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Abstract—We propose a sequential Monte Carlo (SMC)-based
motif discovery algorithm that can efficiently detect motifs in
datasets containing a large number of sequences. The statistical
distribution of the motifs is modeled by an underlying position
weight matrix (PWM), and both the PWM and the positions of the
motifs within the sequences are estimated by the SMC algorithm.
The proposed SMC motif discovery technique can locate motifs
under a number of scenarios, including the single-block model,
two-block model with unknown gap length, motifs of unknown
lengths, motifs with unknown abundance, and sequences with
multiple unique motifs. The accuracy of the SMC motif discovery
algorithm is shown to be superior to that of the existing methods
based on MCMC or EM algorithms. Furthermore, it is shown that
the proposed method can be used to improve the results of existing
motif discovery algorithms by using their results as the priors for
the SMC algorithm.

Index Terms—Genomic sequence, motif discovery, resampling,
sequential Monte Carlo (SMC).

I. INTRODUCTION

E FFORTS by various genomic projects have steadily ex-
panded the pool of sequenced DNA data. Motifs, or DNA

patterns found in different locations within the genome, are
often of interest to biologists. By seeking out these similarities
exhibited in sequences, we can further our knowledge on the
functions and evolutions of these sequences.

Motif discovery algorithms can be broadly divided into three
major categories: consensus sequence-based algorithms, projec-
tion-based algorithms, and profile-based algorithms. Consensus
sequence-based algorithms include WINNOWER [1], and exam-
ples of projection-based algorithms include Projection in [2]
and uniform projection motif finder (UPMF) in [3]. The third
category of motif discovery algorithms, the profile-based algo-
rithms, attempts to describe the instances of a motif collectively,
by modeling their statistical behavior, namely, the distribution
of the four nucleotides at the different locations within a motif.
In profile-based algorithms, a position weight matrix (PWM) is
used to model such statistical behavior. For motif of length ,
the PWM is matrix where each column of the matrix is a
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vector of length 4, corresponding to the probability of observing
each of the four nucleotide at the position. In general, the PWM
is assumed to be an unknown parameter which is to be estimated
by the algorithm together with the locations of the different in-
stances of the motif in the sequences.

In [4], by treating the locations of the motifs in each sequence
as missing information, an expectation-maximization (EM) al-
gorithm is proposed to estimate and locate the motifs. In [5]
and [6], MEME, an algorithm based on EM, is introduced with
support for finding unknown number of motifs and unknown
number of occurrences in the sequences. In [7]–[9], Gibbs Motif
Sampler and AlignACE are proposed based on the Gibbs sam-
pler, a Markov chain Monte Carlo (MCMC) algorithm, to esti-
mate the PWM and the locations of the motifs in the sequences.
Moreover, in [10], the Gibbs sampler-based BioProspector is
proposed to treat the two-block motif model and palindromic
patterns.

In this work, we take the profile-based approach and pro-
pose a solution based on the sequential Monte Carlo (SMC)
algorithm to treat cases of two-block motif models, unknown
number of motif instances, multiple motifs, and using the SMC
algorithm to refine the result of other algorithms. In a follow-up
work [11], we have proposed another profile-based determin-
istic tree-search method, the so-called deterministic sequential
Monte Carlo (DSMC) algorithm, to discover motifs of unknown
length, and motifs with insertion/deletion mutations.

The sequential Monte Carlo methodology is a family of
statistical inference methods that are more powerful than the
traditional MCMC techniques. It has been shown in [12] that
the SMC methods provide an efficient alternative to Gibbs
sampling in Dirichlet mixture models, which is the distribution
of choice for the priors in our work. The SMC algorithm se-
quentially explores the data. However, the underlying problem
does not necessarily have to be sequential in nature. Exam-
ples of SMC algorithms proposed for problems of this kind
where Gibbs sampling solutions already exist can be found in
the nonparametric Bayesian matrix factorization; in electro-
pherogram basecalling algorithms; and in feature-based object
recognition. In our work, we propose SMC algorithms that can
handle single-block model, two-block model with unknown
gap length, motifs of unknown length, motifs with unknown
abundance, and sequences with multiple unique motifs. Fur-
thermore, the SMC algorithm can also be used as a second-pass
algorithm, using other algorithm’s results as inputs, and further
improve those estimates.

The remainder of the paper is organized as follows. In
Section II, we present the system model for the motif discovery
problem for the single block model. In Section III, we derive
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Fig. 1. Position weight matrix models. (a) Model for a single-block motif with motif length w. (b) Two-block motif of lengths w and w , and gap length g.

the SMC motif discovery algorithm for the single block model.
In Section IV, we introduce modifications to the single-block
model algorithm to support other motif models. In Section V,
we provide experimental results on both real and synthetic
datasets. Section VI concludes the paper.

II. SYSTEM MODEL

Let , with , be the
set of DNA sequences of length where we wish to find a
common motif. Let us assume that a motif of length is present
in each one of the sequences. A single block motif model is
shown in Fig. 1(a). The distribution of the motif is described by
the position weight matrix , where
the column vector is the
probability distribution of the nucleotides at the
th position of the PWM. The remaining nonmotif nucleotides

are assumed to follow a Markovian distribution with probabili-
ties given by .

In our state-space model, the states represent the locations
of the first nucleotides of the different occurrences of the motif
in the sequence, whereas the observation for the state at step
is the entire nucleotide sequence, . Since the ending
nucleotides in a sequence are not valid locations for the begin-
ning of a motif with length , at step , the state,
denoted as , takes value from the set ,
where .

Let be a sequence fragment of length from
starting from position in , and denote as the
remaining fragment from with removed. For ex-
ample, for and with

, and .
Let us further define a vector where

, denotes the number of different nucleotides
in the sequence fragment . Given the vectors
and , we define

(1)

In DNA sequences, a nucleotide is often influenced by the
surrounding nucleotides. Thus, we assume for our system model
a third-order Markov model for the nonmotif nucleotides in the
sequence. Let us denote as the probability of . For
example, if , the probability of is given
by

(2)

In general, the zeroth to third-order Markov chain probabilities
for the background nonmotif nucleotides can be averaged over
a large genomic region, and are assumed to be known, which
we denote as . To perform motif discovery using the SMC
algorithm, can be given as a known parameter by the user or
default values can be used. Since the nucleotides being located
in the motif are independent of the other motif nucleotides and
nonmotif nucleotides, given the PWM , the background dis-
tribution , and the state at time , the distribution of the ob-
served sequence is then given as follows:

(3)

where is the th element of the sequence fragment ,
and is a 1 4 vector of zeros except at the position
corresponding to the nucleotide , where it is a one.

Inference Problem: From the discussion above, we formulate
our inference problem as follows. Let us denote the state real-

izations up to time as and similarly the

sequences up to time as , with the un-
known parameter , the position weight matrix. Given the se-
quences and the Markovian nonmotif nucleotide distribution

, we wish to estimate the state realizations , which are the
starting locations of the motif in each sequence, and the position
weight matrix , which describes the statistics of the motif. In
the next section, we derive the SMC algorithm to solve this in-
ference problem.

III. SMC MOTIF DISCOVERY ALGORITHM

In this section, we first give a brief overview of the SMC
methods. We then derive an SMC motif discovery algorithm for
the case where each sequence in the dataset contains exactly one
instance of the same motif. In Section IV, we will extend this al-
gorithm to treat more general motif models, including two-block
motifs with unknown gap length, motifs of unknown length,
motifs with unknown abundance, and sequences with multiple
unique motifs.

A. Sequential Monte Carlo Methods

Let us consider the following dynamic model

initial state model: (4)

state transitions model: (5)

measurement model: (6)
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where and are the state and the observation at time ,
respectively, and are probability density functions de-
pending on some known parameters . At time , we want to
make an online inference of the states based
on the observation . The optimal solution
in terms of any common criterion depends only on the con-
ditional pdf . Often, direct computation of this con-
ditional pdf is infeasible due to the complexity of the system;
therefore, Monte Carlo methods are employed to estimate it. In
most cases, however, drawing random samples directly from the
conditional pdf is also infeasible. Hence, we employ
the importance sampling technique to sample from some trial
sampling density and properly weigh the samples ac-
cording to the target distribution. Suppose random samples

are drawn from . The target con-
ditional pdf can then be approximated by

with (7)

where and is the indicator function
such that for and otherwise. The
set is called a set of prop-
erly weighted samples with respect to the target distribution
[13]. Furthermore, it is possible at time to generate the set

, properly weighted with respect
to , recursively from the previous set of properly
weighted samples , properly
weighted with respect to . By choosing the
optimal trial distribution
and suppose takes values from , then
recursively, the SMC procedure proceeds at time as follows
[13].

• For , compute

(8)

• Normalize these values such that .

• Draw from and let .
• Update the importance weight

(9)

• Normalize the importance weights so that they sum up to
one.

Although powerful and simple to implement, it has been
shown that in the above steps, the variance of the importance
weights increases over time which causes the degeneracy
problem [13]. Degeneracy occurs when too many samples have
very small weights and become ineffective samples, in which
case, the SMC algorithm becomes inefficient. Degeneracy

of the samples can be measured by the effective sample size
defined as

(10)

which can be approximated by [14]

(11)

It is suggested that when the effective sample size is too small,
e.g., , the following resampling steps can be
performed to rejuvenate the samples [14], [15].

• Draw sample streams from
with probabilities proportional to

.
• Assign equal weights to each stream, .

B. SMC With Unknown Parameters

In our system model, the parameter is unknown and has
to be estimated in the SMC process. As we will show later, the
parameter is in a form which can be described by a suffi-
cient statistic that is easily updated. To cope with the unknown
static parameters with easily updated sufficient statistics such
as the one in our motif discovery model, we consider the case
where the distribution can be given as where

is some sufficient statistic at time
that can be easily updated from the sufficient statistic

at time , and the current state and observation, and
. Suppose we have available at time a set of properly

weighted samples with respect
to . We have

(12)

Keeping only the past simulated streams
, (12) can be approximated by drawing

from a proposal distribution

. The new weights can be updated by [16]

(13)

Hence, by obtaining a Monte Carlo approximation of
from (12) and the set of sufficient statistics

,
the approximation of can then be obtained by dis-
carding the samples . To simplify computations and achieve
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lower memory requirements, only the samples and the
corresponding sufficient statistics are stored. Furthermore,
the static parameters can be estimated by Rao–Blackwelliza-
tion [17]

(14)

C. The SMC Motif Discovery Algorithm

For the system states up to time , and the
corresponding sequences , we will first present
their prior distributions and their conditional posterior distribu-
tions, and then present the steps of the SMC motif discovery
algorithm.

Prior Distributions: Denote
, as the th column of the position weight matrix .

In Monte Carlo methods, the prior distribution is often chosen
so that the posterior and the prior are conjugate pairs, i.e., they
belong to the same functional family. It can be seen that for
all of the motifs in the dataset , the nucleotide counts at each
motif location are drawn from multinomial distributions. It is
well known that the Dirichlet distribution provides conjugate
pair for such distribution. Therefore, we use a multivariate
Dirichlet distribution as the prior for . The prior distribution
for the th column of the PWM is then given by

(15)

Denote . Assuming independent priors, then
the prior distribution for the PWM is the product Dirichlet
distribution

(16)

Please refer to [18] for a detailed discussion on the Dirichlet
distribution.

Conditional Posterior Distributions: Here we give the condi-
tional posterior distributions that are used in the SMC algorithm:

1. The conditional posterior distribution of the PWM :

(17)

where we denote as the product

Dirichlet pdf for
, as the parameters of the distribution of at

time , and . Note that the
posterior distribution of depends only on the sufficient

statistics , which is

easily updated based on , and as given by (17),
i.e., .

2. The conditional posterior distribution of state :

(18)

Sequential Monte Carlo Estimator: We now outline the SMC
algorithm for motif discovery when the PWM is unknown, as-
suming that there is only one motif of length , and it is present
in each of the sequences in the dataset. At time , to draw random
samples of we use the optimal proposal distribution

(19)

To sample , we use the following proposal distribution:

(20)

where

(21)

with . Detailed
derivation of (20) can be found in the Appendix. The weight
update formula (13) can be written as:

(22)

where the derivation is also given in the Appendix.
We are now ready to give the SMC motif discovery algorithm:

Algorithm 1

[SMC motif discovery algorithm for single motif present
in all sequences]

• For
— sample from the mixture Dirichlet distribution

given by (20).
— sample from (19).
— update the sufficient statistics

from (17).
• Compute the new weights according to (22).
• Compute according to (11). If

perform resampling.
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Motif Scores: When searching for motifs in a dataset, it is
often necessary to assign confidence scores to the motif loca-
tions estimated. A natural choice in this case will be to use the
a posteriori probability

(23)

as the confidence score for our estimation, where , the prior
probability of the starting location of the motif in sequence is
assumed to be uniformly distributed. Note that

(24)

From [19] and [20], (24) can be approximated by

(25)

where the estimated PWM is computed from (14), and we
denote (25) as the Bayesian score.

IV. EXTENSIONS

In this section, we present modifications to the SMC motif
discovery algorithm introduced in the previous section to cope
with more sophisticated scenarios including two-block model
with unknown gap length, motifs of unknown lengths, motifs
with unknown abundance, and sequences with multiple unique
motifs.

A. Two-Block Model

In real datasets, the motifs are often highly conserved at
both ends of the motif while showing little or no conservation
in the middle. Such behavior is exhibited in the CRP dataset
as discussed in [21]. For the two-block model, as shown in
Fig. 1(b), we assume that the motif is segmented into two
blocks of known lengths and , separated by a gap of
length . The statistics of the motif can be
described by the PWM , where now , and
the first columns describe the statistics of the first block,
and the remaining columns describe those of the second.

In order for the SMC motif discovery algorithm to be able to
handle sequences with two-block motifs, we simply modify the
state space. Instead of letting the state be the location of the
first nucleotide of the motif, we let the state be the number pair

where ,
and . The proposal distributions

and , and the updates to the sufficient statistics and the
weights are similar to those introduced in Section III-C for the
single-block motif model, except that for the two-block model,
after nucleotides, the index for the final nucleotides are
advanced by to account for the gap in the two-block model.
We modify the proposal distributions as follows:

(26)

where is the th nucleotide of the two-block motif

(27)

of the th sequence. To sample , we use the following proposal
distribution:

(28)

Finally, to update the sufficient statistics, we have

(29)

and to update the weights

(30)

where .
The steps of the modified SMC algorithm for two-block

model is as follows.

Algorithm 2

[SMC motif discovery algorithm for two-block model]
• For

— Sample from (28).
— Sample from (26).
— Update the sufficient statistics

from (29).
• Compute the new weights according to (30).
• Compute according to (11). If

perform resampling.

B. Motif of Unknown Length

In the previous sections, we have assumed that the length of
the motif is known, which is not always the case in practical
applications. Assume that the dataset contains a motif of un-
known length that falls in the window . Here,
we modify the SMC algorithm so that the algorithm finds the un-
known motif length from the window given. The basic idea is to
associate with each sample the quantity , at time , which
is the length of the motif in sample at time . Corresponding
to this length, we have for sample the PWM with size

, where . At is drawn
uniformly from the set . After up-
dating the weights using the equation that will be introduced
shortly, the resampling condition is checked. When resampling
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is performed, the motif length samples are replaced by the
resampled values . Thus, adaptation to the
optimum motif length is achieved through resampling [22].

Assume at time we have the weighted sam-
ples . At time ,
we let , and obtain the weighted samples

according to (19), (20),
and (22), using as the length of the motif. Thus, following
each time increment, the length of the motif for each sample is
retained until resampling occurs.

In general, we have as increases. From the defini-
tion of for (21) we can see that each is a product of
terms, of which are the coefficients for the Dirichlet distribu-
tions, and the rest are probabilities of nucleotides from the non-
motif regions. It is clear that the longer is the motif length of a
sample, the larger is the corresponding weight. Thus, the weight
update needs to be normalized so that weights of different motif
lengths can be compared fairly. From (17), we can see that for
each Dirichlet parameter , at every time step, the param-
eter is incremented by 1 at the position corresponding to the nu-
cleotide observed at position of the motif. Therefore, the sum

is incremented by 1 from , and at

a given time , the sum is the same for all . In
(22), the denominator is the product of the sums

. Since all the sums have the same value, we

have . No-
tice that the product depends on the length of the motif for the
given sample. In order to compare the weights of samples with
different motif lengths, we need to normalize the parameters of
the Dirichlet distribution for all samples such that

(31)

is true for all , where and are the
Dirichlet parameters at the th position of the motif for the
motif with minimum length and the motif of the th sample,
respectively, and is the normalizing constant for the th
sample at time . Since both and are
known, is simply

(32)

Similarly, since the computation of involves the multiplica-

tion of nonmotif nucleotide probabilities,
whereas for a motif of minimum length, the multiplication only

involves terms, we normalize by

(33)

where . We now use the following
modified weight update formula in the SMC motif discovery
algorithm for unknown motif length

(34)

where . We will show
in the Appendix that this is properly weighted with respect to

for samples that have the same sampled motif lengths.
The weights are now normalized so that they are equivalent to
the weight for a minimum length motif so that the weights for
different motif lengths can be compared fairly. Note that the set
of weighted samples is not
properly weighted with respect to the same posterior distribu-
tion due to the different motif lengths in the samples. However,
the subset of samples with the same sampled motif length, , is
properly weighted with respect to . At each resam-
pling, more and more samples with the true motif length are re-
sampled. Eventually, most of the samples will become properly
weighted with respect to .

We next summarize the SMC motif discovery algorithm for
unknown motif length.

Algorithm 3

[SMC motif discovery algorithm for unknown motif length]
• Initialization: Sample uniformly from

.
• Importance Sampling: For

— For
• set .
• sample from (20) using as length of

motif;
• sample from (19) using as length of

motif;
• update the sufficient statistics

from (17) using as length of motif.
— Compute the new weights according to (34).
— Compute according to (11). If

perform resampling.
• At , let be the number of sequences having

estimated motif lengths that is different from the final
converged motif length. For ,
repeat the Importance Sampling step for the
sequences to re-estimate motif location and motif
length.

C. Motif With Unknown Abundance

To perform motif discovery on datasets where there exist an
unknown number of the same motif, we can perform multiple
passes of the SMC algorithm on the sequences. Before the sub-
sequent pass, the motif fragment is removed from the sequences
where they are found, and the remaining sequence fragments
are appended to form a new sequence. By keeping an index
on the locations in a sequence where the fragments are joined,
we can determine the nucleotides that are possible locations
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for the starting point of a motif, and modify the state space of
(19) accordingly. Note that the SMC algorithm presented so far
finds the location in the given sequence that best matches the
PWM samples, relative to the other locations in the sequence.
However, the actual match may be very poor, thus we may as-
sume that the motif does not exist in the given sequence. From
(17), we can see that each Dirichlet parameter should have a
dominant value at one of the four nucleotides, which indicates
the most likely nucleotide to occur at position . If a motif is
present in sequence , these dominant values are more likely
to be present in the computation of in (21). If a motif is not
present, then the smaller values are more likely to be present
in (21), thus the value for a sequence will be significantly
different depending on the presence of a motif. To determine
whether the motif being looked for in the current pass exists in
any sequence, we use the following threshold:

(35)

This is simply the average of over all possible starting po-
sition for the starting location of the motif, assuming that a
motif exists in the sequence. The sequence can be declared
not to contain a motif if where .

The following gives the SMC algorithm for datasets with un-
known motif abundance and/or multiple unique motifs.

Algorithm 4

[SMC motif discovery algorithm for unknown motif
abundance]

• If there are sequences remaining in the dataset, perform
the following steps.

• Importance Sampling: For
— If motif determined to be present in previous pass,

remove motif and append fragments. Mark the
location where the fragments are appended. If motif
determined not to be present in the previous pass,
remove sequence from dataset. For the first pass,
assume motif is present in the previous pass.

— If motif is present in the previous pass, for

• sample from (20);
• sample from (19);
• compute according to (35);
• if , declare motif to be

present;
• if , update the sufficient

statistics according to
(17).

— If , compute the new weights
according to (22).

— Compute according to (11). If
perform resampling.

D. Multiple Unique Motifs

The SMC motif discovery algorithm can very easily be
adapted to search a dataset for a large number of unique motifs,
while this functionality may be supported by other algorithms
in some form or other, the nature of the SMC motif discovery
algorithm allows for very efficient implementation. Similar to
the extension discussed in Section IV-C, the SMC algorithm
is used in multiple passes through the dataset to locate the dif-
ferent motifs. After each pass, the motif that has been located is
removed from each sequence, and the remaining fragments are
appended to form a new sequence. Before performing a new
pass over the modified dataset, the parameters for the priors are
reset to their initial values, and the state space is modified to
correspond to the possible starting locations of the new motif.
Whereas in Section IV-C, the updated parameters are retained
to locate the same motif which may occur multiple times in
a sequence, by resetting the parameters here we allow the
algorithm to look for motifs that may be different from the one
that was just found.

E. Using Results From Another Algorithm as Prior to SMC

While the SMC algorithm can be used as a stand-alone
algorithm for motif discovery, it can also be used as a second
pass algorithm to refine and improve the results of other motif
discovery algorithms. Note from (19)–(21), the starting loca-
tion of a motif is drawn using a PWM sample drawn from a
mixture product Dirichlet distribution, which depends on the
parameters . Having parameters that better
represent the statistical structure of the motif will allow the
algorithm to better recognize the location of the motif inside
the sequence. From (17), we can see that the Dirichlet param-
eters can be easily updated if we have the sequences and the
estimated starting locations of the motifs in those sequences
by some other motif discovery algorithms. When initiating the
SMC algorithm, we simply increment the Dirichlet parameters
according to (17) using the sequences and their corresponding
estimated starting locations as indexes. This procedure works
even if some of the estimated starting locations are incorrect,
since the cumulative effect will still allow the SMC algorithm
to draw a sample PWM which closely agrees with the statistical
structure of the motif.

V. EXPERIMENTAL RESULTS

We have implemented the proposed SMC motif discovery al-
gorithms and evaluated their performance on real and synthetic
data. The results are compared to those of MEME, AlingACE,
BioProspector, and UPMF.

A. Results for Real Data

We use two sets of real DNA sequences to evaluate the
performance of the SMC motif discovery algorithm. The first
dataset used is the cyclic-AMP receptor protein (CRP) from
Escherichia coli which contains 18 sequences [23]. Each
sequence is 105 nucleotides long, and the dataset contains 23
motifs of length 22 that have been experimentally determined.
The results of motif discovery using MEME, AlignACE, and
BioProspector are given in [21]. The second set of real data
used consists of 200 sequences, each of which contains a
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TABLE I
PERFORMANCE COEFFICIENT AND COMPUTATIONAL COMPLEXITY COMPARISON

FOR SMC AND GIBBS SAMPLING-BASED ALGORITHMS

TATA-box binding site. The TATA-box binding site is usually
found as the binding site for the RNA polymerase II and is
usually located approximately 25 nucleotides upstream from
the transcription start site [24] with experimentally determined
length of 8 nucleotides [25]. We have chosen fragments of 75
nucleotides long from upstream of 200 RNA polymerase II
binding sites for this dataset.

Basic SMC Algorithm: The performance results of the SMC
algorithm, MEME, AlignACE, and BioProspector on the CRP
and TATA-Box datasets are given in Tables I –V.

To demonstrate the performance of the SMC Algorithm 1,
we have implemented the proposed SMC algorithms and the
Gibbs sampling-based algorithm proposed in [7] in MATLAB,
and compared the accuracy and the time needed for both al-
gorithms to process the TATA-box and CRP datasets. For the
SMC algorithm, the results are obtained from a single pass with
the first 3 sequences estimated again using the updated priors
after the first pass. For the Gibbs sampling-based algorithm, we
ran the algorithm until the predictions have converged. For the
TATA-box dataset we selected the top 200 motifs and for the
CRP dataset the top 23. MATLAB simulations are performed
on a machine with Pentium IV 2.56-GHz processor. For the
TATA-box and the CRP datasets, we used fixed lengths of
and , respectively, for both Algorithm 1 and the Gibbs
sampling-based algorithm. Table I shows the performance coef-
ficient [1] and the running time for each algorithm for the two
datasets.

For the TATA-box dataset, we can see that both algorithms are
able to locate all the motifs correctly, but Algorithm 1 has the
advantage in terms of computational time required. For the CRP
dataset, Algorithm 1 again requires less running time, and also a
higher performance coefficient due to higher degree of overlap
with the correct motifs for those motifs that are incorrectly pre-
dicted. As we can see from this example, the SMC algorithm can
perform better or comparably with the Gibbs sampling-based al-
gorithm in terms of prediction accuracy, and for the cases where
the performances are comparable, the SMC algorithms are also
less computationally intensive.

Motif of Unknown Length: For the CRP dataset, the length
of the motifs has been experimentally determined to be 22
nucleotides long [23]. Here, we employed Algorithm 3 to
adaptively determine the optimum length of the CRP motif. For
AlignACE and BioProspector, both of which require a specific
motif length as an input, several runs using different motif
lengths were performed. Table II shows the estimated motif

length, number of potential motifs found by each algorithm,
the number of correct site predictions, and the performance
coefficient of the predictions. Both MEME and AlignACE have
predicted motifs that contain a consistent shift with respect
to the known starting locations. For these two algorithms, we
consider the predicted sites that have a consistent shift from the
known locations as correct predictions.

For the CRP dataset, we can see that the SMC algorithm
outperforms AlignACE and MEME, and has comparable accu-
racy to BioProspector in terms of performance coefficient. The
length of the CRP motif predicted by Algorithm 3 is also only 1
less than the known length. For the results of the CRP dataset,
while MEME was able to identify more correct instances of the
motif, the estimated length and locations predicted by MEME
are different from the experimentally determined results. From
footprinting methods [26] we know that the CRP motif is
22 nucleotides long with the consensus sequence “TTATGT-
GATCGAGGTCACACTT”. Table III gives the consensus
sequence of the CRP motif discovered by each algorithm.
We can see that only Algorithm 3 and BioProspector have
predicted motifs having the same starting location that matches
those of the known sites. For MEME, not only are the predicted
sites shifted downstream by three nucleotides with respect to
the known starting locations, the incorrectly predicted sites
also have less overlap with the known sites, thus MEME has a
much lower performance coefficient despite having accurately
predicted more motifs.

Motif With Unknown Abundance: In the CRP dataset, 23
motifs are known to exist in the 18 sequences. We treated the
number of motifs as an unknown, and employed Algorithm 4 to
locate all possible motifs of length 22 within the dataset. The
number of motifs found by each algorithm, and the accuracy
of the motifs found are shown in Table II. In our experiment,
the SMC algorithm found the same ratio of true sites as that
of BioProspector and exceeded that of AlignACE. For MEME,
although more true motifs were found than by any other algo-
rithm, the motifs found by MEME have different starting loca-
tions, as discussed earlier.

Two-Block Model: As can be observed from the consensus
sequence of the CRP dataset, the CRP motif can also be seen as
two blocks of conserved motifs with a gap around six to eight
nucleotides long. To see the effect of using a two-block model,
we performed the simulations again on the CRP dataset, this
time using the two-block model and Algorithm 2. We chose as
parameters , and for both
the BioProspector and Algorithm 2. As we can see in Table IV,
both the BioProspector and SMC algorithm have similar perfor-
mances in terms of the number of sites predicted, with the SMC
algorithm having higher performance coefficient, and the results
for both algorithms using the two-block model outperform the
results for both algorithms using the single-block model.

Second Pass Accuracy: Employing the SMC algorithm
described in Section IV-E, we can improve upon the results
of other algorithms by using the SMC algorithm to perform a
second pass through the dataset. In the first row of Table V,
using the CRP dataset, we first show the results of motif
discovery using the SMC Algorithm 1, MEME, AlignACE, Bio-
Prospector, and UPMF as first pass algorithms. As the second
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TABLE II
MOTIF DISCOVERY RESULTS USING CRP DATASET

TABLE III
PREDICTED CONSENSUS SEQUENCE FOR THE CRP MOTIF

TABLE IV
TWO-BLOCK MODEL ACCURACY COMPARISON FOR CRP DATASET

TABLE V
FIRST PASS ACCURACY FOR EACH ALGORITHM AND THEIR SECOND PASS

RESULTS USING SMC ALGORITHM USING CRP DATASET

row of Table V shows, the second pass results are improved
from the first pass results for each of the algorithms tested.

Note that for the UPMF, no improvements can be made since
the authors have been unable to find the motifs in the CRP
dataset in the first pass. To the authors’ best knowledge, ap-
plying different parameters to UPMF results in either no mo-
tifs found, or incorrect motifs found. This phenomenon may be
due to the basic assumption of the UPMF, which is to solve the

motif problems proposed in [1]. The motif problems
assumption which is not always held in real motifs. While it has
been shown that projection based algorithms can work with real
datasets [2], the range of the number of deviations from the con-
sensus sequence exhibited by the motifs in the CRP dataset may
be too large, and presents a particular difficult problem for the
UPMF.

B. Results for Synthetic Data

We used the following rules to generate synthetic data of dif-
ferent levels of conservation for performance comparisons. For
highly conserved motifs, the dominant nucleotide at each posi-
tion in the motif is assigned probability of 91%, where as the
remaining nucleotides are assigned probability of 3% each. For
mildly conserved motifs, the dominant nucleotide at each posi-
tion in the motif is assigned probability of 70%, where as the
remaining nucleotides are assigned probability of 10%. Non-
motif frequency is assigned as 25% for each nucleotide.

Basic SMC Algorithm: We compared the performance of
SMC Algorithm 1, MEME, AlignACE, and BioProspector
using synthesized datasets of highly conserved and mildly
conserved motifs at various motif lengths. We generated highly
conserved motif datasets with motif lengths between 8 and 12,
and mildly conserved motif datasets with motif lengths between
17 and 22. Each dataset contains 50 sequences, each of which
is 200 nucleotides long. A motif of corresponding length is
present in each of the sequences. The performance comparisons
using synthetic data of highly conserved and mildly conserved
motifs are given in Figs. 2 and 3, respectively. For both highly
conserved and mildly conserved motifs, the accuracy of each
algorithm is plotted against the length of motif. In both figures,
we can see that the SMC algorithm outperforms the other three
algorithm for all motif lengths tested. It is clear by looking at
(20), motifs with greater length will allow the SMC algorithm
to draw more samples with the correct starting location. For
mildly conserved motifs, longer motif length is needed to have
more nucleotide matches to the true motif so that the correct
starting location can be drawn.

Unknown Motif Abundance: In addition to higher accuracy in
motif site predictions, the SMC algorithm also has higher sen-
sitivity to possible motif locations. We used 3 datasets of 50 se-
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Fig. 2. Accuracy for highly conserved motifs.

Fig. 3. Accuracy for mildly conserved motifs.

TABLE VI
PERCENTAGE OF SEQUENCES WITH MOTIF THAT ARE CORRECTLY IDENTIFIED

quences each, with conservation of 0.90, 0.80, and 0.71 for the
dominant nucleotides in the motifs, and motif length of 12, 16,
and 18 respectively. For SMC Algorithm 4, the threshold multi-
plier is set to 0.05. In each dataset, only half of the sequences
contain a single motif. Table VI tabulates the percentage of se-
quences in each dataset that is correctly identified with a motif
by each algorithm. It is seen that the SMC algorithm suffers less
from false negative errors than the other algorithms.

Second Pass Accuracy: In Table VII, we show the second
pass results of motif discovery using the SMC algorithm pro-

TABLE VII
FIRST PASS ACCURACY FOR EACH ALGORITHM AND THEIR SECOND PASS

RESULTS USING SMC ALGORITHM USING MILDLY CONSERVED

SYNTHETIC DATASETS

TABLE VIII
PERFORMANCE OF DIFFERENT ALGORITHMS FOR SYNTHETIC (16; 5) MOTIFS

EMBEDDED IN SEQUENCES OF 250 AND 600 NUCLEOTIDES

posed in Section IV-E, MEME, AlignACE, BioProspector, and
UPMF as first pass algorithms. The results are averaged over
ten datasets, each of which contains 50 sequences with mildly
conserved motifs of 20 nucleotides long. Similarly to the results
using the CRP dataset, the results in Table VII show that the
SMC algorithm is able to improve upon the results of the first
pass algorithms.

In Table VIII, we give the performance comparisons of SMC
Algorithm 1, BioProspector, and UPMF on two types of syn-
thetic datasets generated based on the motif problem. The
datasets contain motifs embedded in sequences of 250
and 600 nucleotides long. As we can see in Table VIII, as first
pass algorithms, UPMF significantly outperforms both the SMC
Algorithm 1 and BioProspector. This is not surprising since the
projection-based algorithms are designed specifically for these
types of problems. However, the SMC algorithm is still able to
improve those results as a second pass algorithm. These results
also show that the SMC algorithm has similar performance to
other Gibbs sampling-based algorithms in the twilight zones,
where the motifs are often too mildly conserved that it is diffi-
cult for the statistical-based algorithms to find a starting point.

VI. CONCLUSION

In this paper, we have proposed a sequential Monte Carlo so-
lution to the hidden Markov model of motif discovery problem.
We have shown that the SMC algorithm can provide in many
cases better performance than those of other algorithms. Even in
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cases where it does not offer the best performance, it is still valu-
able as a refining tool for those superior results. The scope of
this paper focuses on improving the performance of traditional
models where the sequences are assumed to be independent. The
current system model can be modified to support models where
the locations of the motifs are correlated between adjacent se-
quences by casting the current model in to a HMM problem.
The states and observations in the HMM model remain the same
as the current model, and the state transition probabilities can
be estimated with some metric based on data provided by mi-
croarray experiment results. Finally, we note that in a follow-up
work [11], we have proposed a deterministic tree-based search
method to discover motifs of unknown length, and motifs with
insertion/deletion mutations.

APPENDIX

Derivation of (20):

(36)

The proposal distribution of is a mixture of Dirichlet distri-
butions which can also be rewritten as

(37)

Derivation of (22): From (37), we can see that

(38)

Furthermore,

(39)

The weight update is thus given by

(40)

Derivation of (34): For the motif of unknown length model,
we use the following proposal distribution to sample for the

th sample:

(41)

where the Dirichlet mixture coefficient is given by (33).
Now from (37) we have

(42)

From (39) and (42), (13) can now be written as

(43)
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