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ABSTRACT

A novel approach is presented to the detection of ho-
mological, eroded and latent periodicities in DINA se-
quences. Each symbol in a DNA sequence is assumed
to be generated from an information source with an
underlying probability mass function (pmf) in a cyclic
manner. The number of sources can be interpreted as
the periodicity of the sequence. The maximum likelihood
estimates are developed for the pmfs of the information
sources as well as the period of the DNA sequence.
The statistical model can also be utilized for building
probabilistic representations of RNA families.

L. INTRODUCTION

The structural features of DNA sequences have bio-
logical implications [1]. One such structural feature is
symbolic periodicity. The periodicities in gene sequences
have been linked with evolution of genome and protein
strucuture [1], [2], [3]: The DNA sequences exhibit ho-
mologous, eroded and latent periodicities. Homologous
periodicity occurs when short fragments of DNA are
repeated in tandem to give periodic sequences [4]. Most
current approaches for finding periodicities transform the
symbolic DNA sequence to a numerical sequence [5], [6],
[7]; these techniques are primarily aimed at the detection
of homological periodicities.

Some researchers have also explored the detection of
imperfect or eroded periodicities which model a sequence
of similar units repeated but with some changes. There-
fore, the homology between repeated units in an eroded
sequence is not perfect [4]. The imperfect periodicity
may occur 1n strands of DNA due to changes or erosion
of nucleotides.

The periodicity in DNA sequences may also be mod-
eled as latent periodicity [4], for instance an observed
period of nucleotides may be (A/CYT/GY(T/ANG/T)
{(C/G/AYG/A), 1.e. the first nucleotide of a period may
be A or C followed by a T or G and so on. The
hidden periodicities may not be found efficiently by
algorithms developed for finding homological and eroded
periodicities [2]. The latent periodicity detection was
studied n [7], [8] and latent periodicities of some human
genes were reported.

This paper presents a novel approach to finding la-
tent periodicities in DNA sequences that parallels the
extraction of beat information from low level audio
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features in [9]. Each symbol of the sequence 1s assumed
to be generated by an information source with some
underlying probability mass function and the sequence
1s generated by drawing symbols from these sources in
a cyclic manner. The number of sources is equal to the
latent period in the sequence and the latent periodicity
is same as the statistical periodicity or cyclostationarity.
The paper presents maximum likelihood estimates of the
pmfs and the period. The symbolic sequences are not
transformed into numerical sequences and the method
presented here 1s capable of finding all three kinds of
periodicities: homological, eroded and latent.

The problem of detecting latent periodicities in sym-
bolic sequences is formulated mathematically in the next
section. The maximum likelihood estimate of the period
is developed in section III and results are discussed in
section I'V. A short discussion on building probabilistic
representations for non-coding RNAs 1s presented in
section V.

II. STATISTICAL PERIODICITY

The statistical periodicity model that is employed here to
discover possibly hidden periodicities in gene sequences
does not assume that the sequence itself is periodic.
Instead 1t is assumed that there is a periodicity in
underlying statistical distributions which 1s locked to a
known periodic grid.

A given DNA sequence D = [Iq,..., Dx] can be
denoted by the mapping D : N — &, from the natural
numbers to the alphabet § = {A,G,C,T}. Assume
that the statistical periodicity of the sequence D is 7.
This implies there are 7 information sources (or random
variables) denoted as X4,..., X7. The random variable
X; takes values on the alphabet & according to an
associated probability mass function Pj; it generates the
3% symbol in S with probability P;(j) = P(X; = S;)
for 7 =1,...,|8| where |&] is the cardinality of the
alphabet {which 1s four for the DNA sequences).

The number of complete statistical periods in D are
M = |N/T|. Define : = (i mod 7). Then for
1 <4 < N, the symbol D, ie. the ¢*® symbol in the
sequence 7, is generated by the random variable Xj;.
The random variables X, i = 1,...,7 are assumed to
be independent. The structural parameters, Py, ..., Pr,
and the timing parameter T are unknown. Define & =
[T, F1,..., Pr]. The search space for parameter 7 is



the set B = {1,..., Ny} for some Ny < N and for
the pmfs [P,...,Pr] the search space is the subset
Q < [0,1]151T of column stochastic matrices (for
PeQ Pie0and > Py=1fori=1,...,7)
Let p = B x @ denote the search space for the parameter
©. Given the data, the maximum aposteriori (MAP)
estimate of parameter © is

O =arg Iélg;(?)(@\@).

By Bayes rule the posterior probability is
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where, by independence of X;’s,
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1s the likelihood. Note that the probability P(D) =
[ P(D|©)P(©)d® is a constant and thus, assuming
a uniform prior on O,

Q= arg%lgg?(@\@). (3)

In words, the MAP estimate is same as the maximum
likelihood estimate.

III. THE MAXIMUM LIKELIHOOD ESTIMATE

This section develops the maximum likelihood estimate
(MLE) for the unknown parameter ©. The data-sequence
T = [D1,...,Dn] 1s represented by a sequence of
vectors W = [w1,..., W] where each w; is an |§| x 1
vector with wy; = 1 < D; = 8;. So, if the t*
symbol in the sequence D is C, ie. the third symbol of
the alphabet S, then the ¢** vector w; in the sequence
Wis[0010]". Also define a | S| x 7 stochastic matrix
A with entries A;; = P(X; = &;). The columns of the
matrix A denote the pmfs of the information sources;
the entry A;; denotes the probability that the i*® source
generates the j% symbol of the alphabet S. Write the
unknown parameter & = [4,7]. This notation simplifies
the derivation of the MLE by noting that
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The likelihood can therefore be written as

N
[TP&; = Dia 1)
=1

N |5

= I ()™

POWIA,T)

—MT |8
( ﬂ) W (1) @

=1

where i®) — (k — 1)T + ¢ Note that the first term on
the right hand side of (4) captures the observations in M
complete periods (given the period 7) while the second
product captures the observation over the last incomplete
cycle. The log-likelihood 1s

M T S|

DD D Wy log (A‘j%) +
k=1j_1 7=1
N-MT |8
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i=1 J=1
For a fixed T, the MLE for A 1s
AT
AY = arg max log POW|A,T). (6)

log POW|A, T)

The log-likelihood in (5) is a concave function of vari-
ables Ajn Also, note that these variables satisfy the
constraint: Z‘Sl Ay =1 for i=1,...,7T. Constrained

optimization using Lagrange multlphers gives the (4, )
element of the matrix AZ as

-
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for 7 = 1,...,|8]. The estimates of the parameters A

can then be used to determine the MLE for the period
T
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IV. RESULTS

The method in the previous section was applied to a
variety of simulated symbolic sequences and to chro-
mosome XVI of &. cerevisice in order to detect peni-
odicities. A homological symbolic sequence from the set
8 = {A,G,C, T} with period 7 = 7 was generated.
The sequence was eroded by changing the symbols at
randomly chosen points in the sequence. The algorithm
was tested with various degrees of erosion. The plots in
Fig. 1 strongly support a statistical periodicity of 7 even
with 85% erosion. The noise floor in the plots increases
(i.e. the heights of the peaks decrease) with increased
erosion. Note that a 7 -periodic sequence also shows &7 -
periodicity for any positive integer k.

Figure 2(a) shows the results with latent periodicity
of simulated symbolic sequence where a single period
1s (A/CHT/GWT/AWG/TYC/G/ANG/A). This was gener-
ated by six information sources, Xi,...,Xs with Xy
generating A or C each with equal probability and X5
generating A,G or C each with probability 1/3. Applying
the technique of Sect. III to this sequence results in a
plot showing strong six-periodic behaviour. In contrast,
when a random sequence is used (i.e. when each source
generates all symbols with equal frequency), Fig. 2(b)
shows that no significant periodicities are detected.

The algorithm was also tested with the protein coding
region of chromosome XVI of &. cerevisiae (GenBank
accession number NC 001148). The 2160 base-pair(bp)
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Figure 1. Maximum log-likelihood of data plotted against
Period for a simulated symbolic sequence of length
6400 symbols with period 7: {a) Homological periodic
sequence (b) 50% eroded sequence (¢) 75% eroded
sequence (d) 85% eroded sequence.
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Figure 2. (a) Maximum Log-likelihood of data plotted
against period for a simulated symbolic sequence of
length 6400 symbols with latent periodicity 7, (b) maxi-
mum log-likelihood versus period for completely random
symbolic sequence (¢) maximum log-likelihood plotted
against period for protein coding region of chromosome
XVI of 8. cerevisize (d) the magnitude of DFT of
numerical sequence derived from the sequence in part(c).

long sequence (from bp 85 - 2244) shows a latent
periodicity of period three as plotted in Fig. 2(c). The
period-3 behaviour of protein coding genes is expected
since amino acids are coded by trinucleotide units called
codons [7], [10]. For comparison, the symbolic sequence
1s transformed into a numerical sequence as in [ 7] and the
magnitude of the 2160-point DFT 1s plotted in Fig. 2. The
peaks at f; = 720, fo = 360 and f3 = 180 correspond
to 3,6 and 12-periodic behaviour respectively.

V. IDENTIFYING NON-CODING RNAS

The central dogma of molecular biology states that DNA
is transcribed to RINA and then translated to proteins. The
genetic information therefore flows from DNA to protein
through the RNA. However, besides playing the role of
a passive intermediary messenger (mRNA), RNAs have
been known to play important non-coding function in the
process of translation (tRNA, rRNA) [11]. Since these
RNAs are not translated into proteins, these are called
non-coding RNAs (ncRNAs) or RNA genes. Originally,
such RNA genes were considered rare but in the last
decade many new RNA genes have been found and
have been shown to play diverse roles: chromosome
replication, protein degradation and translocation, regu-
lating gene expression and many more. Thus RNA genes
may play a much more significant role than previously
thought. The number of ncRNAs in human genomes is
in the order of tens of thousands and considering the vast
amount of genomic data there 1s a need for computational
methods for identification of ncRNAs [10].

The statistical model presented in this paper for
finding periodicities in symbolic sequences can be uti-
lized for building probabilistic representations of RINA
families. The RNA has the same primary structure as
DNA, consisting of a sugar-phosphate backbone with
nucleotides attached to it. However, in RNA the nu-
cleotide thymine(T) is replaced by uracil (U) as the base
complementary to adenine (A). So, RNA is represented
by the string of bases: A, C, G and U. RNA exists
as a single-stranded molecule since the replacement of
thymine by uracil makes RNA too bulky to form a
stable double helix. However, the complementary bases
(A and U, G and C) can form a hydrogen bond and
such consecutive base pairs cause the RNA to fold onto
itself resulting in 2-D and 3-D secondary and tertiary
structures. A typical secondary structure is a hairpin
structure as shown in Fig. 3(a); the consecutive base pairs
that bond together get stacked onto each other to form a
stem while the unpaired bases form a foop.

Typical methods employed for identification of DNA
gene sequences and proteins do not perform as well in
the identification of ncRNAs because they are based on
finding structural features (like periodicities) in primary
sequences whereas most functional ncRNAs preserve
their secondary structures more than they preserve their
primary sequences [10]. Therefore, in the identification
of ncRNAs there 1s need for techniques that also evaluate
similarity between secondary structures. Such techniques
have been shown to be more effective in comparing and
discriminating RNA sequences [12].

The RINA sequences preserve the secondary structure
when undergoing erosion or mutation by compensatory
mutation as shown in Fig. 4. This causes strong pairwise
correlations between distant bases in the primary RINA
sequence. Unlike the techniques employed for DNA
identification in earlier works, the approach presented
here can describe such pairwise correlations. Consider a
sequence of ncRNA molecules, tandem repeats of which
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Figure 3. (a) RNAO has hairpin secondary structure. (b)
RINAI is similar in structure to RNAO. It differs at two
positions in the primary sequence from RNAO. (¢) RNA2
structure is not hairpin, it has a structural mismatch with
RNAO. RNA2 also differs at two position in the primary
sequence from RNAO but it must be scored lower in
similarity to RNAO as compared to RNAI.
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Figure 4. A given base pair in a ncRNA molecule
undergoes compensatory mutation i.e if one of the nu-
cleotides in a base-pair mutates, the other nucleotide
also changes to complementary nucleotide. So there is
a strong correlation between the base positions indicated
by N and N’ and base positicns indicated by M and M’

have undergone random compensatory mutations as
shown in Fig. 4. According to the statistical periodicity
model presented in this paper, the sources generating
the symbols that do not bond (nucleotides in the loop
of a hairpin ncRNA) have a point-mass pmf{ On the
other hand, the sources corresponding to a bonded
base pair have cowjugate distributions (in Fig. 4 pmfs
of N and N’ agree on complementary bases). These
conjugate distributions capture the distant base-pair
correlations. The sequence of sources corresponding
to ncRNA molecules in Fig. 4 after identifying
the bonded nucleotides with conjugate sources is
X1, Xo, X3, Xy, X5, X5, X{. The statistical periodicity
model presented here is therefore capable of describing
primary as well as secondary structural similarities.
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