11) 1 edge off

HUMAPOE1 (3) | missing | 1 edge off | 1 missing

HUMAPRTA (5) 2 edges off

HUMATPGG (22) I missing | 1 edge off | 1 missing

HUMATPSYB (10) 1 edge off
HUMBMYHT (38) 3 missing 3 missing

1 false 2 edges off 2 edges off
HUMCACY (2) 1 missing

HUMCAPG (5)
1 edge off

HUMCYPIIE (9) 1 missing | 1 edge off | 1 rnissing
1 false

HUMEDHBIT (6)

HUMEFIA (7)

HUMFESFP (18) 1 missing | 1 edge off 1 edge off

HUMGLUTYB (11)

HUMGOS24 (4)

HUMHAP (1)

HUMHOX4A (2) 1 edge off

HUMHSD3BA (3)

HUMHSKPQZ7 (6)

HUMHSP90B (11)

HUMIBP3 (4) 2 edges off

1 false

HUMIFNRF1A (9) 2 edges off

HUMILIB (6)
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HUMIL2 (4)

HUMILAA (1) 1 edge off
1 false
HUMILS (1) 1 missing 1 missing
HUMKERI18 (7) I missing | 2 edges off 1 edge off
HUMMETIII (3) 1 missing 1 missing
HUMMHB27D (7) 1 edge off
HUMMHCP12 (10) 3 edges off
1 false
HUMMKXNX (1) 1 missing | 1 edge off | 1 missing
HUMMLHDC (12) 2 missing | 8 edges off | 2 missing | 3 edges off
5 false 2 false
HUMMRPSA (2)
HEMMYCC (2)
1 false
HUMOSTP (6) 2 missing | 1 edge off | 2 missing
HUMPALD (1)
HUMPCONA (6)
HUMPDS02 (5) 1 missing | 2 edges off | 1 missing | 2 edges off
HUMPFAVLIA (3)
HUMPGAMMG (3)
HUMPIMIA (6)
HUMPNMTA (3) 1 edge off
HUMPOMC (2)
HUMPRFI1A (2) 2 edges off
HUMPSAA (5)
HUMSERG (2) 1 missing | 2 edges off 1 edge off
2 false
HUMSFTP1A (4) 1 missing | 1 edge off | 1 missing
1 false 1 false
HUMSODA (10)
1 false 1 edge off
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HUMSPERSYN (8) 2 edges off

HUMTBB5 (4)

1 false
HUMTCRBRA (2) | 1 missing 1 missing
HUMTHB (14) 1 missing | 2 edges off | 1 missing
HUMTNC2 (5) I missing | 2 edges off | | missing | 1 edge off

HUMTNFBA (3)

HUMTROC (6)
I false 3 edges off
HUMTRPM2A (3) 1 missing | 1 edge off

1 missing
HUMTRPYI1B (5) 2 edges off 2 edges off
HUMUBILP (1) I missing | 2 edges off | | missing | 1 edge off
2 false
HUMVITBP (12) 3 missing | 3 edges off | 3 missing | 3 edges off
2 false

From Table I, we can sce that the reference-based gene modeling program has improved the
performance of the GRAIL gene prediction system. This program has reduced the number of false
exons. missing exons and off-edges from 22 to 3. from 27 to 19. and from 57 to 17. respectively.
There are a few cases where the GR.\AIL gene prediction subsystem misses more exons than the
reference-based gene modeling program does. The reason for this is that these missed exons are
predicted by the GRAIL exon prediction program but not included in the gene models due to
the incorrect exon boundary predictions and the enforcement of spliceability condition. The exon
re-evaluation program corrected these exon boundary predictions based on the database search
results. and hence these exons are included in the reference-based gene modeling.

Tests are also done on a number of multiple gene sequences. Figure 5 shows one example
of multiple gene modeling on a DNA sequence artificially formed by appending three sequences
HUMCYPIIE. HUMRASH. HUMACTGA.

While we are planning to conduct more extensive tests on the algorithm. the preliminary test
results have pointed to possible directions for further improvement on the algorithm. We mention
a few here. While our current reference-based gene modeling framework allows effectively removing
falsely predicted exons and correcting exon boundary predictions. it does not support mechanism
to generate exons missed by the neural network exon predictor. Some work is currently under way
to develop effective methods to generate those missed exons based on the information provided by
database search. We are also working on schemes to include even more biological constraints in the

multiple gene modeling process. for example. indications of promoters. CpG islands. PolyA sites.
etc.

In conclusion, we have generalized our previous algorithm for single gene model constructions
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Figure 5: Multiple gene modeling. The X-axis represents the sequence axis. The DNA sequence
is artificially formed by appending HUMCYPIIE, HUMRASH and HUMACTGA. (a) Each solid
bar represents an actual exon. Exons # 1 through # 9 are the exons of HUMCYPIIE, exons #
10 to # 13 are the exons of HUMRASH. and exons # 14 to # 18 are the exons of HUMACTGA.
(b) The predicted exons and gene structures by the reference-based gene modeling program. The
lines between solid bars represent splicings between exons of the same gene. (c) The neural net

predictions of exon candidates. The Y-axis represents the axis of exon scores. (d) The re-scored
exon candidates using homology information.

and developed a reference-based multiple gene modeling framework. This framework attempts to
maximally use the available homology information from existing databases in constructing gene
models. By combining content-statistics based pattern recognition methods and homology infor-

mation, this reference-based gene prediction program should provide molecular biologists a more
powerful and convenient tool in gene identification.
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