
A DSP PERSPECTIVE TO THE PERIOD-3 DETECTION PROBLEM

Jamal Tuqan and Ahmad Rushdi

Department of Electrical and Computer Engineering
University of California, Davis, CA 95616

tuqan@ece.ucdavis.edu, aarushdi@ece.ucdavis.edu

ABSTRACT

Many Signal Processing techniques have been introduced
in the past to identify the protein coding regions by de-
tecting the so-called period-3 component in the DNA spec-
trum. However, a solid understanding of this observed
phenomenon and its underlying mechanism from a DSP
perspective has been missing from the literature. We
therefore propose a novel DSP model that i) clearly ex-
plains the intricate operation of the DNA spectrum, ii)
allows the derivation of new DNA spectrum expressions
which, in turn, generalize and unify previous work and
iii) suggests an efficient way to improve the detection of
protein coding regions by computing a filtered spectrum.

1. INTRODUCTION

A central problem of genomic research is to find the num-
ber and locations of the genes (exons in eucaryotes) and,
their exact boundaries (start & stop codons and splice
sites). Special features are needed to discriminate between
the protein coding regions (genes) and the non-coding
ones. In this work, we study in depth one such feature,
namely the period-3 component of the DNA spectrum.
A single DNA strand is a sequence of nucleotides (bases)
where each base belongs to the alphabet F = {A, C, G, T}.
To perform signal Processing operations on the DNA se-
quence, numerical values are assigned to each character
in F. A typical assignment is the so-called Voss repre-
sentation where four binary sequences, xl(n), l ∈ F, are
generated with 1 indicating the existence of the base l at
position n [1]. Assume that a DNA sequence has length
N . The sliding window M -point DFT for each xl(n) is

Xl(n, k) �
M−1∑
m=0

xl(n + m)e−j2πmk/M (1)

where the starting point of the window n = 0, 1, . . ., N−1
and, M = 3L where L is a positive integer. The frequency
spectrum of the given DNA sequence is therefore given by

S(n, k) =
∑
l∈F

|Xl(n, k)|2

It was observed by many researchers that the spectrum
of protein coding regions has typically a peak at k = L
whereas no significant peaks appear in the spectrum of
non-coding regions [2]. The DNA Spectrum, S(n), can
therefore be used to distinguish the coding regions from

the non-coding ones and is defined by

S(n) =
∑
l∈F

|Xl(n, L)|2 =
∑
l∈F

|
N−1∑
m=0

xl(n + m)e−j2πm/3|2 (2)

where n = 0, P , . . . , (N − 1)/P (we zero-pad xl(n) if
(N − 1)/P �= integer) and P is the amount of window
shift. From (2), it is easy to show that the sequence Xl(n)

� Xl(n, L) is obtained by passing xl(n) through the filter

f(n) =

{
ej2πn/3 0 ≤ n ≤ M − 1

0 otherwise

as shown below. The box labelled ↓ P is a downsampler
with decimation ratio P [3], and F (z) = Z{f(n)}.

F(z)
� �� � � �	 � � ��

Figure 1: Digital Filtering Model for Period-3 Detection

2. THE DSP MODEL

We first observe that F (z) in Figure 1 can be expressed as

C(z)H(z3) where C(z) = 1 + ej2π/3z−1 + ej4π/3z−1 and

H(z3) = 1+z−3 + ...+z−(M−1). The elegance of this two-
stage filter model is that it clarifies the inner workings of
the sliding window DFT. To see this, note that the filter
H(z) is the standard rectangular window and has a low
pass frequency response with a −13 db attenuation. Its
interpolated version, H(z3), produces frequency images at
ω = 0, 2π/3 and 4π/3. The complex filter C(z) has zeros
at ω = 0 and ω = 4π/3 and thus attenuates the images at
these frequencies. The resulting filter F (z) is, as expected,
a complex band pass filter with center frequency at 2π/3.
With the two-stage filter model in mind, we propose the
structure of Figure 2. The signals xl0(n), xl1(n) and,
xl2(n) are termed the first, second, and third polyphase
components of xl(n) respectively [3]. From a biological
perspective, xlr(n) is the indicator sequence of base l in
the rth codon position (r = 0, 1, 2). When Hr(z) are the

rectangular window H(z) = 1 + z−1 + . . . + z−(L−1) for
r = 0, 1, 2, we can show that Xl(n) is the DNA spectrum
of section 1 with P = 3. In the more general case, we have

Xl(n) = Xl0(n) + ej2π/3Xl1(n) + ej4π/3Xl2(n) (3)

where the filtered polyphase components Xlr(n) = xlr(n)∗
hr(n) for r = 0, 1, 2 and ∗ denotes linear convolution.
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Figure 2: The new DSP model

3. MAIN RESULTS OF THE PAPER

We assume here the general FIR case where the polyphase
filters Hr(z) = αr0 + αr1z

−1 + . . . + αr(L−1) z−(L−1).

Closed form expression for the spectrum. From (3),
we can prove that

S(n) =
1

2

∑
l∈F

2∑
r=0

[Xlr(n) − Xlq(n)]2 (4)

where q = (r+1) mod 3. The above equation shows in spe-
cific that the DNA spectrum is completely characterized by
the filtered polyphase components and can be computed
directly from these sequences. The formula also indicates
that the value of the spectrum is independent from the
particular reading frame. Finally, when Hr(z) = H(z) =

1+ z−1 + ...+ z−(L−1) for r = 0, 1, 2, equation (4) reduces
to a recent result derived in [4] using a parsing approach.

Biological Meaning of the DNA spectrum. By al-
gebraically manipulating (4), we can show that

S(n) =
3

2

∑
l∈F

2∑
r=0

[Xlr(n) − X̄l(n)]2 (5)

where X̄l(n) = 1
3
[Xl0(n)+Xl1(n)+Xl2(n)]. In the special

case of the rectangular window, equation (5) is equivalent
to the position asymmetry measure [5]. This latter mea-
sure has a very nice biological interpretation. In specific,
by observing that Xlr(n) is the number of occurrences of
base l in the rth (r = 0, 1, 2) position of the codon at win-
dow location n, the term Xlr(n) − X̄l(n) represents the
relative abundance of base l in codon position r with re-
spect to the average frequency of occurrence of base l in
all three codon positions. The more uneven the relative
abundances are, the more likely the processed section of
the DNA sequence is a protein coding region. In the gen-
eral case, the rth codon in the window is weighted by αrv.
The polyphase Filtered DNA spectrum. Unlike pre-
vious work where a smoothed DNA spectrum is obtained
by changing F (z) [4, 6], we propose instead to use Hr(z)
to filter the spectrum. This new approach provides a num-
ber of advantages over the former one. First, when F (z)
is modified, equations (4) and (5) are not valid anymore
and the spectrum looses its biological significance. By
contrast, the expressions in (4) and (5) are independent
from the form of Hr(z). Second, designing the complex
band-pass filter F (z) is more elaborate than designing a
real low pass filter Hr(z). Furthermore, the computation
of Xl(n) using F (z) requires complex arithmetic whereas

that of S(n) using (4) or (5) involves only real operations.
Finally, changing Hr(z) generates a filtered DNA spec-
trum that not only smoothes the standard (rectangular
window based) one but also identifies potential exon re-
gions completely missing in the former case. This is clearly
illustrated in Figure 3 where the standard DNA spec-
trum and the filtered one using a Blackman window with
M = 702 are depicted for the zeta globin gene (ECZGL2)
and the muscle actin gene (HROMA4A) acquired from the
Burset-Guigo database. To find the exons, potential cod-
ing regions are first determined by applying a threshold
T = µs + 0.5σs to S(n) where µs and σs are the mean
and standard deviation of S(n) respectively. Once these
regions are obtained, the boundaries of the initial, inter-
nal and terminal exons are found by searching locally for
the consensus nucleotides. The discovered exons are out-
lined in Figures 3(b) and (d) by the (green) dashed binary
curve, and with the exception of the internal exon in the
zeta globin gene, match perfectly with the true exons rep-
resented in Figure 3 by the (black) solid binary curve. By
contrast, the performance of the standard DNA spectrum
was poor, producing many false positives and negatives.
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Figure 3: (a)-(b) and (c)-(d) Rectangular and Blackman
window based spectrums for the zeta globin and the mus-
cle actin genes respectively
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