
TRANSCRIPTION FACTOR DISCOVERY USING
SUPPORT VECTOR MACHINES AND HETEROGENEOUS DATA

Jose F Barbel, Ahmed H. Tewfik1 and Arkady B. Khodursky2

1Department of Electrical and Computer Engineering
2Department of Biochemistry, Molecular Biology and Biophysics

University of Minnesota, {Minneapolis, MN 55455}1{St. Paul, MN 55108}2
pepe@umn.edu, tewfik@umn.edu, khoduOOI@umn.edu

ABSTRACT

In this work we analyze the suitability of expression and
sequence data for discovery of co-regulatory relationships
using Support Vector Machines. In addition, we try to as-
sess the possibility of improving such results by hetero-
geneous data fusion and by estimating a probability of a
correct classification.

As shown in other studies, we have found that tran-
scription co-expression is a good estimator for genetic
co-regulation. We also have found some evidence that
operator site sequence motifs can be used to estimate co-
regulation, but the kernels used for feature extraction did
not achieve classification rates comparable to expression
data.

Finally, the additional information provided by com-
bining sequence and expression data can be exploited to
estimate the probability of correct classification.

1. INTRODUCTION

The purpose of this work was to search for effective ways
of discovering unknown regulon relationships using Sup-
port Vector Machines (SVM). We aim to combine expres-
sion and sequence data to increase the amount of available
information, as suggested in [1, 2].

Qian et al. studied the same problem in [3], where they
used SVM and expression data to discover transcription
relationships. In their work the transcription relation was
encoded in the data by concatenating the expression of the
TF and the target gene. For negative training samples they
used genes that did not have TF sequence motifs or by
random pairing. Their results show a low error rate for
SVM, in particular using Radial Basis Functions (RBF)
kernel.

In [4], Pavlidis et al. look at the issue of determin-
ing regulation relationships based on TF motifs. For this
purpose they use a Hidden Markov Model (HMM) whose
transition probabilities are trained used the promoter sites
of the known TFs. Using the Fischer Score a feature space
can be created based on the parameters of the HMM. Fi-
nally, they train a SVM using the RBF kernel. While the
results look promising, the authors acknowledge that lo-
cating highly conserved motifs is essential to the success
of this classification method.

Our approach consists in the following: For the ex-
pression data we assume that co-expression signals co-
regulation, therefore, we cluster based on the similarity of
expression profiles. For the sequence data, we use Length
Dependent String Kernels (LDSK) to extract the statistical
features out of the sequence data instead of using HMMs.
LDSK are computationally efficient and much less expen-
sive than HMMs. Finally, we also study the possibility of
assigning a probability score to each classification using
the method proposed by Platt in [5].

2. PROKARYOTE GENE REGULATION

In prokaryotes regulation is performed basically in one
way: by blocking the RNA polymerase from binding to
the DNA sequence. This is achieved by a signaling se-
quence called operator site, located upstream of the reg-
ulated gene, that signals the TF to bind to the DNA and
block the RNA polymerase. This, effectively stops the
production of mRNA, which hold copies of the code of
the regulated gene.

Operator sites of co-regulated genes show sequence
patterns which are called motifs. In this work we will use
LDSKs to search for new genes that show a similar motif,
thus, belonging to the same regulation pathway.

The time evolution production of mRNA can be mea-
sured in the genome-wide expression profiles. Since the
expression of co-regulated genes is turned on and off in
unison we can expect that their expression profiles must
behave with some sort of coherence (Co-expressed). This
is the second source of information that we will use in this
work for classification.

3. STATISTICAL LEARNING

For this work we use two learning formulations from Sta-
tistical Learning to perform our experimental work: k-
Nearest Neighbors (KNN) and SVM. The purpose ofKNN
is to serve as a point of comparison for the rest of the ex-
periments as shown later.

3.1. k-Nearest Neighbors

Given some random variable xi C 1R with labeles yi C Z,
KNN assumes that samples from the same source are clus-
tered in the input space R1. Thus, KNN seeks the local
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boundary region that will give us the best performance for
the given random process. The optimal classification is
given when the estimated label is chosen equal to the ma-
jority of the labels inside in the local boundary.

We can formulate KNN for the two-class classifica-
tion, i.e. yi C {-1, +1}, problem as:

f +1 Z=yiKk(xO,xi) >O
- otherwise

where the training points are the pairs (xi, Yi), y is the
estimated label for xo and Kk (xO, xi) = 1 if xi is one of
the k closest points and 0 otherwise. To avoid confusion
we select k = 2m -form C E+.

To find the optimal value of k we can perform k-fold
cross validation on the training data until the empirical
risk, given by the number of misclassifications, converges
to some minimum.

3.2. Support Vector Machines

SVM is a type of hyperplane based binary classifier, that
uses the maximum margin paradigm to achieve optimal
prediction generalization from the training data.

The problem amounts to finding the hyperplane (w, x)+
b = 0 that best describes the labels of the training data
and, at the same time, provides the maximum distance
between convex hulls that enclose the data of each class.
Then the label for a new point x can be assigned by the
function:

fw,b = sgn((w, x) + b) (2)
Non-linear data can be linearized by mapping the space

to a higher dimensional space:

4: X- Y 3

Better computational efficiency is achieved by taking ad-
vantage of the kernel trick: K(x, y) (x), 4(y)).

In the case that we have non separable data, we in-
troduce slack variables ((i) that allow misclassifications
for some of the training points and a global cost variable
(C) which penalizes misclassifications. The value of C is
tuned during the training process.

The solution to this optimization problem is given by
solving (4) for a:

m

max W(a) = :ci
i=l

1 m

2 ZE °iavjyiyjk(xi,xj)2
i,j=1

subject to O < ai < m and 71maiyi = 0 for i
1,... ,m.

3.2.]. Numerical Kernels

In the literature there are some well known kernels defit
for R' spaces. In the present work, we use the followi

Radial Basis Functions (RBF)

k(x, x') = exp (
11 5- .2

2u2 )

Linear

k(x, x') = (x, x') (6)

3.2.2. String Kernels

Given that X is a non-empty set, we can define a map b
to some Hilbert Space where the inner product function
is defined. We can exploit the previous characteristic to
perform classification based on string data. A string based
kernel can be the following [6]:

k(x, x') := E num, (x) num (x')w,
sEA*

(7)

where A = {A, T, G, C} is the alphabet (For DNA se-
quence Classification), A* is the subset of non-empy strings,
x C An, numr (x) is the number of times the substring s
appears in x and w, is a weight associated with it.

Leslie et al. propose in [7] a string kernel for protein
classification, called K Spectrum kernel (KSPEC) which
measures similarities between strings by looking at fre-
quencies of substrings of length k:

b: X ->R k

X I-4 X := 4)(x) = numa,(X),CAk

k(x, y) = (4)(x), 4(y))

(8)

(9)

In equation (8) for string x we create a vector C R1k
where each dimension holds the amount of times a given
substring of length k appears in the string. To measure the
similarity between strings we calculate the inner product
between those vectors (9).

We also used the Constant kernel for strings which
assigns w, = s in equation (7).

Finally, Vishwatan and Smola propose in [6] a compu-
tationally efficient method, based on Suffix Trees, to per-
form the calculation of LDSKs.

3.2.3. Probability Estimation

Platt [5] proposes a method to estimate the probability of
correct classification. This method assumes that the Cu-
mulative Distribution Function (CDF) P[y =1 If], i.e.
the conditional probability of belonging to class 1 given
the decision function, can be approximated by a sigmoid
function. This observation comes after doing an empirical
analysis of the results of SVM with real data.

If the previous assumption proves to be correct for our
data, then it is safe to use this algorithm.

4. EXPERIMENTAL SETTING

ned To perform classification we used libSVM v2.82 [8], which
ned is a freely available implementation of the SVM algo-

ng: rithm. For string kernels we used SASK, a freely available
implementation of an algorithm proposed in [9], which is
a variation of the Suffix Tree algorithm mentioned earlier;

(5) this algorithm achieves improved performance by using
Suffix Arrays.
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Figure 1. Average Mean Normalized Error Rate across 100 experiments with the different classifiers used in the experiment for the
PhoB dataset. KSp and Con refer to sequence data classification with K-Spectrum and the Constant Kernel. TF K and TF C refer to
the same classifier using TF sequence selected with PSSM. The legend refers to using 3, 7 and 11 of the training samples from the
labeled dataset (With a similar amount of negatives, randomly sampled).

4.1. Material

For our experiments we used expression and sequence data
from Escherichia Coli K]2, provided by one of the co-
authors. The genome-wide expression measured the evo-
lution in time of two different regulatory processes: LexA,
which is activated when the bacteria sustains DNA dam-
age; PhoB, which is triggered when the bacteria undergoes
Phosphate starvation.

For the sequence data we used a portion of the raw
string of the data located in the upstream regions of the
genes and also a localized portion of the string where the
score given by the PSSM was maximum; for the training
data we always used the known TF binding site.

After processing the data we had 19 known genes for
the first data set and 15 for the second; in the same way we
had 2762 and 2567 unlabeled genes respectively. The ex-
pression data was measured experimentally and was avail-
able as vector of 7 and 8 time points, respectively.

From RegulonDB [10], a manually curated database
of E. Coli, we obtained the list of the known members of
the regulon (Positive Class) and Position Specific Scoring
Matrices (PSSM) for discovery of TF binding sites.

4.2. Procedure

There is no certain way to establish that a given gene is
not part of a regulon (Negative Class). Nevertheless the
size of a regulon on average is very small (Less than 50
genes) compared to the overall size of the entire genome
(More than 2500). Therefore the likelihood of picking a
gene that belongs to positive class by randomly sampling
the unlabeled data set is very small (< 0.02). We used this
assumption to balance the training data, i.e., we sampled
randomly a number of genes from the unlabeled data set
and added them to the training set as the negative class.

To determine a lower bound for the amount of neces-
sary information for acceptable classification performance,
we performed experiments with 25%, 50% and 75% of the
known data used for training and the remaining used for

the test.
We repeated our experiments a 100 times and each

time the data used for training was selected randomly (From
both the labeled and unlabeled data sets), to determine the
robustness of the classifier against variations in the train-
ing data.

The training was performed by searching through the
parameter space for the parameters that would minimize
the classification error using k-fold Cross Validation (We
used k between 3 and 5 depending on the size of the train-
ing set). The parameters and their respective search space
were: C for the SVM, [2 -5, 215]; or for the RBF, [2 -15, 23];
Kfor the KSPEC, [2, 6]; the length of the raw string, [50, 300];
and the linear combination coefficients for the heteroge-
neous kernels {.25, .50, .75}.

Finally, we also included a KNN classifier as a point
of reference for SVM. Classification with KNN was done
only with expression data. The training method was sim-
ilar to SVM and the only parameter trained was k which
was {3, 5, 7,..., training set /2}.

5. RESULTS

Due to lack of space we will discuss the results that we
deemed more interesting.

In figure 1 we can see an overall comparison of the
performance of the classifiers on average. The first thing
to note is that classification methods using expression data
show a good performance; the sequence based methods
don't work as good.

Within the expression data, KNN offers very compet-
itive results, in spite of its simplicity. SVM methods offer
the best performance and, within these, the Linear Kernel
offers good results for low amounts of training data. This
could be explained by the fact that dimensionality of the
input space is low relative to the amount of training data
(n-8), effectively making this a linearly separable prob-
lem.

The classification performance of the LDSK was im-
proved if we only used the portions of the sequence that
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had a high score using PSSM. Nevertheless, relative to ex-
pression data the improvement was not meaningful.

We also performed combinations of all the sequence
and expression kernels to see if the classification perfor-
mance was improved. In the best case, when the Linear
kernel is used for expression, the results are the same.
When using RBF the classification error worsens.

In order to analyze if the Probability estimation method
mentioned in section 3.2.3 was viable with our data set,
we also plotted the CDF of P[y = I Jf ]. Due to space re-
strictions we are not showing those graphs, but the CDF
showed a behavior that could be approximated by a sig-
moid as predicted by Platt [5]. Given that the assumption
holds, we considered that it was safe to use this algorithm.

Data fusion did not improve the classification perfor-
mance as mentioned previously, however we found that,
in a consistent manner, the Heterogeneous classification
that included the Linear Kernel for the expression data as-
signed a high probability value to all our test data (See fig-
ure 2). This was consistent across all of our experiments.
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Figure 2. Histogram of the estimated probabilities for 100 inde-
pendent experiments using the PhoB dataset, a combined kernel
of Linear+KSPEC and 7 genes from the labeled set for training.

6. CONCLUSION

In the previous sections we have discussed the viability
of expression and sequence data as means to perform TF
discovery and possible ways to improve the performance
of our SVM classifier.

Our previous results confirm, once again, that co-ex-
pression is a good estimator of co-regulation. While the
results obtained from sequence data alone are not as good,
by reducing our feature search to sequence areas that have
a high probability using PSSMs we were able to improve
the classification error rate, lending credence that motifs
might be good also for classification regulon members.

On the other hand LDSKs seem less suitable to ex-
tract the features from the motif sequence that will allow
SVM to perform a good classification. This is due in part
to the fact that sequence data may present high order sta-
tistical interdependencies and LDSKs only measure cor-
respondence of sequence substrings without regarding the
relative position between them.

While fusing the kernels did not yield improved clas-
sification they did allow us to obtain meaningful results

from the probability estimation algorithm. In particular,
the best results where obtained by fusing the features ex-
tracted using a linear kernel with the expression data and
any of the string kernels used.

Currently we are working in incorporating a Fisher
Score Kernel as proposed in [4] to compare against the
LDSKs and to see if we can obtain improved results by
using a kernel that is capable of extracting more complex
features.
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