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Abstract

A new version of the GRAIL system (Uberbacher and Mural, 1991; Mural et al., 1992; Uberbacher
et al., 1993), called GRAIL II, has recently been developed (Xu et al., 1994). GRAIL II'is a
hybrid Al system that supports a number of DNA sequence analysis tools including protein-coding
region recognition, PolyA site and transcription promoter recognition, gene model construction,
translation to protein, and DNA/protein database searching capabilities. This paper presents the
core of GRAIL II, the coding exon recognition and gene model construction algorithms. The exon
recognition algorithm recognizes coding exons by combining coding feature analysis and edge signal
(acceptor/donor/translation-start sites) detection. Unlike the original GRAIL system (Uberbacher
and Mural, 1991; Mural et al., 1992), this algorithm uses variable-length windows tailored to
each potential exon candidate. making its performance almost exon length-independent. In this
algorithm, the recognition process is divided into four steps. Initially a large number of possible
coding exon candidates are generated. Then a rule-based prescreening algorithm eliminates the
majority of the improbable candidates. As the kernel of the recognition algorithm, three neural
networks are trained to evaluate the remaining candidates. The outputs of the neural networks are
then divided into clusters of candidates. corresponding to presumed exons. The algorithm makes its
final prediction by picking the best candidate from each cluster. The gene construction algorithm
(Xu et al.. in preparation) uses a dynamic programming approach to build gene models by using as
input the clusters predicted by the exon recognition algorithm. Extensive testing has been done on
these two algorithms. The exon recognition algorithm is a significant improvement over the original
GRAIL system, and the gene construction algorithm further improves the prediction results.
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1 Introduction

The recent identification of genes for major genetic diseases through the use of genomic DNA
sequencing and informatics analysis (Mosser et al., 1993; Legouis et al., 1991) has underscored the
importance of genomic sequencing for gene discovery and elucidation of genome function. Essential
for such discovery is the ability to recognize features in genomic sequences, such as exons, splice
junctions and promoters using pattern recognition methodology.

Despite recent success, developing the technology to accurately recognize the components of
genes and to construct gene models from anonymous genomic DNA sequence data remains a sig-
nificant challenge. We previously developed an e-mail server system for coding exon recognition
called GRAIL (Gene Recognition and Analysis Internet Link) (Uberbacher and Mural, 1991; Mural
et al., 1992). Recently we have upgraded the system to provide recognition capabilities for a va-
riety of sequence features using artificial intelligence-based pattern recognition and combinatorial
optimization methods. In this paper, we describe the subsystems of GRAIL II (Xu et al., 1994)
that facilitate coding exon recognition and gene model construction.

The GRAIL II coding exon recognition algorithm recognizes a coding exon (in the following, we
simply call it an ezon) by combining the coding signals, edge signals (acceptor/donor/translation
start sites) and domain information. Three models are used to recogrige coding signals; they are a
frame-dependent preferred 6mer model (Uberbacher and Mural. 1991; Uberbacher et al., 1993), a
6mer coding preference model (Uberbacher and Mural, 1991; Uberbacher et al., 1993) and a non-
homogeneous Markov chain model (Uberbacher et al., 1993; T. Mitchell (personal communication),
1991: Borodovsky et al., 1986). To better determine the boundaries of an exon, measures for splice
junctions and translation initiation are also used in the exon discrimination process. The core of
the exon discrimination algorithm consists of three pre-trained neural networks, which are used to
evaluate three different types of exon candidates, i.e., initial. internal and terminal, respectively.

The original GRAIL used a fixed-length sliding window in evaluating the coding potential of
regions in a DNA sequence. In this form. the system has difficulty in locating exons that are much
shorter than the window size, because of the inclusion of non-coding segments within the window
being evaluated. A scheme of variable-length windows is implemented in the current algorithm.
Our basic implementation of variable-length windows considers every possible exon candidate, and
evaluates each using a window that matches the candidate region exactly. Using variable-length
windows has particularly improved the system’s performance on short exons, which was one of the
main motivations for the current study. To fully utilize the variable-length window scheme, we
have also used the coding (or noncoding) signals from areas surrounding an exon candidate in the
discrimination process. This is done mainly to distinguish an actual exon from a partially correct
exon candidate, i.e., one that partially overlaps one or more actual exons.

Improving the sensitivity to the exons in the A/T rich regions without increasing the background
noise level was another motivation of this research. To make the predictions more sensitive to coding
signals in regions of different G/C-content, particularly in low G/C (or high A/T) regions, we have
used G/C content-dependent preferred 6mer models and Markov chain model.

Making use of these considerations allows the GRAIL II coding recognition algorithm to sig-
nificantly improve the sensitivity and specificity of the coding exon recognition in human DNA
sequences for both short and long exons, in low and high A/T regions, compared to the the original



version of GRAIL.
The GRAIL II coding exon recognition algorithm divides the process of coding exon recogni-

tion into four main steps. It first generates a large candidate pool consisting of all possible exon
candidates within all open reading frames (this is similar to the procedure used in (Hutchinsen
and Hayden. 1992)). A series of heuristic rules. each of which defines some necessary conditions
a probable exon candidate should satisfy, then eliminates majority of the improbable candidates.
The candidates which have passed the rules are then evaluated by three pre-trained neural net-
works. Using heuristic rules to eliminate improbable candidates simplifies the learning process for
the neural networks and also gains computational efficiency. The scored candidates (by the neu-
ral networks) are then divided into clusters of candidates, corresponding to presumed exons, by a
clustering algorithm based on the candidates’ relative locations in the DNA sequence. The best
scoring candidate from each cluster is finally selected as the predicted exon.

Constructing a good gene model from a given set of predicted exons is a nontrivial matter.
When appending exon candidates to form a gene model a number of conditions need to be satis-
fied. In a gene model, adjacent exons have to be reading-frame compatible, and no in-frame stop
codons can be formed when appending the two adjacent exons. We formulate the gene model con-
struction problem as a constraint optimization problem The problem is solved by a fast dynamic

programming algorithm.

2 Coding-exon Recognition

One of the main motivations of the current study was to improve the performance of the
GRAIL system on short exons. Using fixed-length sliding windows is one of the reasons for the
poor performance on short exons. Our current algorithm uses a window that exactly fits a candidate
to evaluate its coding potential. To do so, the algorithrﬁ first generates all possible initial, internal
and terminal exon candidates within every open reading frame. Each candidate has an assigned
translation frame, two potential edge signals and must be at least 11 bases long. For initial exon
candidates, a possible translation start (ATG) and splice donor junctions (GT) are required. For
an internal exon candidate, a possible splice acceptor junction (Y AG) and a splice donor junction
are the minimal requirements. Similarly the minimal requirements for a terminal exon candidate
are a possible acceptor junction and a stop codon (TAA, TAG, and TGA).

As in any pattern recognition problem. to recognize exons we need to find a set of features that
are associated with exons, and to design an effective method to discriminate exons from non-exonic
regions based on these features. Three types of information are used in our exon discrimination
process. They are statistical measures of frequencies of different “vocabularies”, like 6mers, in
exXons versus non-exonic regions, measures of edge signals for splicing sites and/or translation
Initiation sites. and measures of domain information including local G/C composition and exon
length probability profile. The first type measures the coding potential of an exon candidate, the
second type indicates the possibility of an exon candidate having correct boundaries, and the third
type provides domain information to the discrimination process in evaluating the significance of
the coding scores and edge signals. Our discrimination algorithm uses three feed-forward neural

‘networks. which have been trained using a back-propagation algorithm, to evaluate the degree of
correctness of an exon candidate.




2.1 Sensors

Features are computed by different algorithms, called sensors. a term borrowed from robotics,
in keeping with the tradition of the original GRAIL system (Uberbacher and Mural, 1991; Mural et
al.. 1992). Each sensor “recognizes”, with some probability, some property related to the existence

of an exon.

Protein-coding sensors.

Two independent hypotheses are made about a DNA sequence. The first hypothesis is that an
exon in a certain reading frame can be decomposed into a set of components which possess similar
properties. In particular, an exon in a certain reading frame can be decomposed into a set of 6mers
in that frame, which possess coding potential. We use the ratio of the normalized frequencies of
a 6mer in coding and non-coding regions to measure its coding potential. The second hypothesis
is that a DNA sequence forms a stochastic process, in which the probability of the next event
(base) being in a certain state (4, C, G. T) depends only on a finite number of previous events,
and hence the sequence forms a Markov chain. To distinguish three possible reading frames of an
exon a non-homogeneous Markov chain is assumed (T. Mitchell (personal communication), 1991;
Borodovsky et al.. 1986).

Based on these hypotheses. we have implemented 2 frame-dependént preferred 6mer model, a
6mer coding preference model and a 5th order non-homogeneous Markov chain as sensors of coding
potential. The formulation of the three models is illustrated by the following example.

Let ayds....azx4+2 be an exon candidate and each ¢; represent a base. We want to evaluate the
coding potential of the candidate in reading frame 0 using the three models. Let P(X), Po(X),
Pi(X), Po(X), and P,(X) denote the probabilitiesof a pmer X (with respect to all 6mers) appearing
in bulk DNA sequence, in a coding region with reading frame 0, 1, 2, and in a non-coding region,
respectively. The coding potential of a;@a;3...azk+2 in reading frame 0, using the frame-dependent
preferred 6mer model, is evaluated by the following expression:

iz Pol@3i41...03i+503i46) P1(@3i+2...03i+603i+7) Py(azi43...03i47403i+8)

=0 ’
=0 P (G3it1.-03i4+503i46) Pn(@3i42.--03i+603i47) Pn(@3k+3---03i4703i+8)

and the coding potential of a@2...a3x4+3 in reading frame 0, using the 5th order Markov chain model,
is estimated as follows:

C x Py(a,...as) k-2 Polazitelasit1..-asiss) Py(asis7lazis2...03i46) Pa(asi+s|asi+s---a3i47)
P(a;...as) i=0 P(aairelazit1. 3irs) Pl3irr]asivz..-azirs) P(asirsl|daiva.-a3it)’

~ where C is our estimate of the ratio of coding versus non-coding bases in a DNA sequence (we set

C = 9 in our implementation).
The 6mer coding preference model, which is mainly useful in situations where frame-dependent
characteristics are weak or where sequence errors violate frame information, measures the coding

potential (in any frame) as follows:

k2 Pel@zip1..-03i453i+6) Pela3iv2...03i4683i47) P.(a3i4+3...a43i4703i+8)
=0 ,
P (@3i+1---03i+503i+6) Pn(03i42.--03i4683i+7) Pn(@3k+3...23i4703i+8)

where P.(X) = Po(X) + Pi(X) + P(X).




In essence, all three models recognize coding potential by comparing the a priori probabilities
of 6mers of the sequence appearing in coding regions and non-coding regions. We can see that the
frame-dependent preferred 6mer model and the 5** order Markov model provide similar information
except that each term in of the Markov model is a conditional probability rather than the probability
of a 6mer. Our test results suggest that each model has its own prediction strengths and weaknesses.

To make the coding models more sensitive to coding signals in regions of different G/C compo-
sition, our current algorithm uses G/C content-dependent 6mer probabilities in all three models.
These probabilities are functions of the G/C content of the region surrounding the exon candidate.
We use the preferred 6mer model as an example to illustrate this basic idea. When estimating
coding potential, different 6mer preference values, the ratio of a 6mer’s probabilities in coding re-
gions of frame 0 and non-coding region, are used depending on the local G/C-content (measured in
the surrounding region of 2kb long) of the sequence under evaluation. To avoid abrupt behavior,
we have interpolated the 6mer preference values derived in discrete G/C regions using a simple
function. In our current implementation, we have divided the whole region into two, i.e., low and
high G/C regions. 6mer preference values are estimated in both regions and are interpolated by a
piecewise linear function.

The goal of the exon discrimination process is not just to discriminate exons from non-exonic
regions but also to score the degree of correctness of a candidate that overlaps actual exons. To
achieve this, we have used coding (or non-coding) signals from the surrounding areas in addition to
the coding signals of the candidate. The rationale is that strong coding signals from the neighboring
areas indicate that the candidate may be just a portion of an exon. As the candidate more closely
approximates an actual exon, more non-coding elements will be included in its surrounding areas
and hence the surroundings will exhibit a weaker coding signal. In our current implementation, we
have used GO bases on each side of an exon candidate as the surrounding area. In addition to the
sensors described above, we have also used the following four values, two for each surrounding areas,
as features in our discrimination process: the coding potentials obtained by the frame-dependent
preferred 6mer model and by the Markov chain model.

Edge-signal sensors:

Recognizing exon boundaries is accomplished by using a splice acceptor junction sensor, a splice
donor junction sensor and a translation start sensor (Uberbacher et al., 1993).

Domain sensors:

Though our coding models are “normalized” with respect to the G/C content by separately es-
timating (6mer and Markov) preference values in different G/C regions, to help the neural networks
refine the significance of the coding measures in different compositional regions, we have included
the G/C content of a 2 kb region surrounding each exon candidate as an additional sensor.

Since the exon candidates evaluated by the system vary in length, we have also included the
length of a candidate and an exon length probability profile, which is derived from a length his-
togram for exons, as additional factors (sensors) in the discrimination process to help evaluate the
significance of the coding scores.



2.2 Heuristic rules

On average, about 5,200 candidates are generated for a DNA sequence of 10 kb, and about 85%
of these candidates do not overlap any actual exons. The vast majority of the false candidates show
very weak or no coding signals and/or poor edge signals. Filtering out most of these candidates
can greatly simplify the discrimination process facilitated by neural networks.

We have developed a set of heuristic rules, based on existing knowledge and statistical analysis.
Each of the rules defines some necessary conditions that a probable candidate should satisfy. On
average, about 130 candidates per 10 kb pass the rules, which account only for 2.5% of the generated
candidates, and about 40% of the surviving candidates do not overlap any actual exons. Only 2%
of the actual exons are lost through use of heuristic rules.

2.3 Neural networks

The core of the discrimination algorithm consists of three feed-forward neural networks. The
neural network for internal exons, for example, is represented mathematically by the following
formula:

3 6 12
output = g(>_ Wig(d_ Wi;g(D_ Wii(inputi)))),
k=1 j=1 =1

where ]

9(z) = 1+ ezxp(—z)

The network, as shown schematically in Figure 1, has twelve input nodes and two hidden layers
consisting of 6 and 3 nodes. The parameters W's are “learned” using the back-propagation method.
In training the network, our goal is to develop a network which can score the “partial correctness” of
each potential candidate. A simple matching function M() is used to represent the correspondence
of a given candidate with the actual exon(s):

M (candidate) = (3 m;/length(candidate)) x (3 _ mi/ ) _ length(exon;))
- | NG -

where Y, m; is the total number of bases of the candidate that overlap some actual exons (in
the same reading frame), and ¥_; length(exon;) is the total length of all the exons that overlap
the candidate. Using such a function helps “teach” the neural network to discriminate between
candidates with different degrees of overlap with actual exon(s).

The network for internal exons has been trained on a set containing 335 internal exons and 2000
(partially) true or false candidates. Each training example includes twelve normalized features, as
described in the previous subsections, and a M () value. All sequences used for training were from
the Genome Sequence Database (GSDB) (Bilofsky and Burks, 1988).

Figure 2(a) shows the prediction of exon candidates from all three neural networks combined.
We can see that candidates fall into non-overlapping natural “clusters”. In most cases, a “cluster”
corresponds to one actual exon. In some cases, a “cluster” may correspond to two or even more
actual exons as shown in Figure 2(a). In the next subsection, we will present a clustering algorithm
which resolves this clustering problem so that candidates are divided into more “accurate” clusters,
those having better one-to-one correspondence with actual exons.




In the output of the neural network (after deleting candidates with very low scores), about 94%
of the actual exons are overlapped by some clusters, and about 10% of the clusters do not overlap

any actual exons.

2.4 Clustering

The candidates scored by the neural networks form a set of “clusters” of overlapping candidates.
In the ideal situation, each “cluster” would correspond to one actual exon. However, as we have
seen from Figure 2(a), in sequences with long open reading frames, one cluster may cover a region
corresponding to more than one exon. For clarity, we use “cluster” to denote a natural cluster
observed in Figure 2(a). Clustering in this subsection means to divide a “cluster” corresponding to
more than one exon into smaller groups so that each group has a better one-to-one correspondence
with a single exon.

Figure 2(b) shows that centers of the candidates form groups that have better one-to-one cor-
respondence with actual exons. We have implemented the following algorithm that separates each
natural “cluster” into one or more groups using the centers of the candidates. The algorithm has

the following two steps.

o Separate Step: Divides each “natural” cluster into smaller groups so a given objective
function is optimized.

e Merge Step: Selects the highest scéring candidate from each group, and merge any groups
which have their highest scoring candidates overlapping.

The Separate Step divides candidates’ centers into groups so that the distance between two
adjacent groups is “significantly” larger than the average distance between adjacent centers within
each group, and the total number of groups formed from the “cluster” is “reasonably small”.
Specifically, it uses two application-specific parameters R and G, and guarantees the ratio of the
distance between two adjacent groups and the average distance between two adjacent centers within
each group to be bigger than R, and the number of partitioned groups to be less than G. The
algorithm finds a partition of the “cluster” that satisfies these conditions and furthermore minimizes
the sum of the average distances between two adjacent centers of all groups.

3 Gene Model Construction

The goal of the gene model construction is to linearly append the predicted exons (not neces-
sarily including all non-overlapping exons) in such a way that a series of constraints are satisfied.
These constraints include the following: (1) adjacent exons in the gene model are reading-frame
compatible; (2) the distance between two adjacent exons is bigger than some given constant — the
minimum intron size; (3) no in-frame stop codons can be formed when appending two adjacent
exons; (4) the gene model should include as many high scoring candidates as possible.

3.1 Statement of the problem

Formally, a DNA sequence S is a sequence consisting of four letters {4,C,G,T}. An ezon
candidate is a subsequence S{i, j] of S that starts with a start codon (AT'G) or on the base following




an acceptor junction site (CAG or TAG), and ends with a stop codon (TAA, TAG,or TGA) oron
the base preceding a splice donor site (GT), where i and j are indices of edges. It has an assigned
reading frame a € {0, 1,2} and has no in-frame stop codons, i.e., no stop codons Sk, k+2] (= TAA,
TAG,or TGA) with (k—1)mod 3 =cand i< k<J — 2. Each exon candidate has a non-negative
score p() € [0..1]. An exon candidate is an initial exon candidate if it starts with a start codon, or
is a terminal exon candidate if it ends with a stop codon. otherwise it is an internal exon candidate.
Two non-overlapping exon candidates S[i, j] and S[m.n}, m > j, are said to be reading-frame

compatible if

B=(m-j—1+a)mod3, (1)

where §[i,j] and §[m, n] are in reading-frames a and 3, respectively.

Let S[by, e1], S[b2, €2), ... Slbr,ex] be aset of k non-overlapping exon candidates (within a region
assumed to contain a gene), with by < ba... < b € [1..|S]}. $[b1,€1)S(b2, €2]...S[bi, ex] forms a partial
gene model if (1) S[b;, ;] and S[bi41, €it1] are reading-frame compatible, (2) no in-frame stop codon
is formed when appending S[bit1,€i+1] to S[bi, &}, (3) bir — & > K, where K is a constant, the
minimum intron size (in GRAIL II, K = 60), forall ¢ € [1..k — 1], and (4) all S[b;,e;]’s are internal
exons except possibly for S[by,e;] and S{bk, ex); they can be an initial exon and a terminal exon,
respectively.

Let {C1,C3,...,Cs} be a set of clusters and each C; contain a number of exon candidates,
i € [1..n]. Our goal is to select a set of non-overlapping exon candidates Ey, Es, ..., Em, at most
one, from each cluster, m < n, to form a partial gene model that maximizes the following function:

S PE) +Ps+ P,

=1 .

where p(E;) is the score of exon candidate Ej, and Py and P; are two penalty factors. Py (or Py)
is a fixed negative real number when a partial gene model does not have an initial (or terminal)

exon, otherwise it is zero.

3.2 Dynamic programming algorithm (GAP III)

A dynamic programming approach is used to solve the optimization problem defined in the
previous subsection. Dynamic programming approachs have been used to solve the gene assembly
problem in different settings (Snyder and Stormo; 1993: Gelfand and Roytberg, 1993). Because of
the limited space, we give only an informal introduction to our solution to this problem.

For each cluster, the algorithm builds (at most) 18 best partial gene models that end with
exon candidates of the current cluster, based on the best partial gene models which end with exon
candidates of the previous clusters, counted from left to right. When extending a current partial
gene model to the right to include one more exon. the algorithm checks if the conditions for a partial
gene model are satisfied. It repeatedly does this until all clusters are processed. By doing so, the
algorithm finds a partial gene model that optimizes the objective function given in the previous
subsection.

To check if the conditions for a gene model are satisfied when extending gene models from left
to right. some information needs to be provided about the reading frames and ending edges of (the
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last exons of ) the previous models. We do this as follows. For each cluster under consideration, we
construct a best partial gene model that ends with an exon of this cluster for each of the following
possible situations. The exon can be in any reading frame a € {0, 1,2} and its right edge modulo 3
can be any 3 € {0,1,2}. To also take into consideration the possibility of forming an in-frame stop
codon when appending two adjacent exons, we, for each possible a and g, distinquish the following
situations. For each a, when D = (a+ 3 — 3) mod 3 = 1 the exon can end with a T or a non-T
letter, and when D = 2, the exon can end with T4, TG, or any other doublet. We can show that
considering all these 18 possible situations provides sufficient and necessary information for our
optimal partial gene model construction algorithm. Figure 2(d) gives an example of the results of
gene model construction.

The algorithm runs in time O(E x C) and space O(E), where C is the number of clusters and F
is the total number of exon candidates. In situations where a limit can be placed on the number of
clusters that can potentially be excluded from the optimal gene model the running time is further

reduced to O(E + C).

4 Results and Discussion

The performance of the algorithms presentéd in this paper and implemented in the GRAIL
IT system show a significant improvement compared to the original GRAIL by several different
measures. On a combined set consisting of 61 training and 48 test Human DNA sequences (the
performances on the two sets are statistically identical), our current exon recognition algorithm
recognizes about 93% of all exons compared to about 80% for the original GRAIL. The original
GRAIL recognizes about 50% of exons less than 100 bases in length (Uberbacher and Mural, 1991)
while our current algorithm located about 81%. Most of these statistics are further improved by
the gene construction program (GAP III), particularly for false positive rate and edge accuracy.
This is achieved mainly because of the enforcement of the reading-frame compatibility between
consecutive exons.

Part of the performance improvement in the GRAIL II exon recognition algorithm is due to
additional and more accurate information used in making coding-exon prediction. The 6mer prob-
abilities are estimated based on a data set consisting of about 140,000 coding bases and 1,200,000
non-coding bases. In addition to several strong coding measures, scores at the specific edges of each
candidate (splice junctions, translation starts where appropriate) and information related to the
non-coding character of sequences adjacent to potential exon candidate are considered in the dis-
crimination process. Essentially the algorithm uses the character of the expanded sequence context
of the potential coding region to make its decision. However the algorithm may not always function
well if coding segments do not have splice junctions, and neighboring intronic or non-coding DNA,
as in cDNAs. Such regions do not meet the basic genomic context requirements.for the GRAIL
IT coding exon recognition and the original GRAIL coding analysis is more appropriate for such
sequences.

Tables I and IT summarize the performance of the exon recognition and gene model construction

algorithms.

Table 1



DNA Predictions Gene Models
# Exons | TP % FP % TP % FP %
Short 191 155 | 81.2% | 48 |236% | 147 |80.0% | 15 [92%
Long 555 512 1 97.7% | 45 | 92% | 53¢ [96.2% | 19 |3.4%
Total 746 697 193.4% | 93 |11.7% | 681 [91.2% | 34 |4.8%
# Bases
Total | 118803 | 108827 | 91.6% ] 20298 | 17.1% [ 108069 | 91.0% | 9330 | 7.9%

TP and FT are the true and false positives, respectively. Short: 100 bases or less; Long: otherwise.

Table II
# Exons | # Exons found % # Bases | # Bases found %
Initial 113 97 85.8% 14044 12635 89.9%
Internal 520 498 95.7% 78168 72625 93.0%
Terminal 113 102 90.3% | 26391 23567 88.6%

The high sensitivity and specificity of the GRAIL II exon recognition and gene construction
program and its availability through e-mail and client/server mechanism greatly increases the vi-
ability of the gene hunting strategies based on genomic sequencing and informatics analysis. We
have shown that the detailed structure of genes can be characterized with considerable fidelity, and
expect that, in terms of providing relatively complete information about uncharacterized regions
of the genome, this overall technology will fair well when compared to alternatives such as exon
trapping and cDNA based methods. Computational characterization of genes in their genomic
sequence context will increasingly provide an important framework for understanding aspects of
gene regulation and larger questions related to the functional organization of the genome.
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