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ABSTRACT

Motivation: Identification of a transcription factor binding sites is an

important aspect of the analysis of genetic regulation. Many programs

have been developed for the de novo discovery of a binding motif

(collection of binding sites). Recently, a scoring function formulation

was derived that allows for the comparison of discovered motifs

from different programs [S.T. Jensen, X.S. Liu, Q. Zhou and J.S. Liu

(2004) Stat. Sci., 19, 188–204.] A simple program, BioOptimizer,

was proposed in [S.T. Jensen and J.S. Liu (2004) Bioinformatics,

20, 1557–1564.] that improved discovered motifs by optimizing a

scoring function. However, BioOptimizer is a very simple algorithm

that can only make local improvements upon an already discovered

motif and so BioOptimizer can only be used in conjunction with other

motif-finding software.

Results: We introduce software, GAME, which utilizes a genetic

algorithm to find optimal motifs in DNA sequences. GAME evolves

motifswithhigh fitness fromapopulationof randomlygeneratedstarting

motifs, which eliminate the reliance on additional motif-finding pro-

grams. In addition to using standard genetic operations, GAME also

incorporates two additional operators that are specific to the motif dis-

covery problem. We demonstrate the superior performance of GAME

compared with MEME, BioProspector and BioOptimizer in simulation

studies as well as several real data applications where we use an

extended version of the GAME algorithm that allows the motif width

to be unknown.

Availability: http://mail.med.upenn.edu/~zhiwei/GAME/

Contact: zhiwei@mail.med.upenn.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

A crucial component of gene regulation is the binding of transcrip-

tion factor proteins to specific locations on the genomic sequence in

close proximity (100–1000 bps) to a target gene, leading to changes

in transcriptional activity for that gene. These specific locations

(binding sites) are short (�30 bps) and share a common sequence

of nucleotides, though there is usually some variability in sequence

between binding sites. These binding sites must have a specific

enough shared pattern so that the TF protein does not bind to

many random locations throughout the genome, but the specificity

cannot be absolute in that varying binding affinities between the

transcription and its target sites are required for different genes. The

collection of sequences that can act as binding sites for a particular

transcription factor is called its binding motif. In many cases, the

locations of these binding sites must be discovered without prior

knowledge of their motif appearance, which we refer to as de novo
motif discovery.

Experimental validation of these binding site locations is labor-

intensive, which makes computational approaches an attractive

alternative for de novo motif discovery. The benefit of high-

throughput approaches has grown even more in recent years,

with the dramatic increase in availability of annotated genomic

sequences for many related species, leading to de novo motif dis-

covery across sequences from different species (e.g. McCue et al.,
2001; Jensen et al., 2005). Many computational approaches are

based on the formulation of a binding motif as a position-specific

weight matrix (PWM), which contains the desirability (relative

frequency) of each nucleotide at each position of a binding site

of fixed width.

Popular motif discovery algorithms based on a PWM formulation

include AlignACE (Roth et al., 1998), BioProspector (Liu et al.,
2001), Consensus (Hertz and Stormo, 1999), Gibbs Motif Sampler

(Liu et al., 1995; Neuwald et al., 1995), MDscan (Liu et al., 2002)
and MEME (Bailey and Elkan, 1994). Jensen et al. (2004) provide a
review of the statistical models upon which these programs are

based. It is often unclear which software should be used, however,

since the relative performance of each program varies between

real-data applications. In an effort to alleviate this uncertainty,

Jensen and Liu (2004) proposed a scoring function formulation,

based on a comprehensive Bayesian model, that can be used to

quantitatively evaluate the fitness of discovered motifs, thereby

allowing for comparison between the results from different pro-

grams. In addition to providing this scoring function, Jensen and

Liu (2004) presented the BioOptimizer program, which can be used

to locally optimize discovered motifs with respect to this scoring

function. The scoring function was also extended to allow for

unknown site abundance and unknown motif width. However,

because BioOptimizer is based on a simple hill-climbing algorithm,

it is reliant on a good starting motif which must be provided by one

of the aforementioned de novo motif discovery programs.

Our goal is an optimization algorithm for motif discovery that

is capable of a more exhaustive search of the space of possible

motifs, and thus eliminates this dependence on the use of other

motif discovery programs. We present a program, GAME, which�To whom correspondence should be addressed.
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uses a genetic algorithm tomove around the space of possible motifs

in order to find an optimal motif under the same PWM-based

Bayesian model used by BioOptimizer. GAME utilizes a large

number of randomly generated starting points and does not require

the use of any additional motif-finding algorithms. We demonstrate

the superior performance of GAME in both simulation and real-

data applications compared with popular programs MEME and

BioProspector, as well as the optimization algorithm BioOptimizer.

2 METHODS

Genetic algorithms have greater freedom of movement between different

configurations than simpler algorithms (Goldberg, 1989; Michalewicz,

1996), making them a valuable tool for the discovery of optimal motifs.

Several studies (Stine et al., 2003; Liu et al., 2004) have used genetic

algorithms for the identification of binding sites. In those analyses, the

motif is not formulated as a PWM, but rather as a consensus sequence.

Since we want to utilize the natural variability between binding sites within

a motif, we prefer to formulate the unknown motif as PWM and employ the

scoring function given in Jensen et al. (2004), which we review below. We

then present our GAME (Genetic Algorithm for Motif Elicitation) software

designed to find optimal motifs under this model. GAME uses the general

genetic operators (Michalewicz, 1996) as well as two additional operators,

SHIFT and ADJUST, which were included to help GAME avoid local

optima.

2.1 Restricted solution space of possible motifs

Our dataset consists of m upstream sequences, each of length li, where Sij is

the nucleotide in position j of sequence i. A motif is represented by a matrix

of binding site locationsAwhere each Aij¼ 1 if a motif site starts in position

j of sequence i and 0 otherwise. Each configuration of A is a possible motif,

such as the artificial example given in Table 1. The subsequences in upper

case are true motif sites. The second motif site ATACGT is weaker than the

first motif site ATCCGT (with one mutant) in sequence S5. The alignment

matrix can be easily converted into a PWM when taking into account the

distribution of bases in the background (non-motif) portions of each

sequence (Hertz and Stormo, 1999). The set of all possible motifs of

width w in our sequence dataset is O ð
Q

i 2
li�w+1Þ, where li is the length

of sequence i. This set of all possible motifs is prohibitively large for any

optimization procedure, but the set of all reasonable motifs is much more

restricted in the sense that we do not expect much more than one binding site

in each sequence. Though it is possible that there is more than one binding

site in a sequence for the same regulatory factor, these additional motif sites

comprise a small portion of the whole set of binding sites. We build this prior

expectation into our algorithm by initially restricting ourselves to dis-

covering the strongest single site in each sequence, which we believe is

the majority of all sites. Under this restriction, the matrixA can be reduced to

a vector A¼ (a1, . . . , am), where ai¼ 0 indicates that there are no motif sites;

otherwise ai gives the location site of the motif site in sequence i. Note that
we still allow any sequence to contain no sites, since there is usually a strong

possibility of false positive sequences in any real data application. For the

example in Table 1, our site vector A is (4, 3, 5, 0, 1). The set of all likely

motifs is now approximately
Q
li, which is much smaller than the original

solution space. After we have a likely motif based on these strongest sites, we

employ a simple scan procedure (Section 2.5) to identify additional weaker

motif sites. We now descibe the scoring function we are trying to optimize

with our discovered motifs.

2.2 Bayesian scoring function for motifs

The Bayesian approach presented in Jensen et al. (2004) models each poten-

tial site location Aij as a random indicator variable with an a priori probability

p0 of equaling 1. This parameter p0 is called the site abundance parameter.

Each Aij is assumed to be independent, allowing for the possibility that some

sequences will have multiple motif sites (i.e. several Aij¼ 1 in sequence i) as
well as the possibility that some sequences may have no motif sites (i.e. all

Aij ¼ 0 in sequence i). The composition of the motif is represented by the

frequency matrixQ, where �jk is the frequency of nucleotide k in column j of

the motif. The nucleotide composition of the background (portions of the

sequences that are not motif sites) is represented by the vector �0, where �0k
is the frequency of nucleotide k in the background. This vector is treated as

known since it can be usually estimated a priori. The posterior distribution of

our unknown parameters can be written symbolically as follows:

pðQ‚A j S‚�0‚p0Þ / pðS j �0‚Q‚AÞ · pðA j p0Þ · pðQÞ · pðp0Þ ð1Þ

where our sequence data S and background frequencies �0 are known, and

the site locations A, motif compositionQ and site abundance p0 is unknown.

Details of these distributions are given in Jensen et al. (2004). This posterior

mode is equivalent to the maximum-likelihood estimate when using non-

informative prior distributions p(Q) and p(p0). Since we are interested in

comparing motifs based just on their site locations, A, we can mathemat-

ically integrate over parameters Q that specify the motif appearance, giving

us the marginal posterior distribution for A alone:

pðA jS‚�0‚p0Þ /
Z

pðQ‚A j S‚�0‚p0Þ dQ ð2Þ

An ‘optimal’ configuration of start sites A is defined as a maximum of

the posterior distribution (2). Maximizing this posterior distribution (2) is

equivalent to maximizing the log-posterior distribution.

cpostðAÞ ¼ log pðA jS‚�0‚p0Þ ð3Þ

This log-posterior distribution cpost(A) can be used as a scoring function

which allows us to quantify the ‘fitness’ of different configurations of A in

terms of their fit to the full probability model. As described in Jensen et al.
(2004), the scoring function (3) is closely related to the following simpler

scoring function:

centðAÞ ¼ jAj · log

�
p̂p0

1 � p̂p0

�
� 1 +

Yw
j¼1

Y4
k¼1

�̂� jk log

�
�̂�jk
�0k

� !
ð4Þ

where jA j is the number of predicted sites and p̂p0 ¼ jAj=L is the estimated

motif abundance out of L ¼
P

i li � w + 1 possible site locations in A. The

term
Q Q

�̂� jklogð�̂�jk=�0kÞ is the relative entropy between the estimated

motif matrix frequencies �̂� jk and background frequencies �0k. Note that a

small number of prior counts b are usually added to each entry of the

estimated motif matrix to ensure that all motif matrix frequencies �̂� jk are

Table 1. Example of a motif

Sequences Aligned Sites Alignment matrix

S1 : atcATCCGTgtagctcaaaa

S2 : agATCCGTaacgaagtttac

S3 : ccccATCCGTaattacctat

S4 : ggccgacttagccaatcga

S5 : tATCCGTtagATACGTgccga

)

S1 : ATCCGT

S2 : ATCCGT

S3 : ATCCGT

S5 : ATCCGT

S5 : ATACGT

)

Pos

A

C

G

T

1 2 3 4 5 6

5 0 0 0 0 0

0 0 4 5 0 0

0 0 1 0 5 0

0 5 0 0 0 5

j
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non-zero. cent(A) is used by our GAME genetic algorithm as the fitness

function for finding the best configuration of site locations A. In the fol-

lowing sections, we describe the various operations of our genetic algorithm.

2.3 Standard genetic operations

As mentioned in Section 2.1 above, each individual motif configuration was

represented by a vector A(a1, . . . , am) where 0 � ai � (li � w + 1). We

allowed simple changes of an individual configuration by using a standard

point mutation operation: A(a1, . . . , ai, . . . , am)! A(a1, . . . , a
0
i, . . . , am) with

a certain mutation probability r. A standard one-point crossover move was

also used that allows individual configurations to share and exchange align-

ment information with each other. De Jong (1975) suggests that the choice of

a high crossover probability, a low mutation probability and a moderate

population size improves performance of genetic algorithms. Based on

this suggestion, we set the mutation probability r¼ 0.001 and the population

size N ¼ 500 in our GAME software, and we involve every member of

the population in a crossover move in each generation. Our population

of N individual configurations is randomly grouped into N/2 pairs of con-

figurations. For each pair of individual configurations A(a1, . . . , am) and

B(b1, . . . , bm), a crossover point c is randomly generated that gives rise

to two children configurations A0(a1, . . . , ac, bc+1, . . . , bm) and B0(b1, . . . , bc,
ac+1, . . . , am). The effects of our crossover andmutationmoves are illustrated

in Table 2. We retain both the parent configurations and children config-

urations from each crossover move, which increases our population size

to 2 ·N since we used N/2 pairs of parents to produce N/2 pairs of children.

In order to reduce the population size back down to N configurations,

GAME uses a series of selection moves. Specifically, tournament selection

(Goldberg et al., 1991) with size ¼ 2 was used: our 2 ·N individuals were

randomly paired together and the one with a better fitness score cent(A) was

selected into the next generation. Thus, modifications that give better align-

ments between sites will tend to be favored by selection, and consequently

well-aligned blocks of sites tend to spread through the population of site

configurations A. Through this evolutionary process, we expect that all

individuals will converge to a single optimal configuration Aopt. Our pro-

gram has two separate stopping criteria for this evolutionary process: GAME

will terminate if a user-defined maximum number of generations has been

reached, or if there is no improvement in the best configuration Aopt after 50

consecutive iterations of the entire mutation/crossover process.

2.4 Additional genetic operations

Unfortunately, the evolutionary process described above is prone to prema-

ture convergence to local optima when used in this motif discovery setting.

We designed two additional operations, ADJUST and SHIFT, which are

applied to our Aopt configuration in order to alleviate this problem. Viewing

our motif discovery application as a problem of optimally aligning our motif

sites, we encounter two types of local optima. The first type of local optima

occurs when a majority of the motif sites have been aligned, with a few sites

remaining to be aligned correctly. Even if only one motif site has not been

aligned correctly, there are so many such local optima surrounding the true

optimum that our standard genetic algorithm is easily trapped in one of them.

We avoid this situation in our ‘best’ configuration Aopt by exhaustively

checking every possible site position in a sequence and choosing the best

match to the sites in the other sequences. As an example of this ADJUST

move, consider the sequences given in Table 1. The fifth sequence in this

table contains two sites, with the first site (ATCCGT) being a stronger match

to the sites in the other sequences than the second site (ATACGT). If the

current ‘best’ configuration Aopt contained the second site (ATACGT), our

ADJUSTmove would remove that second site location fromAopt and replace

it with the location of the first site (ATCCGT).

A second type of local optima occurs when all motif sites are slightly

mis-aligned, as shown in the first part of Figure 1. This local optimum is

nearly impossible to correct via crossover or mutation moves, since it

requires simultaneous shifting of all sites in one direction. Instead, our

SHIFT operator considers simultaneous moves in either direction of all

sites in Aopt, and again chooses the shift that gives the best fitness. Since

these two additional operators are designed to improve near-optimal motif

configurations, they are used only at the end of the evolutionary process in

order to reduce their computational burden. The pseudo codes of ADJUST

and SHIFT are shown in Table 3.

2.5 PWM-Scan

We used a simple scan procedure to extract additional motif sites within a set

of sequences. Starting from ourAopt configuration, our scan algorithm cycles

through all remaining potential motif sites, and selects any additional sites

that give a superior fitness score. In other words, if we denote A0opt as our
configuration of sites with a new site added, then we accept this addition only

if c(A0opt) > c(A0opt).

Table 2. Examples of crossover and mutation operations

A(a1, . . . , a5) Bðb1‚ . . . ‚b5Þ A(a1, a2, a3, a4, a5)

GATTACA GAGGACA GATTACA

GATTAGA $ GAGGACA GATTAGG

GATTACA GAGGAGA GATTACA

GAGGACA GATTAGA GATTACA

GAGGACA GATTACA GATTACA

+ +
Crossover Move Mutation Move

+ +
GATTACA GAGGACA GATTACA

GATTAGA GAGGACA GATTACA

GATTACA GAGGAGA GATTACA

GATTAGA GAGGACA GATTACA

GATTACA GAGGACA GATTACA

A(b1, b2, b3, a4, a5) B(a1, a2, a3, b4, b5) Aða1‚a02‚a3‚a4‚a5Þ

Fig. 1. SHIFT operation. The individual A(a1, a2, a3, a4, a5) changes to

A(a1 + 1, a2 + 1, a3 + 1, a4 + 1, a5 + 1) by the SHIFT operation.

Table 3. ADJUST and SHIFT operators

ADJUST: Aða1‚ . . . ‚ai‚ . . . ‚amÞ
i  1

DO

a0i ¼ argmax cent(a1, . . . , ai, . . . , am), 1 � ai � li � w + 1

ai  a0i
i  i + 1

if i > m then i  1

UNTIL no further improvements obtained

SHIFT: ðAða1‚ . . . ‚ai‚ . . . ‚amÞÞ
k0 ¼ argmax centða1 + k‚ . . . . . . . . . ‚am + kÞ‚ � w � k � w

A Aða1 + k
0
. . . . . . . . . ‚am + k

0 Þ
Note 1: if ai ¼ 0 then ai + k ¼ 0 for all k (no added sites)

Note 2: If ai + k < 0 or ai + k > li � w + 1, then set ai + k ¼ 0

GAME
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2.6 Multiple motifs and the repeated sequences trap

Practitioners are often interested in finding more than one motif in a set

of sequences. GAME addresses this situation with an iterative-masking

approach: the binding sites of a discovered motif are masked out of the

sequence dataset and then GAME is re-applied to this masked dataset to

find additional motifs. A common occurrence in genomic sequences is the

presence of repeated segments of DNA which are not transcription factor

binding sites, but will be detected as motifs by de novo discovery programs.

With our iterative-masking approach, these repeated segments will be dis-

covered by GAME and then masked out of the sequence dataset, allowing

GAME to discover additional motifs that may be of greater interest.

2.7 Extension to unknown motif width

The operations described above form the basic framework of our GAME

program, as outlined in Table 4. We also have an extended version of

our GAME program that allows the motif width to be unknown. In real

applications, there is often very little known about the motif width w. Jensen

et al. (2004) address this issue by considering the motif width w to also be a

random variable with a prior distribution p(w), such as a Poisson(w0) with

prior motif width w0. This user-specified parameter w0 allows the user to

supply additional information to the analysis in terms of their prior expecta-

tion of the width for the unknown motif. This variable-width model has a

more complicated scoring function:

cðA‚wÞ ¼ log pðwÞ + logBðjAj‚L � jAjÞ +
X4
k¼1

n0k log �0k

+
Xw
j¼1

log
Gð4bÞ
4 ·GðbÞ ·

Q
k
Gðnjk + bÞ

GðjAj + 4bÞ

� � ð5Þ

where njk is count of nucleotide k in column j in the motif matrix and n0k is

the count of nucleotide k in the background. As before, b is a small number

of prior counts added to each entry of the motif matrix to ensure non-zero

motif matrix frequencies (b ¼ 1 in our GAME program). G(·) denotes the
gamma function, which is G(x + 1) ¼ x! for integer x, and B(c, d) is the

Beta function
R 1
0
xcð1 � xÞddx. Further details of this score function are

given in Jensen et al. (2004) and Jensen and Liu (2004). Our variable-width

version of GAME initially assumes the user-specified expected width w0 is

correct, and uses the fixed-width GAME program to find the best config-

uration Aopt for this particular width w0. Following that optimization, the

program then finds the optimal motif width wopt by accepting the extension

or reduction of the starting width which leads to the best score c(A, w).

Obviously, if the expected motif width w0 has the best score then no change

is made.

3 RESULTS

3.1 Simulation evaluation of GAME

In order to evaluate the performance of GAME in motif site pre-

diction, we designed the following set of simulations approximating

different biological scenarios. A total of 200 sequence datasets were

generated under each combination of several conditions:

(1) Number of sequences: small (20) or large (100).

(2) Width of motif: short (8 bp) or long (16 bp).

(3) Degree of conservation: high or low.

(4) Data scenario: noise-free or noisy.

High conservation means that each column of the true motif

matrix had a dominant nucleotide with 91% probability (all others

3% equally). Low conservation means that each motif position had a

dominant nucleotide with 70% probability (all others 10% equally).

The ‘noise-free’ data scenario means that a single true motif site

was placed in every sequence of the dataset. However, in reality,

there are often some false positive sequences (which contain no

sites) in a sequence dataset. We simulate this situation with our

‘noisy’ data scenario, where 10% sequences in each dataset contain

no motif sites, representing the false positive part of the data. For

the sequences containing at least one motif site, the number of

motif sites follow the geometric distribution with p ¼ 0.9,

i.e. P(n) ¼ 0.1 · (0.9)(n�1). Further details of the construction of

these simulated sequences is given in the supplemental materials.

For each simulated dataset, we applied the fixed-width version

of GAME and two other popular motif-finding programs

BioProspector and MEME. We also used the optimization program

BioOptimizer, which needs to be used in conjunction with MEME

or BioProspector. To compare the performance of each program, we

used the standard information retrieval metrics of precision and

recall (Shaw et al., 1997). In our case,

Precision ¼ # of predicted motif sites that are true sites

# of predicted motif sites

Recall ¼ # of predicted motif sites that are true sites

# of true sites

Note that shifting up to three base pairs was allowed for predicting

correctly a true site. These two metrics were combined into the

F score as F ¼ 2 � precision � recall/(precision + recall), which

is a standard method of comparison (Shaw et al., 1997). High values
of F occur only when both precision and recall are high. The pre-

cision, the recall and F score were calculated for the best GAME,

BioProspector, and MEME discovered motifs for each dataset, as

well as the motifs that resulted from applying the optimization

program BioOptimizer to the motifs discovered by BioProspector

and MEME. The average precision, the recall and F score for each

simulation condition (averaged over the 200 datasets within each

condition) are shown in Table 5.

Table 4. Framework of GAME

BEGIN

Initialization: i  0

Setting parameters:

population size N ¼ 500

mutation rate r ¼ 0.001

maximum generation G ¼ 3000:

Generating initial population P0:

Repeat: i  i + 1

Mutate individuals;

Crossover individuals;

Selection of individuals;

Until (i � G or convergence)

Choose best individual Aopt;

Repeat

ADJUST(Aopt);

SHIFT(Aopt);

Until no further improvements obtained

PWM-scan on Aopt to extract additional weaker motif sites

END

Note: convergence has occurred when Aopt doesn’t improve in 50 consecutive

interactions.
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In the noise-free scenario, Table 5 shows that GAME performs

better, in terms of F score, than MEME, BioProspector and Bio-

Optimizer in each condition. The advantage of GAME becomes

more predominant as conditions become more difficult (e.g. lower

motif conservation). In these difficult cases, GAME actually shows

lower precision but much higher recall. In the noisy scenario,

GAME generally shows superior performance (in terms of F

score) over MEME, BioProspector and BioOptimizer. GAME

has better recall than MEME and BioProspector, and has compar-

able precision except in the last difficult case (‘Small-Long-Low’),

where GAME is slightly out-performed by MEME and BioOptim-

izer in terms of F score. Note that the two most difficult condition

combinations (‘Small-Short-Low’ and ‘Large-Short-Low’) were

not included because the performance of all programs was very

poor. Overall, this simulation study suggests that the optimization

provided by GAME is generally superior to the optimization pro-

vided by BioOptimizer, with the additional advantage that our

GAME algorithm does not require the use of another motif discov-

ery program.

We also used these simulation datasets to evaluate the contribu-

tion of our additional ADJUST and SHIFT operations (Section 2.4).

For each simulated dataset, we tabulated the total number of times

that the ADJUST or SHIFT operations were used to improve the

score of the best configuration for that dataset. Figure 2 shows the

distribution of the total number of needed ADJUST or SHIFT

operations across the 200 simulated datasets within each simulation

condition. In almost all cases, the total number of ADJUST and

SHIFT operations is non-zero, which indicates that our additional

genetic operations are useful for improving the best configuration

Aopt in almost all datasets.

3.2 Real-data applications

The cyclic AMP receptor protein (CRP) functions as a transcription

factor in Escherichia coli. We analyzed 18 sequences, each 105 bp

long, which contain 23 sites that have been experimentally determ-

ined. This dataset has been previously analyzed by Stormo and

Hartzell (1989), Lawrence and Reilly (1990) and Liu (1994).

The estrogen receptor (ER) is a ligand-activated enhancer protein

which binds to specific DNA sequences called estrogen response

elements (EREs) with high affinity and activates gene expression in

response to estradiol. We analyzed 25 genomic sequences, each of

which is 200 bp long and contains a single known ERE (Klinge,

2001). Finally, we examined the regulation of 25 mammalian

sequences of 200 bp width which contained 27 known binding

sites for transcription factors in the E2F family (Kel et at., 2001;
Berman et al., 2002; Frith et al., 2004). In previous analyses of these

Table 5. Simulation results of GAME, MEME and BioProspector

Different conditions Program Noise-free scenario Noisy scenario

Number of

sequences

Motif

width

Conservation Precision

(%)

Recall

(%)

F-score Precision

(%)

Recall

(%)

F-score

Large Long High GAME 100 99 99 99 98 99

BioOptimizer based on MEME 99 99 99 99 99 99

BioOptimizer based on BioProspector 99 99 99 99 99 99

MEME 99 98 99 99 98 99

BioProspector 99 91 95 100 92 96

Small Long High GAME 100 99 99 99 97 98

BioOptimizer based on MEME 96 99 98 96 99 97

BioOptimizer based on BioProspector 96 99 98 96 99 97

MEME 99 98 98 98 98 98

BioProspector 100 93 96 100 93 96

Large Short High GAME 92 84 88 92 83 87

BioOptimizer based on MEME 92 84 88 92 85 88

BioOptimizer based on BioProspector 92 84 88 92 85 88

MEME 92 78 85 93 78 85

BioProspector 90 72 80 90 72 79

Small Short High GAME 90 86 88 86 82 84

BioOptimizer based on MEME 88 85 86 87 85 86

BioOptimizer based on BioProspector 88 85 86 87 85 86

MEME 88 85 86 87 85 86

BioProspector 85 81 83 85 81 83

Large Long Low GAME 88 68 77 88 65 75

BioOptimizer based on MEME 92 58 71 92 58 71

BioOptimizer based on BioProspector 91 58 71 91 58 71

MEME 93 55 69 93 54 68

BioProspector 90 43 58 89 44 58

Small Long Low GAME 70 60 65 66 55 60

BioOptimizer based on MEME 78 50 61 77 55 63

BioOptimizer based on BioProspector 79 43 55 76 53 62

MEME 78 50 61 78 50 60

BioProspector 79 43 55 78 42 54
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datasets, researchers used motif widths of 22 bp for CRP, 13 bp for

ERE and 11 bp of E2F, which we used as the expected motif widths

w0 in these three applications. We also selected five additional

datasets for the transcription factors CREB, MEF2, MYOD, SRF

and TBP from the recently-published ABS database of annotated

regulatory binding sites (Blanco et al., 2006). Based on their pub-

lished patterns, we used expected motif widths w0 of 8, 7, 6, 10 and

6 for CREB, MEF2, MYOD, SRF and TBP respectively. For each

application, we used the variable-width version of GAME to find the

optimal width within a range of 3 bps on either side of the expected

motif width w0.

In Table 6, we compare the prediction results of our variable-

width GAME to BioOptimizer, MEME and BioProspector.

BioProspector doesn’t allow the motif width to vary, so we used

the expected widths w0 directly in BioProspector. We see that

GAME gives superior recall and comparable precision when com-

pared to BioOptimizer, MEME and BioProspector, which results in

a better F score for GAME in each application. BioProspector,

MEME and GAME took an average of 2, 33 and 233 seconds to

run these applications, respectively, so in terms of computa-

tional speed, GAME is slower than its competitors MEME and

BioProspector. However, the greater computational cost for

GAME is not substantial (several minutes versus less than a minute

for moderately large datasets) and is far outweighed by the con-

siderable improvement in performance of GAME compared with

its competitors.

In Figure 3, we use the software WebLogo (Crooks et al., 2004)
to display the sequence logos (Schneider and Stephens, 1990) for

GAME’s ‘predicted’ motifs of CRP, ERE and E2F, each of which

is very consistent with the ‘true’ motif based on the experimentally

determined sites and their surrounding genomic sequence.

4 DISCUSSION

We have introduced genetic algorithms as a general optimization

strategy, which we implemented in our software GAME. GAME

starts from a population of randomly generated motifs and performs

an extensive search through operations such as crossover and

mutation for optimal motifs. In both simulation studies and real-

data applications, GAME showed superior overall performance to

MEME and BioProspector, two popular motif-finding programs.

Most of the improvement from GAME comes from increased levels

of recall, while maintaining comparable precision. Compared to

BioOptimizer, GAME also shows superior performance in both

simulation and real-data analyses, and also eliminates the depend-

ence of BioOptimizer on other motif-finding programs. Although

each of the compared motif finding programs is based on a similar

Table 6. Real-data application results

TF Predictor w jAj Precision Recall F-score

CREB GAME 8 22 15/22 15/19 0.73

BioOpt. based on MEME 12 15 10/15 10/19 0.59

BioOpt. based on BioPro. 9 17 12/17 12/19 0.67

MEME 11 15 10/15 10/19 0.59

BioProspector 8 20 13/20 13/19 0.67

CRP GAME 19 17 16/17 16/23 0.80

BioOpt. based on MEME 24 13 12/13 12/23 0.67

BioOpt. based on BioPro. 24 13 12/13 12/23 0.67

MEME 24 13 12/13 12/23 0.67

BioProspector 22 9 9/9 9/23 0.56

ERE GAME 13 26 19/26 19/25 0.75

BioOpt. based on MEME 15 22 17/22 17/25 0.72

BioOpt. based on BioPro. 16 23 18/23 18/25 0.75

MEME 15 17 15/17 15/25 0.71

BioProspector 13 16 14/16 14/25 0.68

E2F GAME 11 24 23/24 23/27 0.90

BioOpt. based on MEME 13 27 20/27 20/27 0.74

BioOpt. based on BioPro. 13 27 19/27 19/27 0.70

MEME 13 23 19/23 19/27 0.76

BioProspector 11 21 11/21 11/27 0.46

MEF2 GAME 9 17 15/17 15/17 0.88

BioOpt. based on MEME 13 15 14/15 14/17 0.88

BioOpt. based on BioPro. 11 19 11/19 11/17 0.61

MEME 9 15 14/15 14/17 0.88

BioProspector 7 17 12/17 12/17 0.71

MYOD GAME 7 21 10/21 10/21 0.48

BioOpt. based on MEME 10 10 0/10 0/21 0.00

BioOpt. based on BioPro. 11 11 0/11 0/21 0.00

MEME 9 8 0/8 0/21 0.00

BioProspector 6 18 0/18 0/21 0.00

SRF GAME 10 47 33/47 33/36 0.80

BioOpt. based on MEME 14 51 32/51 32/36 0.74

BioOpt. based on BioPro. 14 50 32/50 32/36 0.74

MEME 13 48 28/48 28/36 0.67

BioProspector 10 35 25/35 25/36 0.70

TBP GAME 7 91 78/91 78/95 0.84

BioOpt. based on MEME 12 79 35/79 35/95 0.40

BioOpt. based on BioPro. 9 78 65/78 65/95 0.75

MEME 12 50 26/50 26/95 0.36

BioProspector 6 69 58/69 58/95 0.71

Average GAME 0.78 0.77 0.77

BioOpt. based on MEME 0.64 0.57 0.59

BioOpt. based on BioPro. 0.65 0.60 0.61

MEME 0.67 0.53 0.58

BioProspector 0.66 0.51 0.56

Note: jAj is the number of predicted motif sites.
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Fig. 2. Distributions of the total number of ADJUST and SHIFT operations

needed by GAME in different simulation conditions.
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statistical model, as outlined in Jensen et al. (2004), there are still

considerable differences in results from these different programs

due to the existence of a large number of possible solutions. Optim-

ization algorithms such as BioOptimizer or MEME can locally

optimize their motif discovery results, but the inherent multi-

modality of the solution space restricts these local optimization

procedures from exploring many different solutions. Our genetic

algorithm framework allows a greater flexibility of movement

around the solution space by applying an evolutionary process to

an entire population of possible solutions. We also present an exten-

ded version of GAME that also attempts to find the optimal motif

width in situations where the motif width is unknown. Despite

considerable effort to date, it remains a complex challenge for

computational biologists to convincingly predict regulatory

elements in DNA sequences. Current motif discovery models are

a rather simplistic approximation of biological reality, though more

recent efforts have attempted to include correlation between motif

positions (Zhou and Liu, 2004) and synergistic relationships

between transcription factors (Gupta and Liu, 2005). As the com-

plexity of these models increases, the need for sophisticated

algorithms for finding optimal solutions to these models will

become increasingly important.
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