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Bayesian Models for Multiple Local Sequence
Alighment and Gibbs Sampling Strategies

Jun 8. Liu, Andrew F. NEUWALD, and Charles E. LAWRENCE

A wealth of data concerning life's basic molecules, proteins and nucleic acids, has emerged from the biotechnology revolution.
The human genome praject has accelerated the growth of these data. Multiple abservations of homologous protein or nucleic acid
sequences from different organisms are often available. But because mutations and sequence errors miszalign these dara, multiple
sequence alignment has become an essential and valuable tool for understanding structures and functions of these molecules. A
recently developed Gibbs sampling algorithm has been applied with substantial advantage in this setting. In this article we develop
a full Bayesian foundation for this algorithm and present extensions that permit relaxation of two impeortant restrictions. We also
present a rank test for the assessment of the significance of multiple sequence alignment. As an example, we study the set of
dinucleotide binding proteins and predict binding segments for dozens of its members.

KEY WORDS: Bernoulli sampling; Dinucleotide binding; Dirichlet distribution; Fragmentation; Gibbs sampling; Metropolis

algarithm; Product Multinomial; Ranks test,

1. INTRODUCTION
1.1 Background

The linear biopolymers—DNA, RNA, and proteins—-are
the three central molecular building blocks of life. DNA
is an information storage molecule. RNA has a wide va-
riety of roles, including a small but important set of func-
tions. Because RNA can play so many roles, it is believed
to be the molecule from which life began. Proteins are the
action molecules of life, tesponsible for nearly all of the
functions of all living beings and forming many of life’s
structures. The diversity of functions performed by pro-
teins is extraordinarily broad. Although the methods we
describe here have been successfully applied to all the three
biopolymers, to date they have been moast widely used for
the characterization of proteins, the focus of the application
described here.

A protein is an unbranched, linear, heterogeneous poly-
mer composed of a sequence of 20 types of amino acids.
An amino acid is compaosed of a peptide and a side chain
residue. The peptide is identical in all but one of the
amino acids, proline; however, all 2{ side chain residues are
unique. As shown in Figure 1, the peptides link together
to form the peptide backbone chain, with the side chain
residues attached at regular intervals. Thus a protein may
be specified in a one-dimensional representation by giving
the sequence of its residues. Table 1 gives the sequence of
the first four of the 91 proteins in our example.

Maost proteins fold to a unique densely packed three-
dimensional shape. Because of the dense packing, a figure
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that includes all the atoms in a protein is extremely clut-
tered. In Figure 2 we present only the trace of the backbone
chain to illustrate the three-dimensional fold of the first pro-
tein in Table 1: horse alcohol dehydrogenase (ADHE).

Probably the most important and impressive job pet-
formed by proteins is the catalysis of biochemical reactions.
Enzymes, which are complexes of one or more proteins, are
extremely efficient catalysts, with efficiencies several orders
of magnitude greater than the best chemical catalysts. The
fact that chains of 20 simple molecules can carry out such
a broad spectrum of catalytic function so efficiently makes
them arguably the most impressive system in all of the nat-
ural world. In large part enzymes owe their impressive
catalytic efficiency to the exacting three-dimensional struc-
tures to which they spontaneously fold.

Enzymes often recruit other molecules, called cofactors,
to assist in their catalytic action and perform their catalytic
function through the precise interaction of the enzyme and
perhaps a cofactor with the molecule to be chemically trans-
formed, its substrate. This interaction requires the enzyme
to bind both the substrate and the cofactor. Many cofac-
tors are derivatives of vitamins and typically contain several
chemical groups. In the example used here, three cofactors
are involved: nicotinamide adenine dinucleotide (NAD),
nicotinamide adenine dinucleotide phosphate (NADP), and
flavin adenine dinucleotide (FAD), which are derived from
niacin, niacin, and riboflavin. All three cofactors contain
two phosphate groups, composed of a phosphorous atom
and four oxygen atoms. In the example we focus on the
binding of the enzyme to the phosphate groups in these co-
factors. In Figure 2 the bound cofactor, NAD, is shown in
orange. A magnified view in the vicinity of NAD is shown
in Figure 3.

The critical interactions between an enzyme and a sub-
strate, cofactor, or other bond molecule involve only a lim-
ited subset of its residues. These critical residues occur
in a few segments of the protein chain. In the example,
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Figure 1. A Short Segment (Residues 5-15) From the Protein ADHE Wustrating the Backbone Chain in Black as an Unbranched FPolymer With
Side Chain Residues in Gray Attached at Reguiar Intervals Alfong the Backbone. Starting at the left, the sequence of side chain residue (three
letter code) is as follows:. lysine (LYS), valine (VAL), isoleucine (ILE), lysine (LYS), cystine (CYS), lysine (LYS), alanine (ALA), alanine (ALA)}, valine
{VAL), leucine (LUFE), and iryptophane (TAP). For comparison with the first sequence in Table 1, residues 515, the sequence in one-fetter code

for this segment is KVIKCKAAVIW

a few segments are involved in cofactor binding, but only
one such segment in each binding site is involved in bind-
ing to the important phosphate groups common to all three
cofactors. This segment, shown in green in Figures 2 and 3,
corresponds to a specific subsequences in ADHE, which is
underlined in Table 1. Experimentally verified binding seg-
ment in the second sequence of Table 1 is also underlined.
The distinctive strand-helix-strand shape of the phosphate
binding segment of ADHE in Figures 2 and 3 is critical to
its ability to bind to this group. The sequence of residues
in the binding segments of these proteins is constrained
by the requirement that the residues fold to this distinctive
shape and interact properly with the phosphate groups. Sur-
prisingly, however, there is considerable variability in the
sequence of residues that can meet these constraints.

1.2 Variations and Commenalities Among Functionally
Related Proteins

Variability in the biopolymer sequences arises from mu-
tations that occur during evolution. In most cases, today’s
sequences are believed to be the progeny of common ances-
tral sequences and thus are not independent. The mutations
happen at a relatively slow rate, so species that are not too

far apart in evolutionary time {e.g., man and monkey) are
strongly correlated. Homologous proteins within a single
organism arise from a duplication of a common ancestral
sequence and are passed on in parallel. When biopolymers
have been subjected to a limited amount of evolutionary
change, their commonality stems primarily from their mu-
tational history. Such closely related sequences are rela-
tively easy to align. The focus here is on the more difficult
case that arises when the sequences have been subjected to
extensive change and common patterns are subtle.

The other force at work during evolution is natural se-
lection. Intuitively, natural selection limits which mutations
survive to be passed on and, therefore, defines the common
model for structurally and functionally related proteins. If
a mutation is deleterious, then the mutant protein is elim-
inated from the population. The force of selection on a
protein thus arises from its ability to function properly, and
function depends on structure. Among distantly related se-
quences, common features stem primarily from the com-
mon set of structural or functional constraints rather than
from evolutionary history. Thus in the limit, the sequences
may be treated as independent observations. Statistically,
the model described later and some other statistical methods
that have successfully aligned large numbers of sequences
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Table 1. Selected Sequences of Proteins invoived in Binding
of NAD, NADP, or FAD

ADHE_HORSE: Alcohol_Dehydragenase E Chain (EC 1.1.1.1}. 2ohx

STAGKVIKCKAAYLWEEKKPFSTEEYEYAPPKAHEYRIKMYATGICRSDDHYYSGTLYTPR
LPVIAGHEAAGIVESIGEGYTTVRPGOKVIPLFTPQCGKCRYCKHPEGNFCLKNDLSMPR
GTMQDGTSRFTCRGKPIHHFLGTSTFSQYTYVDE [SYAKIDAASPLEKVCLIGCGFSTGY
GSAVKYAKVTAGSTCAVFGLGGYGLSY IMGCKAAGAART TGVOINKDKFAKAKEVYGATEC
YNPODYKKPIQEVLTEMSNGGYDFSFEVIGRLDTMYTALSCCOEAYGYSYIVGYPPDSON
LSMNPMLLLSGRTWKGATFGGFKSKOSYPKLYADFMAKKFALDPLITHVLPFEKINEGFD
LLRSGESIRTILTF

LDHM_SQUAC: L-Lactate Dehydrogenase M Chain (EC 1.1.1.27) 1idh

ATLKDKLTGHLATSQEPRSYNKITYVGYGAYGMACATSTIMKDL ADEVALVOVMEDKLKG
EMMOLOHGSLFLHTAKIVSGKDYSYSAGSKLYVITAGARQQEGESRLNLYORNVYNIFKFI
[PNIVKHSPOCTILYYSNPYDYLTYVAWKLSGLPMHRIIGSGCNLDSARFRYLMGERLGY
HSCSCHGWY TGEHGDSYPSYWSGMNYASTKLHPELGTNKDKQDWKKLHKDVYDSAYEY IK
LKGYTSWATGLSYADLAET IMKNLCRYHPYSTMYKOFYGIKONYFLSLPCYLNDHGISNL
YKMKLKPDEEQQLQKSATTLWOIQKDLKF

LEU3_LEPIN: 3-Isopropylmalate Dehydrogenase (EC 1.1.1.85)

MKNVAVLSGDGIGPEVMEIATSYLKKALGAKYSEFQFKEGFYGGIAIDKTGHPLPPETLK
LCEESSATLFGSYGGPKWETLPPEKGPERGALLPLRKHFDLFANLRFATIIYPELKNASPY
RSDITGNGLOILILRELTGGIYFGOPKGREGSGAEEFAYDTMKY SRRETERTAKVAFQAA
RKRNNKVTSIDKANYLTTSYFWKEYYIELHKKEFSOVOLNHLYVONAAMOLIVNPRAFDY
YLCENMFGDILSDEASTITGSIGMLPSASLSESGFGLYEPSGGSAPDIAGKGYANPIAQY
LSAALMLRYSFSMEEEANKIETAVRKTIASGKRTRDIAEYGSTIVGTKEIGQLIESFL

ABHS_BOVIN: 3-Beta Hydroxy-5-Ene Steroid Dehydrogenase

AGWSCLYTGOGGFLGORTICLLYEEKDLQF TRYLOKVFRPEVREEFSKLOSKIKLTLLEG
DILDEGCLKGACQGTSVYIHTASY IDVRNAYPRETIMNYNYKGTOLLLEACYQASYPYFI
HTSTIEVAGPHSYREI TQDGREEEHHESAKSSPYPY SKKLAEKAYLGANGWALKNGGTLY
TCALRPMYIYGEGSPFLSAYMHGALNNNGILTNHCKFSRYNPYYYGNVAKAHILALRALR
DPKKYPNIQGAFYYISODTPHESY DDLHYTLSKEWGFCLOSRMSLPISLAYWLAFLLETY
SFLLSPIYKYNPCFNRHLYTLSNSVFTFSYKKAQRDLGYEPLY TWEEAKQKTKEWIGSLY
KQHKETLKTKIH

NOTE: This table shows the first 4 of the 91 sequences prezented by Neuwald and Green (1994). In the
first two sequences, dinucleotide-binding sites (undedined) have been experimentally determined and are
also correctly pradicted by the sampler. Reliable information on binding of cofactor is unavailable far the
third and fourth sequences. No element is predicted by the sarmpler in the third sequence, and ane is
predicted in the forth sequence {underlined). The full data set is available at anonymoos fip site
NCBILNEM.NIH.GOY, directory pub/gibbs.

(Baldi, Chauvin, McClure, and Hunkapiller 1994; Haussler,
Krogh, Mian, and Sjolander 1993} assume that sequences
under analysis are independent given the common model.
In many cases this assumption can be very closely achieved
through careful selection of the data set. In practice we have
found that the methods we propose here often work well
even with substantial departures from this assumption.
There are four classes of mutations: point mutations,
insertions/deletions, transpositions, and duplications. A
point mutation occurs when a residue at a given point in
a sequence is mutated ta a new residue type. In our ex-
ample we focus on proteins that bind either NAD, NADP,
or FAD as a cofactor. To achieve binding there must be a
force based on the energetic requirement of the protein to
hold the cofactor in place. This requirement imposes con-
straints on point mutations in the binding site. The relation-
ship between energetic constraints and frequencies forms
the basis of statistical mechanics, pioneered by Gibbs and
Boltzmann. There is an analogous relationship for residue
frequencies subject to random point mutations (Berg and
von Hipple 1987; Bryant and Lawrence 1991; Pohl 1971),
which forms the foundation of the models used here. From

a statistical modeling perspective, this relationship is ex-
tremely valuable, because it permits us to translate from
the language of physics and chemistry that governs molec-
ular behavior to the language of statistics.

Multinomial models have been used successfully to cap-
ture the variability and the limitations imposed on these
sequences. Because the most important interactions of
residues in a binding site area with the cofactor, substrate,
or the environment rather than with one another {Bryant
and Lawrence 1993), motif models that assume indepen-
dence of the positions provide a good first approximation.
Thus we use product multinomial models to describe the
binding sites. The remainder of the enzyme forms a scaf-
fold that supports the substrate binding site. Because in
distantly related proteins these scaffolds can vary greatly,
there is often little in common in the remainder of the pro-
tein of interest to us. Consequently, they can usually be
described by a simple iid or low-order Markov sequence

model.

The othet three classes of mutations—insertions/dele-
tions, transpositions, and duplications—result in changes
in the length of the sequence or in reordering of the se-
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quence. Let us consider in more detail the effect of dele-
tions with specific attention on the segments involved in
cofactor binding. A deletion mutation wil] remove a seg-
ment of a protein sequence, and the resulting two adjacent
fragments of the protein will be shifted to form a contin-
uous chain. If the deletion is “upstream™ of the cofactor
binding segment, then this segment will be shifted to the
left and thus misaligned with respect to its predecessor. In-
sertions operate in an analogous manner but add sequence
segments. Transpositions move a segment to a new location
in the sequence. Duplications replicate segments and then
insert them in new locations. On the other hand, the strin-
gent geometric requirements on the binding segments can
rarely tolerate internal length changes, and thus in most
cases can be modeled well as segments with no internal
misalignment.

1.3 Missing-data Methodology for Alignment Prablem

The variations of the locations of the phosphate-binding
segments in Table 1 provide a good illustrative example of
the effects of these mutational processes. The underlined
segments, each of which corresponds to a substrate binding
segment, occur at various different locations in each se-
quence. The data in Table 2 show these segments aligned.
We seek to find the multinomial model that describes the
data in Table 2. Unfortunately, direct data that specify the
locations {i.e., the indices of these binding segments in each
sequence} are not available. The data available for analysis
are like those in Table | without underlines or any other in-
dication of the positions of the common segments in these
sequences. This type of misalignment of sequences is the
distinguishing characteristic in the analysis of biopolymer
sequence data.

Lawrence and Reilly (1990) recognized that it is construc-
tive to consider alignment variables as missing data and
presented an expectation maximization (EM) algorithm for
the alignment of gene regulatory sites in DNA sequences.
Cardon and Stormo (1991) extended this approach to al-
low for one small gap in the middle of each segment. Liu
(1994) showed that an iterative sampling approach could be
used to advantage in the identification of gene regulatory
sites, and described a Gibbs sampling algorithm (Gelfand
and Smith 1990) for its solution. The collapsing theo-
rem developed there has been found very useful for these
problems. Lawrence et al. (1993) have described a Gibbs
sampling algorithm for local multiple alignment of protein
sequences. Alignment methods based on hidden Markov
models (HMM) have recently been described (Baldi et al.
1994: Haussler et al. 1993). Other statistical approaches for
sequence alignment have also been described (Allison, Wal-
lace, and Yee 1992; Bishop and Thompson 1986, Thorne,
Kishino, and Felsenstein 1991). More comments on these
methods with comparison to ours will be provided in Sec-
tion 7.

In Sections 24 we describe statistical methods for ana-
lyzing variants of the basic multiple alignment problem. In
Section 5 we present a nonparametric method for assessing
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the significance of our findings. In Section 6 we describe
the application of these methods to dinucleotide binding
proteins, and in Section 7 we conclude with a discussion.

2. DATA STRUCTURE AND MULTINOMIAL MODELS

2.1 Defining the Statistical Problem

Given a set of sequences, By, Ra, ..., Rg, such as those
in Table 1 without underlining, our goals are twofold: (1}
to identify the substrate binding segments, which we call
“elements,” and (2} to estimate the parameters of the prod-
uct multinomial model that describes the collection of
aligned elements. Here we call this common model a “mo-
tif." We call position a “site™ if it is described by the matif
and “nonsite” otherwise.

In general, the sequence data can be represented as

sequence Ry: 111 T2 T1,Ly

sequence Ry: 1oy T2 2,1,
Data R. . .

sequence Ry: ri1 7Tk PR, L

where the residue ry; among the sequences take values
from an alphabet with p (=20 for protein) different let-
ters, and the L, are the respective lengths of the sequences.
Let the collection of indices be denoted by I = {(k,1): I
=1,....Lg;k=1,...,K}. For any set § C I, we define
Rg = {ri: (k1) € §}. We also write §¢ = I'\ 5. We seek
within each sequence mutually similar segments (called el-
ements) of specific length J. These elements are assumed
to be independent observations from a product-multinomial
maodel (called a morif) that describes residue frequencies for
each position 7 within an element and consists of param-
eters 8; = (8 ,,...,0,,)7.5 = L,...,J. The background
parameter 8 = (610,...,0p0)7 describes the frequencies
of those nonsite positions.

As discussed in Section 1, three classes of mutations re-
sult in misalignment of common elements. Another data
structure, constituting the alignment, is a set of positions a
for k& from 1 to K, for the starting positions of the elements
within each sequence. Regarding the a's as missing obser-
vations, we can effectively apply missing-data methadology.
One of our goals will be to identify the “best,” defined as
the most probable, motif and alignment. '

To help fix the idea for the material that follows, consider
the following coin-tossing analogy. The game is played
with I coins, say 50. (L — J) of these coins, say 40 (plain
¢oins), all have the same probability of heads, not necessar-
ily a half. The remaining J = 10 special coins have proba-
bilities of heads different from the plain coins and different
from one another. On each of K independent trials, corre-
sponding to K observed sequences in alignment problems,
the coing are shaken in a tumbler and laid out in a row. It is
known that the 10 special coins are positioned in a contigu-
ous block of 10, with the special coins always in the same
order is each trial. But their actual positions vary from
trial to trial and are not observed. The player is challenged
to estimate the probabilities of the 11 types of coins and
to specify the locations of the special coins in each trial.
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Figure 2. The Trace of the Backbone Chain of ADHE With the Segment (Residues 195-220; see Table 2), dentified by the Sampier in Green
and the Cofactor (NAD) in Orange. The dinucieotide binding element in green forms a strand-helix-sirand siruciure. Glyeine residues af positions

199, 201, 204 in red, and the valine at position 197 in purple.

This game corresponds to an alignment problem with p
= 2 (twa-letter alphabet), J = 10,and L; = - -- = Ly = 50.
The associated parameter 8's describe the unknown proba-
bilities of showing heads for the J + 1 types of coins.

The material we present in Sections 3.1 and 3.2 provides
a sampling strategy for the solution of this game assuming
that we know there is exactly one block of length J = 10
special coins in each trial. In Section 3.3 we extend the
model to permit multiple blocks of special coins in each
trial, and in Section 3.4 we relax the requirement that the
coins occur as contiguous blacks of length J. In Section 4
we relax the requirement that there is a block of special
coins for each sequence. We discuss a ranks method to test
the hypothesis that there are special coins in the data in
Section 5.

2.2 Product Multinomial Moedel With Dirichiet Priors

For a set of categorical data R = {ry,...,r.}, where
each r; takes values from a p-letter alphabet, we define
a counting function h such that h(R) = (mq,...,mp)7,
where my; is the total number of kth type letter observed
in R. For protein sequences, the h function counts the
numbers of different types of amino acids in set R and
results in a 20-dimensional column vector. It is noted
that the function h has a nice additive property. If an-
other data set B’ = (r{,...,r} is given, for example, then

h(R) + h{R'} = h{R & R’}, where the left side is just
the ordinary addition for vectors and R® R’ indicates com-
bining the two categorical data sets Rt and 1.

For vectors v = (uy,...,v,)7 and 8 = (6;,...,6,)7, we
define that |v| = [vg| + - + |yp[, v + 8 = (v +6;,..., 1,
+ 6,07, v/8 = (v /61,...,u,/8,)7,8" = 67 ... 6;* and
[(v) =FE(u1) - T(vy). If the v;’s are integers, then we de-
note v! = u;1- .. u,l. Using these notations, for example,
we can denote the norming constant for a p-dimensional
Dirichlet distribution Dir{er) as ['(e[)/T'(c), where o
= (Q]_?,“?C}:p)‘r‘ Let @ = (61?”‘,6‘]) be a p x J ma-
trix in which each 6; is a probability vector of length p;
that is, 8; = (8y,,...,0,;)7 satisfies 8;; > 0 and |8,] = 1
for all ;.

A p x J integer matrix M = (m;,...,my), where
m; = {(my,...,my)7, is said to follow a prod-
uct multinomial distribution with parameter © (ie, M
~ PM(@; |m;|,...,|m,|}}, if each m; follows the multi-
nomial distribution mul{#;, [m;|) and the m, are mutually
independent. The product Dirichler (PD) distribution can
be similarly introduced as a conjugate prior for @. That is,
we say @ ~ PD(B), where B = (3,,...,0;) isa px J ma-
trix and B, = (By,...fp;)7, if the 8, are independent and
p-dimensional Dirichlet random variables with distributions
Dir(4,),5=1,...,J

Suppose that we observe random vectors R; = (r;,
coarag), for i = 1,...,n, where the r,;; are mutually in-
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Figure 3. A Magnified View of the Dinuclealide Binding Element of ADHE. Three side chain carbon afoms of the valine 187 residue, in purple,
are illustrated. A glycine residue has only a hydrogen atom in jts side chain. Hydrogen atoms are generally not visible in the X-ray structure and
thus are nof iffustrated here.

dependent, and with probability 8, take the kth letter in  and let R.; = {ry;,...,7n;}. Then the likelihood of @ can
the alphabet. Let the observations be arranged as be written as

J _ .
(R, ..., Bal®) o H GE{R"" .

Thus h{ R ;} represents the sufficient statistics of &, for all
frand (h(R.),...,h{R;}) ~PM{O;n, ..., n). If the prior
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distribution for @ is PD(B], then the posterior distribu-
tion of @ is PD(B + H), where H = (h(R.1},..., h(R.;}).
The predictive distribution for the next obhservation Ry, or,
equivalently, (h(raew.1); - .., W(Faew 7)) is PM(8;1,..., 1),
where @ « (B + H) is the posterior mean of ©.

3. MULTINOMIAL SAMPLING: ALIGNMENT WHEN
THE NUMBER OF ELEMENTS IS GIVEN

In Sections 3.1 and 3.2 we describe a sampling-based
alignment procedure when there is known to be one element
in each sequence from a single motif. In Section 3.3 we
generalize this to the case of multiple elements and multiple
motifs. In Section 3.4 we use a fragmentation model to
relax the requirement that an element has to be a contiguous
block.

3.1 Model and Pasterior Distributions for One Element

Per Sequence

Let the starting position of the element in the kth
sequence he denoted as ag, where &k = 1,... K, and
ar, can take values from 1 to L, — J + 1. Let A
= {{(1,a1),..., (K, ex}}, which is the unobserved align-
ment. We define {A} = {(kjex +j —1):k=1,...,K,j
= 1,...,.J}, which is the set of indices occupied by the
elements with starting positions indicated in A. Let Ry 4)
denote the collection of the residues in {A}; that is, By 4)
= {rea,+j—1: forj=1,....J;k=1,..., K} We further
use {a} to denote the set of indices occupied by the ele-
ment in the kth sequence, (i.e., {ax} = {(k,as + 7 — 1), for
7 =1,...,J} is a collection of J consecutive positions in
the kth sequence and use A(j) to denote the set of the jth
positions of all elements (i.e., A(§) = {{k,ep + 7 — 1}, for
k=1,...,K})

We assume that all residues outside the motif region are
independently drawn from a common multinomial model
characterized by a vector 8g = (f10,...,8;0)7, Where
|80| =1 and 4, 4 > 0, for all 7. But the residue frequencies
for the motifs are modeled by PM(@) defined in Section
2, where © = (8,,...,8 ). Therefore, J + 1 p-dimensional
parameter vectors are required to fully describe the data.

Treating the alignment data A as missing, we can write
the complete-data likelihood of the parameters as

J
(R, Alfg, ©) HS(R{‘”C) H Q?mﬁm)_

i=1

(1)

As was noted by Tanner and Wong (1987), this simple
form of the complete-data likelihood {posterior distribu-
tion) is the key to carrying out their data augmentafion al-
gorithm. We can further use the collapsing technique of
Liu (1994) to integrate out the parameter vectors #g and
© to obtain a predictive update version of the Gibbs sam-
pler. Consequently, the resulting program, by skipping the
step of drawing from product Dirichlet distributions, only
involves sampling from a product multinomial distribution
iteratively (whereas a standard Gibbs sampler would neces-

Journal of the American Statistical Azsaciation, Dacember 1995

sarily include the step of sampling from product Dirichlet
distributions).

The use of iterative sampling for Bayesian missing-data
problems was first undertaken by Tanner and Wong {1987)
and Li (1988). This sampling approach and its extensions
have recently become a topic of great interest in Bayesian
statistics. Gelfand and Smith {1990} illustrated its connec-
tion with a more general method—the Gibbs sampler—and
greatly popularized the idea. Some theoretical guidances,
such as judging convergence and choosing efficient sam-
plers, have been obtained (Gelman and Rubin 1992 and its
companion discussions; Lin, Wong, and Kong 1994, 1993,
Tierney 1995); see the Journal of the Royal Statistical So-
ciety, Ser. B, 1993, Vol. 53, pp. 3-102, for an overview.

3.2 Predictive Update Farmula

Let the prior for 8q, f{6g), be a Dirichlet distribution,
Dir(er}, where @ = {(a,..., ), and let the prior for
0, 9{©@), be a product Dirichler distribution, PD(B}, with
B=(8,....0;)and 8; = (A1, .., 8y;)7 Then by using
the Bayes theorem and integrating out the 8, we obtain the
following predictive distribution for A:

r{AR) «x w(R, A}
~ //:rr(R1A|90,@)f(90)g(@)dﬂod@ )
g
o T{b(Rupc) + o} [[T{h(Ryg;)) +8,} 3)
i=1

Let A_y) denate the set {{{,a;),1 # k}; that is, the set of
starting positions of elements in all sequences but sequence
k. Now we derive the predictive distribution 7 {ay|A;—y, R}
of the starting position of the element in sequence k condi-
tional on A_).

Note that h(R.4,) + h(R,4,) = h{R4,4,) if A1 N A
= ¢, which provides us with

h(Ri4pe) = h(Rpg_1e) —h(Ry,,y)
and

h{Ra;))

Here h{ra,+;-1) is a vector of p — 1 zeros and a 1 to
indicate the residue type observed at position e + j — 1 in
sequence k. Using the fact that m{ag|A_p, R} « 7(A[R)
and treating functions of A|_y as constants, we obtain the
following expression for w(ax(A;_yx, R) by dividing the
right side of (3) by two constants, ['{h(R4_, <) + a}
and P{h(Ro,_,,(j) + 8,)}:

F{h(R4_, 1) + @ —h{Rg,, 1)}
P{h(Rya_, <} + o}

= h{Ry_, ) +h{rea,ts-1)-

7(anA—x R)

J
x H{h(RA[—k]U)) + B} e (4)

3=1

We use this relationship to iteratively sample through
ai,...,ax to obtain what we call the predictive update ver-
sion of the Gibbs sampler. The formula works well, but
computing the ratio of two gamma functions can be slow.
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When the size of R; is small compared to R; and the com-
position of R; is relatively diverse, we can use the following

approximation;
I'{h(Ry ® Re)}/T{h(Ry)} ~ h({R; "F).

Hence when Ry, whose size is J, is relatively di-
verse compared to Ry _,, ye, the collection of all nonsite
residues, we have

C(a(Ria_ ) + o —bRiy)} I
F{h{R{A[—kl }c) + Ct} h(R{A}c)h(R{“k}) ‘

Using this approximation, we arrive at a simple formula for
the predictive distribution:

h(’k,q+;—1]
lar = il Aj—y, R) H (6 ) , ()
al#]

where the 8, are the posterior means of the 8; con-
ditioned on the observation R and the current alignment
Aj_y), and B is the posterior mean of 8, based on the
current nonsite positions R4 _, 1o, The formula implies
that conditional on the fixed sites of the elements in the
rest of the sequences, the probability that the element in
sequence k starts at position 4 is proportional to the like-
lihood ratio of its being a site to its being a nonsite. We
tested both the exact formula (4) and the approximation (5)
in our algorithm. We found no observable discrepancies
between the results obtained from using the two different
formulas.

3.3 Generalizations to Multiple Elements and
Multiple Motifs

The foregoing method can he generalized to the case
where there is more than one copy of the common element
in each sequence. For example, suppose that there is only
one sequence (i.e, K = 1} but there are m copies of the
common element to be aligned. Let A = {a11,...,81,m}
be the set of starting positions of the m elemenis. We can
similarly write down the complete-data likelihood,

J
(R, A]60,01,...,8,) o 841 [T 854,
i=1I

Integrating out the 8's, we arrive at a form similar to (3):

J
7(AIR)  ['{h(Ryaye) + o} [ [ T{h(R45)) + 8}

=1

Hence the conditional distributions are also similar to (4),
with an added restriction that the elements not overlap. For
multiple copies in multiple sequences, we can simply com-
bine the case presented in Section 3.2 and the foregoing to
arrive at a formula similar to (5).

3.4 Fragmentation Model

Previously, we modeled the motif as a contiguous block
of width .J residues. But usually not all the positions within
the contiguous block of an element are important for protein
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structure and function. To accommodate this feature, we
may wish to select J < W paositions in an aligned block of
width W residues in each of the K sequences to form the
motif model. This model automatically takes care of the
phase-shift problem noted by Liu (1994},

Let A = (8,...,%w), where &, = 0 or 1, and
Y18y = J. The &s indicate which positions (or
columns) within the aligned block are included in the motif
model. The vector A is in fact another high-dimensional
parameter and can be treated as missing data as well. Treat-
ing A as missing data implicitly assumes a flat prior on all
its possible values; that is, a priori A takes any 0-1 vector
satisfying the constraints with equal probability 1/(%¥). The
complete-data likelihood in this case can be written as

W
(R, A, A6y, @ Bg(RA{A}ﬁ) H ofuwh(R.A(m)]‘

w=1

where A{A} denotes those positions with &, = 1 and
A{A} = (A{A})°. With the same Dirichlet priors on the
8’s, we can obtain the joint posterior distribution of A and
A that is,

n(d, AR} « P{h(RA{A}c) + e}
w
x |1 T6:{h(R aqwy) + B}
w=1

To sample from this distribution, we proceed in two steps.
First, we sample to find a contiguous block of J residues
as in Section 3.1. This is equivalent to assuming that §;
= ... =§&; =1 and all the rest are zeros. Second, we use a
Gibbs sampling strategy for identifying the best positions.
The way to achjeve this is to permit the exchange of one of
the J pasitions in the motif model for one of the (W — J)
nonsite positions within the aligned block. We draw one
of the J positions to take out of the model completely at
random, followed by the sampling of a replacement position
from one of the (W — J + 1} unoccupied positions where
sampling is now in propottion to the ratio of the site to
nonsite gammas in Equation (6).

It is typical in our applications that each position column
has only tens of residues, whereas all the nonsite residues
add to several thousands. Hence the variation of the non-
site residue frequencies caused by including or excluding
a column can usually be ignored, and thus the conditional
distribution #(A[R, 4) resulting from {6} can be approxi-

mated by.
(AR, 4) H Gor 7
=1
where
I8 (h(Rag)) + B, }]
W eh(RA{w]}

can be regarded as a weight assigned to position . This
approximation works well in all of our examples. Several
sampling strategies for this model and their connections
with weighted finite population sampling are developed in
the Appendix.
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3.5 Weighted Priar For Fragmentation

In previous subsection we modeled a priori that A takes
any W-long 0-1 vector satisfying 4; + --- + 8y = J with
equal probability 1/(*). But real protein sequences favor
short motif and thus suggest that the “span” of the ele-
ment should be small. Let wg = min{w: 8, = 1}, and
let wy; = max{w: &, = 1}. The span of an element is de-
fined as w) —wqg + 1 whose smallest possible value is J. An
alternative prior distribution for A that accommodates the
protein reality is

7(A) (wl}“‘_""g_l )_L,

The rationale is that given the length of the span, there
are (174071} ways of assigning zeros and 1s for positions
within wy and w,. In other words, this prior assigns equal
probability on all possible (g, w; }, the span of the element.

We have tried both prior distributions in many test ex-
amples and found that the latter is significantly better than
the former in the sense that the sampler identifies the cor-
rect locations of the elements more often. This weighted
prior for fragmentation is used in the dinucleotide-binding
example.

4. BERNOULLI SAMPLING STRATEGY

It is often difficult or impossible to specify the number of
elements in a sequence. In this section we show how this
requirement may be relaxed.

4,1 Madel and Likelihood

To make our discussion simple and precise, we take the
abserved multiple sequences as one long sequence with to-
tal length L*, with restrictions to exclude sampling of el-

ements that overlap the ends of sequences. Let the long
sequence be denoted by
R={(r,....r-},

andlet L = L* — J + 1 be the total number of possible ele-
ment positions of length J that can occur. An unobserved
indicator vector £ = (£1,...,£0), where & =0 or 1, is in-
troduced to indicate the starting positions of the elements.
If £, = 1, then an element occurs from { to { + J — 1, as-
suming that the width of an element is known to be J. Qur
task is then to classify each position ! of the sequence into
twa “types’: starter of an element or not. Let [£] = Zf‘zl £
be the total number of 1s, and let A¢ be the set of thase
I’s such that £ = 1. Again, let Ag(7) be the collection of
the jth positions of all elements. Because we do not per-
mit elements to overlap, there is some slight dependency
among the £'s. In our case, because probability £ is very
small, ignoring this slight dependency, as in the iid model
that follows, has little effect. Therefore, we assume a priori
that & = 1 with probability ¢ independently for all possible
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{’s. Then, by treating £ as missing daia, we have

4

_ M Riage) H

i=1

7(R., £]©, 8y, ¢) ghFred el gyiel,
(8}

With Dirichlet conjugate priors D{e) on 6y, PD{B) on
©, and Beta(a,b) on ¢, the joint distribution of £, 0,8,
and e can be written explicitly as

ﬂ—(g 6 601E|R) o GO(R[Ae}C)‘FCE I
y H 6:(RA{(3>)+JS:—1E|e|+a—1(1 —g)LolElee=t (g)
i=1

Typically, a/{a+b) is very small, ranging from .001 to .01.
4.2 Predictive Sampling Distribution

Integrating out the parameters except £ provides us with a
more concise formula and a much faster program for doing
the Gibbs sampler, as has been implemented by Chen and
Liu (1993) for a switch regression problem. Based on (9},
we have

Lo {(h(Riage) + o}
T(eIT (bR )] + o]}

[T S0BLT Bl Ra) + ;)
A TR, )] + 15,1}

X Baps(|§l L —1€]), (10)

where B, p{c,d) = fol petem (] — g)btd-ldy/ ful o M1
— z)* ' dz is the beta function. Sampling £ directly from
such a complicated distribution is prohibitive. Gibbs sam-
pling strategy can be applied effectively, because of the very
simple form of the conditional distribution of any £, given
all the rest £'s, £€[—k]. More precisely,

m(¢|R)

MG KR e g (8
(e = 0[E[-KLR)  1—£ -7\ 8 ‘
where ¢ = (|&[-k]| + a)/(L + ¢ + b — 1) and &,

= (W(Ra,_ e-1) + B, }/(I€[~H]| + 18,1} is the predic-
tive probability for the jth position of the site based on
current known sites. The 8y is understood to be the current
estimate of the model for all the nonsites and is approxi-
mated by 8q ~= h(Rya, _,=)/(L — |£[—k]|J). An accurate

formula for 8, however, is expressed in terms of gamma
functions as follows:
P{h{Ra._yye) —h(Rgy) + o}
F{h(R{Ag[_kI}‘:) + CI:}
% F{|h(R{H"L5[_;c]}C)| + |CI‘_|}
P{la(Ria_yye)l — Ry + e} |

where [h(Rya, e} = L — [€[—k][J and [h(R)| = J.
The approximation formula is satisfactory when |£| is small
and h{R.;,y) is diverse.

8y =

1/J
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4.3 Motif Sampler

We can take the idea illustrated in Section 4.1 one step
further to derive the so-called motif sampler that detects and
aligns more than one motif. Consider rn different types of
motifs of lengths Ji,..., Jm, each occurring an unknown
number of times, in a long sequence containing a total of
L* residues. Let L = L* — min{J/1,...,Jm} + 1. We can
similarly introduce the indicator vector £ = (&1,...,€L),
where £ = ¢ if an element from motif ¢ starts from po-
sition { and & = 0 if no elements start from this position
{. Suppase that P (£, = 1) = ¢;, where g + - - + &, = L.
Given what is known about the biology of the sequences be-
ing analyzed, a crude guess n; for the number of elements
for motif 1 is usually possible. Let ng = L —ny — -+« — iy
We can represent this prior opinion about the number of
occurrences of each type of element by a Dirichlet distri-
bution on (&g, . .., £}, which has the form Dir(bg, ..., b}
with b; = n;{Lg/ L), where Lg represents the “weight” (or
“pseudocounts”) to be put on this prior belief. Then the
same predictive updating approach as illustrated in Section
4.2 can be applied. Precisely, the update formula (11} is
changed to

. A . hirsyy—1]
m(&e = [k, A) _ & 8,
m(&e = 01[~k,A) &6 2\ 8g ’

where &, is the posterior mean estimate of the rate of oc-
currence of motif i excluding position k, 8; ; is the current
estimate of the residue frequency at position j of motif ¢,
and @, has the same meaning as that in (11). More detajls
have been provided by Neuwald, Liu, and Lawrence (1995).

5. THE RANK TEST OF SIGNIFICANCE

The assessment of significance for a sequence alignment
is a known difficult problem. It is particularly difficult when
the residue frequency parameters must be estimated from
the data. The problem is perhaps easily addressed for stan-
dard problems where a full Bayesian analysis can provide
not only a point estimate, but also the whole posterior dis-
tribution. But in our problems, the sample space of the
joint alignment A4 is discrete with an astronomical size. In
the example, the size of the space is 23%:90° The result-
ing posterior distribution of A is typically spiky with many
local modes, even when the sequence data are randomly
generated. When likelihood methods are used, the likeli-
hood ratio test is useful only when sample sizes are larger
than that frequently available for protein alignment prob-
lems. Comparison of results with multiple (typically 100)
random shuffles of the data is frequently the only available
tool for the assessment of significance. Here we describe
a ranks test that compares the sequence to a single control
data set. The only resiriction on the selection of the con-
trol data set is that the lengths of the sequences used in
the control be equal to those in the test data set. Next we
describe the procedure for Bernoulli sampling. For multi-
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nomial sampling, the procedure is the same, except that a
control sequence is appended to each test sequence.,

Let R = (ry,...,rz+} be the sequence to be analyzed,
and let R’ = (v{,...,r%.} be a control data set of R. For
example, we may use a random shuffle of R.

Step I. Append the control sequence to the test sequence
to form a new sequence,

R™ = (RRF) = {r11"‘$TL’1T‘11“‘Jr’L’}1

and perform Bernoulli sampling to locate a best set of
repeats; that is, the most probable £ in this extended
data set.

Step 2. Calculate the following log odds score (los) at
each element selected by the sampler; that is, the elements
selected by the set A in the extended data set. For every
ke Ag,

J
los(k) =3 (h(ris-1),  log(B;/80)).
i=1
Here for a vector v = (u1,...,9y),Jog{v) = {log(v1),...,

log(v,)}. The notation “(-, -} is the usual inner product be-
tween two vectors. This score is an immediate output of
the sampler. As was revealed in (11), the score is equiv-
alent to the logarithm of the ratio of the probability of a
candidate segment being an element to that of it not being
an element, treating the estimated @’s as true ones.

Step 3. Suppose that Ny such positions are obtained.
Rank these positions by decreasing los score; that is, the
ith largest score; is ranked as Ny — i + L. Each rank grade
is assigned a positive sign if the corresponding position is
in the original data R and assigned a negative sign if the
corresponding position is in the shuffled data R’.

Step 4. Do a Wilcoxon signed rank test treating the fore-
going signed ranks as being obtained from two paired sam-
ples. That is, calculate the mean rank and obtain a reference
p value based on a normal approximation or on an exact ta-
ble derived by Wilcoxon (1945).

The rationale hehind the test is that under the null, the
elements are equally likely to be solicited from either the
study or the control sequences. The circumstance of our
test is not the same as that of the classical Wilcoxon test,
where typically two paired samples are involved. But ¢on-
ditioned on the total number of elements found, the same
exchangeability argument as that of Wilcoxon’s can be ap
plied. In the case that no elements are found in the con-
trol data set, for example, the significance will be simply
2~(No~1} Recause the Bernoulli sampler excludes any over-
lap of two elements, our test is actually slightly conserva-
tive. (The sampler will be pushed towards the control data
if the elements are too crowded in the test data.}

The generation of negative control data sets is a well-
recognized issue in the field of computational biology. Lip-
man, Wilbur, Smith, and Waterman {1984} showed that
some local dependence of a sequence can affect the sta-
tistical significance of a similarity. Thus one may want
to use negative control data sets other than the randomly
shuffled set to guard against possible artifacts. Our test
method is not restricted to random shuffled sequences and
can be carried through for any carefully chosen negative
control data sets that accurately reflect one’s null hypoth-
esis. In this sense, our method is also open to possible
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Table 2. Aligned Binding Segments identified by the Sampler

{ 1 i v v
1-1 185 kvakvtqgqst CAVFGLGGYGLSY IMGCKAAGAARI I gvdinkdkfa 220 {.9600)
241 23 tsqeprsynk ITYVGYGAYGMACATSILMKDLADEY alvdvmedk] 48 {.9680)
4-1 & Agwse LYTGGGGFLGORITCLLYEEKDLQEL rvldkyfrpe keh | {.8180)
51 3] malqq FGLIGLAYMGENLALNIERMGFSLTY ynrtaektea K| {.98440)
6-1 8 aiankni IFYAGLGGIGFDOTSREIVKSGPKNLY ildrienpaa 33 {.9960)
8-1 41 hfstqektpq  ICYVGSGPAGFYTAQHLLKHPOQAHVD  iyekqpvpfg 86  (1.0000)
8-2 178 elepdlscdt AVILGOGNYALDVARILLTPPEHLEA MM1cqrtdit 204 {.9760)
11-1 468 mlfntdqvie VFYIGVGEEYGGALTIEQIYRAGPWLKD khidlrvcgi 493 {.7640)
121 3 mk IGIVGATGYGGTELYRILSHHPHAEE cilysssgeq 28 {.5740)
14-1 5 mqfd YITIGAGSAGNVYLATRLTEDPNTSYL 11eaggpdyr 30 {-9980)
211 298 geavarllvg VVVLGPGRIAGPYGYEYDIVROVEGA hdpvqttvvy 323 {.5400}
21-2 348 hfgrglvgrl IGIEARGRIGRAVAVALHRASRALDY adhrqiqvia 373 {6740}
2241 11 mskntegmgr AYY IGAGLGGLAAAMRLGAKGYKYTY vdridrpagr 36 (1.0000)
22-2 222 sqlekkfgvh YAIGGYOQATADAMAKVITDQGGEMRL ntevdeilvs 247 {.9840)
241 6 mtnir VAIVGYGNLGRSYEKLIAKQPOMDLY gifsrratld 31 {1.0000)
271 215 klgidmkkak [AYOQGIGNVGSYTYLNCEKLGOTYYA maewckseqgs 240 (.9240)
28-1 24 aadhhplplt VOV LGSGHAGTALAAWFASRHYPTAL wapadhpgsi 49 {.9820)
28-1 148  ngaehfkgkp  ALIVGGGGTARTAIYYLRKWLGYSKI yivnrdakev 173 {.8240)
411 162 ynidtfglna VY IGASHNIVGRPMSMELLLAGCTTTY thrftknlrh 187 (.9700)
41-2 204 nlirhhlenad LLIVAYGKPGFIPGDWIKEGAIVIDY ginrlengky 229 (.5660)
4241 7 qtfqad LATYGAGGAGLRAATAAAQANPHRAKI aliskvypmr az {.9980)
42-2 383 glfavgecss VOLHGANRLGSNSLAELYYFGRLAGE qateraatag 408 {.8020)
44-1 g msrak VGINGFGRIGRLYLRAAFLKNTYOYY svndpfidle a1 {.9620)
46-1 g mgpir LGLYGYGKIAQDQHYPATNANPAFTL vsvatqakpe 3 (.8000)
471 756 tagefsthhf ACLIGYGASAVCPY LALETCRAWRLS nktinlmrng 781 (.5500)
48-1 7 madkyn VCOIVASGNWGSATAKIVGANAAALPE feervtmfyvy az {.8200)
49-1 6 mngva  VYIGGGOTLGAFLCHGLAAEGYRVAY vdiqsdkaan 1 {.9700)
50-1 260 enrapsvtye YGHLGGLDIAERDIARLRGLGRTYSD siavrsydewv 285 (.7920)
51-1 184  hrqvdlissqk  TYITGAGKMACLLYKHLLAKGATDIT ivnrsqrrsq 209 {.8920)
55-1 297 knydgdvqsd [VAQGFGSLGLMTSILYTPOGKTFES eaahgtvtrh az2 {.7260)
56-1 5 msir IGYIGTGAIGKEHINRITHKLSGAEL vavidynqgea a0 {1.0000)
571 a0 k11dyfkndt FALIGYGSOGYGOGLNLRONGLHNYIT gvrkdgasuk 105 {.9860)
§3-1 286 itknrlsdht VLFOGAGEAALGIANLIYMAMEKEGY skeaavkriw an {.9540)
701 4 mdt [AFLGLGNMGGPMAANLLKAGHRYNY fdlgpkavlLb 29 {1.0000)
70-2 38 NYfdlgpkav LGLYEQGAQGADSALACCEGAEYVYIS  mlpagghves &3 {.5220)
711 3 mk ALHFGAGNIGRGFIGKLLADAGIOLT fadvnqvvld 28 {.9360)
76-1 5 msnt TVYYGAGYIGLTSALLLSKNKGNKIT vvakhmpgdy 30  {1.0000)
77-1 112 rdgfslydrt VEIVGVGNYGRRLOARLEALGIKTLL cdppradrgd 144 {.9960)
78-1 5 mktq VATTGAGPSGLLLGOLLHKAGIDRYI Tergtpdyvl 30 {1.0000)
79-1 167  taagkvppak YMUTGAGVYAGLAATGAANSLGATYRA fdtrpevkeq 182 {1.0000)
az-1 13 ifpipaesyt LGFIGAGKMAESTARGAVRSGYLPPS rirtavhfnl 38 {1.0000)
831 290 rrlslelngr LPIIGYGGIDSYTAAREKTAAGASLY qiysqfifkg 315 {.5980)
a5-1 9 mtflkeyy [YSGASGFIGKHLLEALKKSGISYYA itrdviknns 34 {.9380)
86-1 218 atdvmlagkyv AVVAGYGDYGKGSAASLKAFGSRYIY teidpinalqg 243 {1.0000)
89-1 16 kieqwkatky IGITGLGOMGLLY ANKFTOAGWSYIC cdreeyydel 41 (1.0000)
Sites: *hkFhkkkk kk * * * *

5 14 15 24 25

NOTE:  Calurmn | gives the sequence number {e.g., 1, ADHE_HORSE, «tc.] and the element number in each sequence. Calumns || and 1V
provide starting and ending pasitions of each element. Columns [l and V display the sequence segment far each elemeant and its frequeney of
being sampled hy the samplar. The sites found by the weighted fragmentation model are indicated by “+" at the bottom of the tahle, The signed
ranks test was applied; the result rs highly significant, with a g value 2.37 = 10-%,

abuses. Another issue concerns the implication of our ref-
erence p value, which would perhaps have been different
had another control data set been generated. Note that this
kind of fluctuation is the characteristic of all Monte Carlo
tests. Following Hope (1968), our reference p value hased
on one shuffled control set is a valid p value. That is, if we
calculate that the reference p value is , then the probabil-
ity of making a type I error by rejecting the null hypothesis
at level « is equal to . Hope (1968) also pointed out that
generating more reference sets can increase the power of
the test.

6. EXAMPLE: DINUCLEOQTIDE-BINDING PROTEINS

NAD, NADP, and FAD are cofactors used by several dif-
ferent enzymes. Neuwald and Green (1994} described a

set of 91 distantly related proteins that are components of
enzymes that bind one of these cofactors. This set con-
tains no pair of sequences to be found significantly related
using the BLAST algorithm (Altschul, Gish, Miller, My-
ers, and Lipman 1990). We replaced twoa of the proteins in
this collection with two other dinucleotide-binding proteins
whose three-dimensional structure is known. We made this
replacement in a manner that assured there were no sig-
nificantly related pairs. Several of the proteins in this set
are components of enzymes complexes of several proteins.
Consequently, not all of these 91 proteins are expected to
directly bind one of the cofactors. Furthermore, some of
these sequences may contain multiple dinucleotide binding
sites. This example is thus suited to the Bernoulli sampling
strategy described in Section 4.
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The prior Dirichlet distributions for the frequencies of
the 20 residue types for all site and nonsite positions were
chosen so that the expected values of the frequencies were
proportional to the composition of the entire data set. The
pseudocounts (i.e., a1 +- - - +ap ot Ji;+- - -+ ;) were cho-
sen as 9, 10% of the total number of sequences. Because
we expected some proportion of the sequences to contain
an element, we chose the parameters of the prior beta distri-
bution in such a way that the expected number of elements
was 43, corresponding to half an element per sequence, and
with a standard deviation of our default value of 6, % of
the mean. This gave us ¢ = 180 and & = 144,984. In this
example the results do not change remarkably for different
choices of (a,b) ranging from expected % element per se-
quence to one element per sequence. Because in this exam-
ple the width of the motif is unknown, we applied fragmen-
tation using the weighted prior with the defaults of 7 = 13
and W = 130. We applied the signed ranks test as described
in Section § with the same prior distributions as those de-
scribed earlier, except that we maodified the beta parameters
to correspond to a doubling of the expected number of el-
ements. The sampler applied to the data set including the
controls reported 38 elements that were sampled 50% of
the iterations after convergence. Seven of these came from
the control data set with a total rank of 335, which corre-
sponds to a Z value of —4.6 using normal approximation
with correction. In all cases we judged convergence in ac-
cordance with the procedures described by Lawrence et al.
(1993).

As shown in Table 2, 45 aligned elements from these 91
sequences were identified by the sampler. Table 3 gives the
expected values of the a posteriori Dirichlet distributions as-
saciated with these aligned elements. Notice that the frag-
mentation model has selected a motif that spans 26 residues,
and that this motif carresponds quite well with the strand-
helix—strand motif of ADHE, as shown in Figure 3. It also
carresponds to the locations of the known dinucleotide-
binding strand-helix—strand structure in the two other pro-
teins in this set for which such structural data are available.
Furthermore, this motif corresponds nearly perfectly to a
sequence fingerprint model for dinucleotide-binding seg-
ments derived by superimposing the structures of several
of these proteins (Wierenga, DeMaeyer, and Hol 1985).

In protein motifs, not all of the pasitions are equally im-
portant. The last column in Table 3 gives the relative en-
trapy {Cover and Thomas 1991) in bits {i.e., the Kullback—
Leibler distance) between the site and nonsite models of
the 13 sampled positions found for the motif. As these
columns indicate, positions 5, 7, and 10 are the most dis-
tant from the background model. All three positions are
most frequently glycines, the smallest and most flexible of
the 20 amino acids. In this motif, these three positions,
which are colored red in Figure 3, play important distinct
roles in the binding of NAD. The flexibility of a glycine
residue at position 199 of ADHE (motif position 5} permits
the protein chain to make the sharp bend shown in Fig-
ure 3. The small size of a glycine at position 201 (motif
position 7) permits the motif to closely approach the phos-
phate groups of NAD to which it binds. The small size of
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the glycine at position 204 (motif position 10) permits the
first strand of the strand-helix—strand structure to closely
appraach the helix. Position 3 of the maotif (position 197 in
ADHE), colored purple in Figure 3, is the fourth most dis-
tant position. As indicated in Table 3, one of three residues
(valine, isoleucine, or lencine) is required at this position.
These three residue types are often found in the interior
of a protein and help to stabilize a protein’s structure. In
this case this position helps to hold the first strand of this
strand-helix—strand motif in position against the helix.

7. DISCUSSION

In most cases sequences available for analysis do not
arise from a process that mimics independent samples from
a common model, but rather they emerge by evolving from
cominon ancestors. Some methods for sequence alignment
that incorporate evolutionary history have been described
(Allison et al. 1992; Bishop and Thompson 1986; Thorne
et al. 1991, 1992), but the results from these in multi-
ple sequence alignment have so far been limited. When
sufficient diverse data are available, as in our dinucleotide-
hinding protein example, the independence assumption can
be very closely achieved by removing highly correlated ob-
servations from the data set. In cases where there are in-
sufficient data to take this approach, a method that can si-
multaneously align a large set of sequences (especially se-
quences that include subtle relationships} and account for
the correlations stemming from evolutionary history awaits
future development. Although theory addressing these cor-
relations is important, in practice we have found that the
methods we propose here often work well even with sub-
stantial departures from the independence assumption. To
date, our experience and that of others using these methods
(8. Henikoff, personal communication) indicate that depar-
tures from the independence assumptions have nearly no
impact on the methods described in Section 3. Although we
have less experience with the method described in Section
4 (i.e., Bernoulli sampling methods}), preliminary results in-
dicate that this assumption is somewhat more important in
this case.

Some basic similarities of this work with previously re-
ported methods should be noted. Existing Gibbs sampling
and EM algorithms for multiple sequence alignment share
the treatment of alignment data as missing. Twoe EM ap-
proaches have been developed: one that finds alignments
of ungapped elements (Cardon and Stormo 1992; Lawrence
and Reilly 1990), the other in the form of hidden Markov
models (HMM) that permit gaps between any two neigh-
boring residues in a sequence (Baldi et al. 1994, Haussler
et al. 1993). Because the joint distribution of multiple el-
ements in each sequence must be explicitly estimated, the
first approach has heen limited to problems with only one
or two motifs. The sampling methods permit us to escape
this restriction by exploring the joint distribution through
sampling the complete set of conditionals.

When sequence evolution has not heen subject to dupli-
cations or transpositions, the order of the residues in the
sequences will not be altered, and the sequences are said to
be collinear. This collinearity induces a Markov relation-
ship on the alignment, which forms the basis of a popular
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Table 3. Posterior Mean (x 100) of the Product Multinomial Parameter
POS [# € A 8 T N o E Q K R H W Y F v { L e P inf
1 2 1 13 1 2 0 0 1 a 4] 0 a Q 4 4 29 25 15 0 0 1.1
2 ] 27 17 1 2 ] 0 1 a 0 0 a Q 0 4 pc 3 9 2 2 .
3 4] 1 K] 3 2 a a 1 0 a 1] 4 4] 4] 6 27 37 13 a 4] 1.4
4 a 11 5 1 0 2 0 3 8 0 4] 2 1] a 4 25 27 11 0 0 9
5 0 as 2 1 0 0 0 3 Q 0 4] 0 1] 4] 0 1 1 1 Q 0 25
6 0 9 25 1 2 Q 0 1 4 Q 2 4] 4] 10 4 13 3 1 0 2 8
7 0 78 3 1 2 4 a 1 4 4] 4] [t} 4] a 0 1 1 3 0 0 23
9 a 3 13 5 2 1] 0 1 4 1] a 4] 2 2 a 17 25 11 10 2 8
10 a 70 21 1 a 4] 3 1 a 4] 4] a o] 0 0 1 1 1 a Q 22
14 2 9 as 7 4] 4] 0 3 2 g a 2 0 2 0 5 17 9 0 a Re
17 6 1 11 1 0 0 0 3 4] 0 0 0 0 a 4 7 21 43 0 0 1.3
21 0 43 11 3 0 6 3 1 2 5 5 4 0 a 0 1 1 5 2 2] 1.0
26 2 1 11 9 7 1] 5 7 2 0 a a 0 0 0 29 15 11 a 1] .8
MNonsite: 1 7 8 5 5 4 5 8 3 5 5 2 1 3 3 7 5 e 2 4
Site: 1 27 14 2 1 1 a 1 2 a 0 1 1] 1 2 14 14 11 1 1

MOTE: This table shows the posterior expectation of the residue frequency parameter conditioned an the best alignment. The information number pravided in the last column is the Kullback—_aitlar
distance between the astimated frequency é; for each paosition al the matit and the egtimated background frequency Ay, caloulated using base-2 Iogarithm. By the standard theory that 2 log
of likelihaad ratia is asymptotically @ distributed, the nll distripution {ie., it the 43 elements were randamly genarated fram the background maodel] of this infarmation number is asymplotically

x2{19}1'90 leq(2], whase mean and standard deviation are about A and 1,

dynamic programming algorithm for the alignment of a pair
of sequences. HMM's exploit this same characteristic o
explore the joint alignment distribution, which allows gaps
anywhere in the sequence. While increasing their modeling
flexibility, the unrestricted HMM’s have to pay the price of
a loss in specificity and an increase in computational com-
plexity. Of course, their use of collinearity restricts them
to problems where the orders of the motif elements have
not been transposed. The sampling methods discussed here
do not have this restriction. All currently available HMM
algorithms are based on the EM approach, which, because
of its deterministic nature, can become trapped in a local
mode. The ideas presented in this article can be useful for
building full Bayesian models and Gibbs sampling strate-
gies for the HMM's.

Cheosing the pattern width J in our analysis corre-
sponds to the well-known problem of model selection
when there are changes in dimensionality of the freely
adjustable parameters. The celebrated Akaike informa-
tion criterion (AIC} (Akaike 1973) and Bayesian informa-
tion criterion (BIC) (Schwartz 1978} have been useful in
many applications. Unfortunately, these criteria did not
perform well in selecting those pattern widths that iden-
tified correct alignments in data sets with experimentally
determined “known solutions” When fragmentation is not
used, the “information-per-parameter” criterion proposed
by Lawrence et al. {1993) still seems to perform well, al-
though this criterion biases toward elements with strong
ends. When fragmentation is used, our experiences suggest
that a single default setting of J = 13 and W = 130 works
well for most protein alignment problems. Clearly, this
single default is able to identify most motifs because (a) 13
columns are sufficient to identify most protein moatifs, (b)
the weighting scheme in Section 3.5 effectively eliminates
the need to constrain W, and (c) the single default focuses
the sampler’s attention on the J positions that are farthest in
relative entropy from the background frequencies. Conse-
quently, only those positions in a motif with relatively small
entropy distance from the background frequencies are ex-

cluded from the model. In some circumstances a biologist
will have prior information te choose a value for J that
differs from the default.

There are several biopolymer sequence data bases.
Records in these data bases begin with the entry of the
biopolymer sequence. Additional information about the
biopolymer is sometimes added to the record as annotations.
Among other things, these annotations can conclude exper-
imental evidence that a protein binds a specific ligand and
evidence of the location of the binding site in the sequence,
which usually requires a known three-dimensional struc-
ture. Because these data bases are now in a state of rapid
growth, the state of characterization for many sequences is
very limited. Thus, as is typical, it is not possible to ver-
ify the binding of a cofactor for most of the 91 sequences
in our example, much less to identify the specific sites of
binding. In this example the best evidence for convergence
to the “carrect” alignment is the excellent agreement of our
motif with the fingerprint madel reported by Wierenga et
al. (1983).

There are a few approximation formulas throughout Sec-
tions 3 and 4. They are not necessary, and the correspond-
ing exact formulas are provided. These approximations
speed computation somewhat, but more important, they
provide statistical insights into the meanings of iterative
sampling procedures.

The models discussed in this article can be viewed as
mixture models, and the problem addressed by the Bernoulli
sampler can be regarded as a classification problem. More
precisely, we can treat each position in every hiological
sequence as sampling from a mixture of “clement” and
“nonelement.” Our experience demonstrates that this sim-
ple viewpoint is especially constructive. Gibbs sampling
methods have been shown to be useful for these models
and have been particularly constructive for the identifica-
tion of subtle relationships (Lawrence et al. 1993} among
protein sequences. Here we provide the rigorous Bayesian
foundations for the application of these sampling methods
for multiple sequence alignment. In addition, we show how
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to extend these methods by relaxing the specification of the
number and size of motifs. Furthermore, we develop a
ranks test to judge the statistical significance of a multiple
alignment.

APPENDIX: WEIGHTED SAMPLING FROM
FINITE PCPULATION

The conditional distribution (7) can be regarded as a generalized
Bernoulli-Laplace maodel; that is, the one for drawing a sample of
size J from a poal of W weighted balls without replacement, such
that the joint probability of the J balls is proportional to the prod-
uct of their respective weights. Chen, Dempster, and Liv (1994)
explained how this 1§ 2 maximum entropy model and presented
efficient algorithms to generate the sample sequentially. Because
our use of the model is nested in a general Gibbs sampling pro-
cedure, an iterative scheme is sufficient.

The sampling strategy that we designed is equivalent to a
Markov chain evolving in the following way. Let I'; = {4,

..,is} denote a sample of J balls at step £. At step £+ 1, a
ball (say, 4,) is first drawn from F: with equal probability and
excluded from the sample I'¢; then a ball (say, i*) is picked from
the pool ['{ U {4, } with prabability proportional to its weight. So
Tipr = T\ {4} U {i*}. This Markov chain is reversible with
¥ as its equilibrium distribution and is related to the Metropolis
scheme of Chen et al. {1994).

Instead of excluding a ball from the current sample I'; com-
pletely at random, we may want to draw one in proportional to
g; ! for i € I'.. We call this strategy doubly proportional sam-
pling. The equilibrium distribution of this new strategy is found

to be w
Ay I ot | Y] duss’
w=1

ud =1
To see why, consider a configuration ¥ = {1,...,J} and let
X, = Y\ {3} U {k}, where ¢ < J and & > J. So X, differs
from Y by one element. The transition functions are

J -
T(Y,Y) — Z{ fi i _ { 4

W
i=1 g=19; ):Jc=1+1 gr + 8

and

—1i
2 28
T(XLkAY) = T _ — — W
zjzlgjl_g,;l‘i‘gkl Z;=J+lg£+ga’.

Then it is easy to check

J W
35 AXRETXa Y) + 7 (Y)T(Y, Y) = #'(Y),

f=1 k=J+1

so that the 7' is indeed invariant under the foregoing transition.

A general doubly proportional sampling chain A, g can be
defined as follows: At step t + 1, a ball (say, ix) from [
= {4i1,...,1is} is chosen to be excluded with probability propor-
tional to the g ; then a ball is drawn from the pool 'y U {4}
with probability proportional to the gf , for j € T§ U {ix}. The
equilibrium distribution of this procedure is

) e [J4907 {Zg?} :
jer jer
as can be verified by examination of the equilibrinm equation as
shown previously. By choosing different o and 3, we were able
to abtain different equilibrium. distributions. A further general-
ization can be easily made to the case when two sets of weights,
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{a,...,az} and {by,...,b;}, are used for the two proportional
sampling steps.

[Received January 1994, Revised April 1995.}
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