
GENOMIC SIGNAL PROCESSING

Lecture 2

Classification of disease subtype based on microarray data

1. Analysis of microarray data (see last 15 slides of Lecture 1)

2. Classification methods for microarray data

3. Discrimination analysis by linear discrimination

4. A case study: clasification of ALL/AML Leukemia
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2. Classification methods for microarray data

• Unsupervised learning = Learning without a teacher = Cluster analysis

• Supervised learning = Learning with a teacher = Discriminant analysis

Classification is the name used mostly for supervised learning.

Examples of supervised learning:

1. You measure the spectrum of a frame a speech, and compute 24 averages
over fixed subbands, and form with them the vector of 24 spectra coefficients,
called a feature vector. Each frame is labeled with 1 if it was spoken by a boy,
with a 0 if it was spoken by a girl. If enough examples of frames and their
corresponding labels are available, one can find a rule by which to guess boy
or girl, for each frame, given the vector of 24 spectral coefficients.
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2. You have a vector of 1000 gene expressions for each patient suffering of
Leukemia. Leukemia has two major subtypes: ALL (acute lymphocytic
leukemia) and AML (acute myelogenous leukemia). A number of examples of
patients with ALL and AML are given, together with the gene expressions for
each patient. It is required to find a rule by which to diagnose ALL or AML
based on the expressions of the genes.

The problem of discriminant analysis (or supervised learning):

• The multivariate observations for each individual form the feature vector.
Each individual has associated a class label. In the training set all individuals
have known class labels, and the classification rules are learned (or designed)
over the training examples. In the testing set the class labels are not used for
determining the correct rule, only to estimate the performance (errors).

• Evaluation of the performance

– error rate = proportion of items missclassified

– optimum error rate= the rate which will hold if all parameters of a statis-
tical model for the class labels and feature vectors are known.
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– apparent error rate = the rate we obtain by resubstituting the training
samples and determining the missclassifications

– Overall error rate versus group error rate (sometimes we don’t like the
global optimum, which may be poor for some groups)

Error rates

• Apparent rate: classify the training samples by the rule derived from the
training set itself. The estimator is overly optimistic if the sample size is not
much larger than the number of variables.

• Leave-one-out Omit one observation, recalculate the classification rule from
all other observations, classify the deleted observation and repeat the steps
for each observation in turn. Counting the errors of missclassification yields
almost unbiased estimate of the error rate. However the variance is high (the
missclasifications are correlated).

• Crossvalidation is like leave-one-out, but now split the sample in k groups, use
k-1 of them to obtain the classification rule and then classify the remaining
group.
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Variable selection

• Select a small number of variables relative to the sizes of the two training sets.

• Variables which are known to be highly correlated can be replaced by just one
variable.

• Variables included are those whose scaled between group distances are the
largest.

• In a forward program variables are included one at a time, based on which of
them decreases the error rate the most.

• In a backward program one begins with the entire set and at each step drops
the variable that increases the error rate the least.

• A simplistic plan: select first variables based on their ratio BSS/WSS (see
linear discrimination part), and then perform a stepwise selection.
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3. Discrimination analysis by linear discrimination

We discuss first the two-class problems (only two class labels).

• Let X i be the feature (measurement) vector of cell i, and Di ∈ {0, 1} be the class of cell i.

• A useful characterization of the two classes, by the average over the class. Let m0 be the

mean vector of the class 0

m0 =
1

|{i|Di = 0}|
∑

i|Di=0
X i (1)

and m1 be the mean vector of the class 1

m1 =
1

|{i|Di = 1}|
∑

i|Di=1
X i (2)

The goal is to find a vector a such the scalar aTX i is compared against aTm0 and aTm1 and

is classified according to the nearest of them.

Yi =





0 if |aTX i − aTm0|2 < |aTX i − aTm1|2
1 else

(3)

The discrimination equation is

(aTX i)
2 − 2(aTX i)(a

Tm0) + (aTm0)
2 < (aTX i)

2 − 2(aTX i)(a
Tm1) + (aTm1)

2
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2(aTX i)a
T (m0 −m1) < (aTm1)

2 − (aTm0)
2

2(aTX i) <
(aTm1)

2 − (aTm0)
2

aT (m0 −m1)
= aT (m0 + m1)

aT (X i − m0 + m1

2
) < 0 (4)

Thus the classifier has the equivalent form

Yi =





0 if aT (X i − m0+m1
2 ) < 0

1 else
(5)

We would certainly like to maximize the number of correct classifications

max
a

Card{i|aT (X i − m0 + m1

2
) < 0; Di = 0} + Card{i|aT (X i − m0 + m1

2
) ≥ 0; Di = 1}(6)

but this problem has no closed form solution.

Since we cannot maximize directly the number of correct classifications we consider the following,

easier, problem.
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Heuristic problem: Fisher’s linear discriminant

We like to find two centers, aTm0 and aTm1, such that the data in class 0 is the
least scattered around aTm0, and data in class 1 is the least scattered around
aTm1, and moreover the centers are as further apart as possible. All these re-
quirements can be written in one single criterion to be maximized,

J(a) =
(aTm0 − aTm1)

2

σ2
0 + σ2

1

(7)

where the variances are

σ2
0 =

∑

i|Di=0
(aTX i − aTm0)

2 =
∑

i|Di=0
aT (X i −m0)(X i −m0)

Ta = aTS0a

σ2
1 =

∑

i|Di=1
(aTX i − aTm1)

2 =
∑

i|Di=1
aT (X i −m1)(X i −m1)

Ta = aTS1a

and therefore

J(a) =
(aTm0 − aTm1)

2

σ2
0 + σ2

1

=
aT (m0 −m1)(m0 −m1)

Ta

aT (S0 + S1)a
= (aTBa)/(aTWa) (8)

where the matrices B = (m0 −m1)(m0 −m1)
T and W = S0 + S1 are known.
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Case A: Nonsingular Within Class Covariance matrix

To solve the maximization problem, suppose W = S0 + S1 = W T/2W 1/2 is
positive definite and make the change of variable θ = W 1/2a (a = W−1/2θ) to
get

J(a) =
aTBa

aTWa
=

θTW−T/2BW−1/2θ

θTθ
(9)

The maximizing θ satisfies

θ∗ = arg max
||θ||=1

θTW−T/2BW−1/2θ

θ∗, µ∗ = arg max
θ,µ

θTQθ + µ(1− θTθ) (10)

where we denote W−T/2BW−1/2 = Q. Now the Lagrangian is minimized when
2Qθ − 2µθ = 0, which shows that θ must be a eigenvector of Q and µ is its
corresponding eigenvalue. It is obvious that the maximization is realized by taking
θ as the (unit norm) eigenvector corresponding to the largest egenvalue µ∗ of
W−T/2BW−1/2 = Q, when the criterion

J(θ) = θTQθ = µ∗ (11)
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Finally, the linear combination vector is

a∗ = W−1/2θ∗ = W−1/2 ·max eigenvector of(W−T/2BW−1/2) (12)

Simplifications:

We may simplify the solution: W−T/2BW−1/2θ∗ = µ∗θ∗ implies W−1/2W−T/2BW−1/2θ∗ =
W−1/2µ∗θ∗ or W−1Ba∗ = µ∗a∗, therefore µ∗ is the largest eigenvalue of W−1B
and a∗ its corresponding eigenvector.

For a two class experiment the solution simplifies even more. The eigenvector
obeys

W−1(m0 −m1)(m0 −m1)
Ta∗ = µ∗a∗

W−1(m0 −m1) =
µ∗

(m0 −m1)Ta∗
a∗

therefore

a∗ = W−1(m0 −m1) (13)

or any scaled version of it.
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Case B: Singular Within Class Covariance matrix

To solve the maximization problem when W = S0 + S1 is singular consider the
over-parameterization a = sas, such that aT

s Was = C with a constant scalar C,

which represent all possible a vectors. Observe that J(a) = aTBa
aTWa

= saT
s Bsas

saT
s Wsas

=

aT
s Bas/C and construct the Lagrangian

J(as, µ) = aT
s Bas + µ(C − aT

s Was) (14)

which has an extremum when 2Bas−2µWas = 0, which tells that all Lagrangian
extremum points are at those as which are scaled generalized eigenvectors of
(B, W ). Recall that the generalized eigenvector decomposition of (B,W ) obeys
BV = WV Λ where Λ is diagonal and V is a square matrix whose columns are
generalized eigenvectors, each eigenvector vi satisfying Bvi = λiWvi.

Denote a∗s any scaled generalized eigenvector satisfying Ba∗s − λ1Wa∗s = 0 and
C = a∗s

TWa∗s, then J(a∗s, λ1) = a∗s
TBa∗s, which can be evaluated by left-multiplying

Ba∗s = λ1Wa∗s with a∗s
T , to get J(a∗s, λ1) = a∗s

TBa∗s = λ1a
∗
s
TWa∗s = λ1C. There-

fore the maximum criterion J(a∗s, λ1) is obtained when λmax is the generalized
eigenvalue of (B,W ) and a∗s is its corresponding eigenvector. We consider that
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the diagonal matrix Λ is ordered such that λ1 is the maximum generalized eigen-
value, and v1 the corresponding eigenvector. Therefore a = v1 is the linear
discrimination vector maximizing the Fischer discrimination criterion.
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Summary

1. Given the feature vector X i for each individual i, and the class label for each
individual

2. Compute the average over each class m0 and m1.

3. Compute the covariance matrices

S0 =
∑

i|Di=0
(X i −m1)(X i −m1)

T

S1 =
∑

i|Di=1
(X i −m1)(X i −m1)

T

4. Construct the matrix W = S0 + S1 and take the optimum discriminator as
a∗ = W−1(m0 −m1).

5. Use the discriminator a∗ to classify a feature vector Xi as follows

Yi =





0 if a∗T (X i − m0+m1
2 ) < 0

1 else
(15)

13



How good is one gene as a feature? A simple indicator: BSS/WSS

• When the feature vector is just a scalar (it is composed of a single gene
expression) the discrimination criterion reduces to

J(a) = (aTBa)/(aTWa) = B/W (16)

where the scalar B = (m0 − m1)
2 is the spread between the centers of the

classes and W = S0 + S1 = ∑
i|Di=0(Xi − m0)

2 + ∑
i|Di=1(Xi − m1)

2 is the
within class spread. J(a) is proportional to the quantity BSS/WSS defined
below.

• Let denote N0 the number of members of class 0, N1 the number of members of class 1, m

the overall mean and N the total number of individuals. The following sums of squares can

be defined:

TSS =
∑

i
(Xi −m)2

BSS = N0(m0 −m)2 + N1(m1 −m)2

WSS = W =
∑

i|Di=0
(Xi −m0)

2 +
∑

i|Di=1
(Xi −m1)

2 (17)

BSS is called between sum of squares; TSS is the total sum of squares; WSS = W = is

the within sum of squares. We have TSS = WSS + BSS.
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• Due to the identity N0N1
N (m0 −m1)

2 = N0(m0 −m)2 + N1(m1 −m)2 = BSS we have so

BSS/WSS = B/W N0N1
N = N0N1

N J(a). Thus BSS/WSS gives a good indication of the

discrimination capabilities of a scalar feature.
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An example: MIT Leukemia data set

The data file

The file 1709.mat contains the matrix M preprocessed with process1.m (floor 100
& ceiling 16000 for each element; exclusion max/min <= 5 & (max−min) <=
500; log10). The vector v is created such that (1 if ALL and 0 if AML).

Some statistics

min(min(M))=0; max(max(M))=4.5791; mean(mean(M))=2.8433;

median(median(M))=2.8156;

v1=M(:); median(v1)=2.8116; imagesc([ones(100,1)*v’*max(max(M)) ; M])

colormap(gray)
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Figure 1: The dataset MitLeukemia preprocessed to keep 1709 gene expressions of 72 cell types. The bottom white/black regions
show the known classification of the cells: Cell type 1=ALL (white); Cell type 0=ALM (black).
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Figure 2: Boxplot of the dataset MitLeukemia preprocessed to keep 1709 gene expressions of 72 cell types. BOX-
PLOT(X,NOTCH,SYM,VERT,WHIS) produces a box and whisker plot for each column of X. The box has lines at the lower
quartile, median, and upper quartile values. The whiskers are lines extending from each end of the box to show the extent of the
rest of the data. Outliers are data with values beyond the ends of the whiskers.
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Figure 3: Mean plus/minus four times the standard deviation of the dataset MitLeukemia preprocessed to keep 1709 gene expressions
of 72 cell types.
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Figure 4: Boxplot of missclassifications in 100 runs of 2:1 sampling scheme (48 training cells and 24 test cells). The predictor genes
are the first in the dataset, (1:p), with p=10,20,30,40.
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Figure 5: Boxplot of missclassifications in 100 runs of 2:1 sampling scheme (48 training cells and 24 test cells). The predictor genes
are taken at the position 100+(1:p) with p=10,20,30,40, to compare random choices (quite similar with the previous figure].
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Figure 6: A good feature selection: Boxplot of missclassifications in 100 runs of 2:1 sampling scheme (48 training cells and 24 test
cells). The predictor genes are arranged in decreasing order of their BSS/WSS, and p=10,20,30,40.
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Figure 7: A good feature selection: another realization of the crossvalidation split. Boxplot of missclassifications in 100 runs of 2:1
sampling scheme (48 training cells and 24 test cells). The predictor genes are arranged in decreasing order of their BSS/WSS, and
p=10,20,30,40.
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Figure 8: A very good feature selection (without the normalization to unit variance across the genes). Boxplot of missclassifications
in 100 runs of 2:1 sampling scheme (48 training cells and 24 test cells). The predictor genes are arranged in decreasing order of
their BSS/WSS, and p=10,20,30,40.
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Figure 9: Individual rates of missclassifications for each cell. Three cells are systematically missclassified.
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Figure 10: The linear discriminator in 100 runs.
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