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ABSTRACT

We formulate a probabilistic framework for transcription
factor (TF) binding prediction that is built on the standard
position specific frequency matrix (PSFM) and higher or-
der Markovian background models. Contrary to the tra-
ditional hypothesis testing based methods which report a
significance (p) value of TF binding at every possible base
pair position in a promoter sequence, we develop a prob-
abilistic methodology to assess TF binding to whole pro-
moter sequences. Performance of the proposed method is
demonstrated via simulations.

1. INTRODUCTION

Transcriptional regulation is a central control mechanism
for many biological processes, such as cell cycle and the
immune response. Transcriptional regulation generally in-
volves DNA-binding proteins, transcription factors (TF),
that control expression of genes by binding to short regu-
latory sequence motifs in gene promoters. Experimental
studies and computational approaches are extending our
knowledge about TF binding specificities to different se-
quence motifs. Relatively little, however, is known about
genome-wide TF binding to gene promoters. Thus, tran-
scription factor binding site (TFBS) prediction remains an
important problem in computational biology.

Computational approaches that make use of known TF
binding specificities (e.g. TRANSFAC database [1]) and
promoter sequences to predict putative TF binding sites
are now widely used in computational biology. Binding
site prediction tools have previously been formulated as
hypothesis testing methods where a significance value of
TF binding at a specific sequence position is obtained by
comparing a test statistic to a null distribution. Predicted
binding sites are then the ones that exceed a selected sig-
nificance level. Here we formulate a probabilistic frame-
work for predicting transcription factor binding that dif-
fers from the standard hypothesis testing approaches in
two important ways. First, the proposed framework is
probabilistic in nature and thus outputs a probability of
binding (as opposed to a p-value), which directly assesses
our belief of having a binding site. Secondly, the proposed
method answers the question of whether the whole pro-
moter has a binding site (as opposed to reporting a p-value
for every possible position in the sequence), although it is
straightforward to extend it to single base pair resolution.

The most commonly used probabilistic formulation for

binding motifs is the position specific frequency matrix
(PSFM) model [2]. Different modifications of the PSFM
model based hypothesis testing have been proposed to pre-
dict binding sites [3, 4, 5, 6]. Our probabilistic framework
is built on the same PSFM model. Similar probabilistic
frameworks have been previously proposed in the context
of motif discovery, e.g., in [7, 8, 9, 10]. Note, however,
that our goal is not de novo motif discovery but proba-
bilistic prediction of TFBS, given a priori information of
TF binding specificities in form of a PSFM model.

2. METHODS

Let S = (Sl, ... , SL) denote a promoter sequence, where
Si C {A, C, G, T} and L is the length of the sequence.
Let Q denote the number of (hidden) motif instances in
sequence S. This is one of the key quantities estimated
from the data. Further, let A denote the (unknown) start
positions of non-overlapping motif instances in sequence
S. For example, if Q = c, then A = {a,... , ac}. So,
a promoter consists of c motif instances and c + 1 back-
ground sequence chunks, some of which can be empty.

Non-binding background sequence locations are mod-
eled by the commonly used dth order Markovian back-
ground model b. That is, let q(si) = Po (Si Si-d, Si-d+l,
.s. 1si-1) denote the probability of observing nucleotide
si at the ith position of a promoter sequence S in the back-
ground model X given d previous nucleotides. For sim-
plicity, we assume that for positions i < d we have ac-
cess to S-d+1, ..., so. The likelihood of the background
model, A = 0, is thus P(SA = 0,) = P(S5) =

L1 q5(si). Motifs are modeled using the standard PSFM
model 0 which is a product of independent multinomial
distributions. Similarly as above, let 0(si,j) Po (si,j)
denote the probability of observing nucleotide si at the
jth (j 1,..., ) position of a motif model 0 and f is the
length of the motif. The likelihood of sequence S, given
non-overlapping motif positions and motif and background
models, is

P(SIA,O,XL)
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Let us rewrite Equation (1) more compactly as

P(SA,O, 0 )
L JAI e- (sajk k + 1)

AI

P(S|7d) H Waj,
j=l

where IAI = Q = c and Woj = _O (S.a(+kk+l)).j=Hfkl= O(.jk)
2.1. One motif model 0

Using Bayes' rule, the probability of c motif instances,
given the sequence S, is [7]

P(Q = clS, 0, ) = P(SIQ C,O0,)P(Q = C0,)
P(SlO, X)

(3)
where the normalization factor has the following form

I L I

P(SO,5) = P(SIQ = c, 0, )P(Q = clO, ) (4)
C=0

and L ] is the maximum number of non-overlapping £-
length motifs in an L-length sequence. Note that since the
sum in Equation (4) has only L e + 1 terms (instead of
ox) the normalization factor can be computed exactly. The
likelihood of sequence S, given that it contains c motif
instances, can be obtained by summing over all possible
positions A of c motif instances [7]

P(SIQ = c, 0, )

E P(SIA, Q = c, 0, O)P(AIQ = c, 0, X)
A: |A l=c

L-ct+±1 L-f+1 c

S S
* : P(SI)J7J Waj

ai=1 a,=a,- +± j=1

x P(AIQ = c, 0, ), (5)

where in the last equality we have used P(S A, Q = c, 0, b)
= P(S A, 0, q) and Equation (2). The above probabilistic
formulation (Equations (3)-(5)) is practically identical to
the one proposed by Thijs et al. in [7].

As in [7], let us assume that, for a fixed value of Q, the
prior over motif positions A is uniform and is inversely
proportional to the number of different motif positions,
i.e., P(AIQ = c,0,) = 1LHc .f Let R(SIQ
c, 0, q) denote the sum in Equation (5) without the (con-
stant) prior term P(A Q = c, 0, r). The likelihood in
Equation (5) can be computed efficiently using, e.g., the
following recursion

L-ct+±I L-f+1 c
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al= a,=a,- +f j=l
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where Sal±+ = (Sal±+, ... . SL) denotes a subsequence
of S (note that S1 = S). For the prior over the number
of motif instances, we use a probability distribution moti-
vated by previous studies [7]
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where C = 4 E - i

Assuming a single binding position is sufficient for
transcriptional regulation, the probability that a given tran-
scription factor (defined by 0) regulates a gene having pro-
moter sequence S, denoted by 0 -> S, can be computed
as

P(O -> S S,O0, ) P(Q > OIS, 0, X)
Lj

ZP(Q
c=l

(7)

cS, 0,X) (8)

1 -P(Q =OS, 0,), (9)

where P(Q = cl S, 0, q) can be obtained using Equations
(3)-(6). The above construction also allows to compute
the expected number of motif instances E [Q S, 0, ] =

[c_ c P(Q = clS, 0, q) as proposed in [7].

2.2. Multiple motif models 9

A transcription factor typically recognizes several bind-
ing sites and is therefore characterized by several motif
models (i.e., matrices) 9 = (0(1),... ,0(m)) each having
length £i. Let 7 C {1, ... , m}c denote a configuration of
motif models from 9 in A. That is, 7i specifies the motif
model at location ai. For notational convenience, define

W(wJ) = Hkf 0±(so+h,) if 1 < aj < L

0, else,

and note that (see also Equation (2))
c

P(S A, 1w, 9, X) = P(S q) 11 W(J),j=al
J1l

-fj + 1,

(10)

The probability of c motif instances can be obtained using
Bayes' rule as in Equations (3)-(4) but 0 replaced with
9. Further, following Equation (5), the likelihood of se-
quence S given c motif instances can be obtained by sum-
ming over all possible positions and configurations

P(SIQ = c, ,$)
= E E P(SIA, 7, Q
Pe(,wQA:cA,=c
x P(A, 7IQ = C, 8, 0)
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where min = min{1 i,. ,1Lm}. Let us again assume a
uniform prior over motif positions A and configurations 7
(for each fixed value of Q), and let R(S Q = c, 9, 4) de-
note the sum in Equation (11) without the (constant) prior
term P(A, 7 Q = c, 0, r). A computationally efficient
recursive formula can be written, e.g., as

R(SIQ = c,9, X)
L-cmin±+

E{l,...,m}c al=l
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a
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A closed form formula for uniform P(A, Q = c, 9, )
is more difficult to obtain in general, but it can be com-

puted numerically using a similar recursion as the one

above.
The prior P(Q = c 9, q) depends now on and thus

can be adjusted for multiple motifs. However, it is unreal-
istic to assume that different motif models (0(1), . . ., 0(m) )
are independent. Indeed, it is likely that they are strongly
dependent. Therefore, we use the same prior as in the case

of a single motif model as a first approximation.
Let us assume that a TF characterized by can tran-

scriptionally regulate a gene having promoter S if at least
one of the motifs in has a binding site in S. Then the
final probabilities P(9 -> S S, 9, y) can be computed as

in Equations (7)-(9) but 0 replaced with 9.

The above probabilistic modeling framework that in-
corporates multiple motif models can be viewed as an ex-

tension of a framework proposed in [7]. Note that the
proposed framework is also similar to a hidden Markov
model (HMM) proposed together with a so called w-score
in the context of motif discovery by Sinha [9]. A HMM
is defined by motif and background models e( and X and
so called transition probabilities (between states ofHMM)
whereas the proposed modeling framework is built on mo-
tif and background models alone, with additional informa-
tion brought into the computation via the priors P(Q 8, q)
and P(A, Q, 9, q5).

3. SIMULATIONS

In this section we demonstrate the performance of the pro-

posed computational methods. Parameters of the back-
ground model are estimated from a separate background

sequence data set using the maximum-likelihood princi-
ple. Higher-order background models are typically found
to perform better [11], but the number of parameters needed
to describe a model increases exponentially with the model
order. We found that d = 2 provides a good trade-off
and use it here. Parameters of motif models are taken di-
rectly from TRANSFAC (professional version 10.3) and
each column is normalized separately to yield a PSFM
model. With these parameter settings, we applied our
computational methods to a validation sequence set that
is explained below.

We focus on three mouse transcription factors Ddi t 3,
Hoxa9, and Tcf 1 which are associated with 1, 2, and 4
motif models (i.e., matrices), respectively. We use simi-
lar artificially generated data as in [12] except here each
promoter can contain more than one motif instance. Pro-
moter sequences are first set to contain a genomic "junk"
sequence from mouse, each of length L = 1000. These
promoters are assumed to correspond to the background
model and contain no real binding sites. Different ver-
sions of these background promoter sequences are then
obtained by artificially inserting motif instances: 1 for
Ddit3, 1 and 2 for Hoxa9, and 1, 2 and 4 for Tcf 1.
Positions of non-overlapping motif instances, as well as
the order in which multiple motifs are inserted, are chosen
uniformly randomly. Motif instances are randomly sam-
pled from the known motif models (products of multino-
mial distributions). The same motif models are used both
in data generation and inference.

We report histograms of the binding probabilities for
different TFs, i.e., 1- P(Q = O S, 9, r), each obtained
from 100 promoter sequences. Figure 1 shows the his-
tograms of binding probabilities for Ddit3. Blue (resp.
green) graph shows the histogram for background sequences
(resp. after randomly adding one motif instance). Figure 2
shows the histograms of binding probabilities for Hoxa9
for background sequences (blue) and sequences contain-
ing one/two randomly added motif instances (green/red).
Finally, Figure 3 shows the histograms of binding prob-
abilities for Tcf 1 for background sequences (blue) and
sequences containing one/ two/four randomly added mo-
tif instances (green/red/black).

Figures 1-3 show that the proposed method is well ca-
pable of distinguishing background sequences (that do not
contain any real binding sites) from the ones that do con-
tain at least one binding site. Naturally, perfect separation
is impossible as the motifs are randomly sampled from the
probabilistic motif models. The degree of separation also
depends on motif model(s) associated with a TF. PSFMs
that have higher information content are generally easier
to detect and hence provide better separation. Further, bet-
ter separation is achieved for sequences that contain mul-
tiple motif instances. Note that although we demonstrate
the proposed method by its ability to distinguish back-
ground sequences from sequences that contain a binding
site, the method is fundamentally generative and the full
potential lies in its probabilistic nature. In other words,
the methodology outputs probabilities (not p-values) that
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Figure 1. Histograms of binding probabilities for Ddit3.
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Figure 2. Histograms of binding probabilities for Hoxa9.

directly reflect our belief of having (at least one) binding
site.

4. DISCUSSION

We have developed a probabilistic formulation for pre-

dicting TF binding. The method uses the standard higher
order Markovian background model and the PSFM ma-

trix as its' building blocks. An artificial simulation data
set (for which we know the ground truth) clearly demon-
strates the potential of the method.

PSFM is currently the most commonly used motif model
although it is incapable of representing dependencies be-
tween nucleotides within binding site, which have been
observed in real sequences [13]. Thus, a natural, and more
or less straightforward, extension of the proposed frame-
work would include the use of, e.g., generalized weight
matrices that incorporates pair-wise dependencies [14] or

Bayesian networks [15] to model binding sites.
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